Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 22, 2010

Therapeutic approaches for spinal cord injury induced spasticity

  • C. Yates EMAIL logo , K. Garrison , A. Charlesworth , N. Reese and E. Garcia-Rill

Abstract

Spasticity is evident in both humans and animals following spinal cord injury (SCI) and can contribute to significant functional limitation and disruption in quality of life of patients with this disorder. This mini-review describes a number of preclinical and clinical studies that promise to improve outcomes for, especially in terms of spasticity and hyper-reflexia, patients with SCI. A gold standard for the quantification of spasticity has proved elusive, but the combination of H-reflex frequency dependent depression and a novel stretch reflex (SR) windup protocol have the potential to provide new insights. As the pathophysiology of hyper-reflexia and spasticity continue to be investigated, the documented onset in the animal model of SCI provides critical time points for further study into these complex mechanisms. The positive effects of a passive exercise protocol and several potential pharmacological interventions are reviewed as well as a novel potential mechanism of action. Further work is needed to determine additional mechanisms that are involved in SCI, and how to optimize multiple therapies to overcome some of the deficits induced by SCI.

[1] Little J.W., Micklesen P., Umlauf R., and Britell C., Lower extremity manifestations of spasticity in chronic spinal cord injury, American Journal of Physical Medicine & Rehabilitation, 1989, 68(1), 32–36 http://dx.doi.org/10.1097/00002060-198902000-0000910.1097/00002060-198902000-00009Search in Google Scholar

[2] Cook K.F., Teal C.R., Engebretson J.C., Hart K.A., Mahoney J.S., Robinson-Whelen S., et al., Development and validation of Patient Reported Impact of Spasticity Measure (PRISM), J Rehabil Res Dev, 2007, 44(3), 363–371 http://dx.doi.org/10.1682/JRRD.2006.04.003610.1682/JRRD.2006.04.0036Search in Google Scholar

[3] Adams M.M. and Hicks A.L., Spasticity after spinal cord injury, Spinal Cord, 2005, 43(10), 577–586 http://dx.doi.org/10.1038/sj.sc.310175710.1038/sj.sc.3101757Search in Google Scholar

[4] Malmsten J., Time course of segmental reflex changes after chronic spinal cord hemisection in the rat, Acta Physiol Scand, 1983, 119(4), 435–443 http://dx.doi.org/10.1111/j.1748-1716.1983.tb07359.x10.1111/j.1748-1716.1983.tb07359.xSearch in Google Scholar

[5] Little J.W., Ditunno J.F., Jr., Stiens S.A., and Harris R.M., Incomplete spinal cord injury: neuronal mechanisms of motor recovery and hyperreflexia, Archives of Physical Medicine & Rehabilitation., 1999, 80(5), 587–599 http://dx.doi.org/10.1016/S0003-9993(99)90204-610.1016/S0003-9993(99)90204-6Search in Google Scholar

[6] Schindler-Ivens S. and Shields R.K., Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury, Exp Brain Res, 2000, 133(2), 233–241 http://dx.doi.org/10.1007/s00221000037710.1007/s002210000377Search in Google Scholar

[7] Nielsen J.B., Crone C., and Hultborn H., The spinal pathophysiology of spasticity—from a basic science point of view, Acta Physiol (Oxf), 2007, 189(2), 171–180 http://dx.doi.org/10.1111/j.1748-1716.2006.01652.x10.1111/j.1748-1716.2006.01652.xSearch in Google Scholar

[8] Calancie B., Broton J.G., Klose K.J., Traad M., Difini J., and Ayyar D.R., Evidence that alterations in presynaptic inhibition contribute to segmental hypo- and hyperexcitability after spinal cord injury in man, Electroencephalogr Clin Neurophysiol, 1993, 89(3), 177–186 http://dx.doi.org/10.1016/0168-5597(93)90131-810.1016/0168-5597(93)90131-8Search in Google Scholar

[9] Nielsen J., Petersen N., and Crone C., Changes in transmission across synapses of Ia afferents in spastic patients, Brain, 1995, 118( Pt 4), 995–1004 http://dx.doi.org/10.1093/brain/118.4.99510.1093/brain/118.4.995Search in Google Scholar PubMed

[10] Pierrot-Deseilligny E., Electrophysiological assessment of the spinal mechanisms underlying spasticity, Electroencephalogr Clin Neurophysiol Suppl, 1990, 41, 264–273 10.1016/B978-0-444-81352-7.50031-5Search in Google Scholar

[11] Faist M., Mazevet D., Dietz V., and Pierrot-Deseilligny E., A quantitative assessment of presynaptic inhibition of Ia afferents in spastics. Differences in hemiplegics and paraplegics, Brain, 1994, 117(Pt 6), 1449–1455 http://dx.doi.org/10.1093/brain/117.6.144910.1093/brain/117.6.1449Search in Google Scholar

[12] Delwaide P.J., Human monosynaptic reflexes and presynaptic inhibition: an interpretation of spastic hyperreflexia New developments in Electromyography and Clinical Neurophysiology, 1973, 508–522 10.1159/000394164Search in Google Scholar

[13] Eken T., Hultborn H., and Kiehn O., Possible functions of transmitter-controlled plateau potentials in alpha motoneurones, Progress in Brain Research, 1989, 80, 257–267 http://dx.doi.org/10.1016/S0079-6123(08)62219-010.1016/S0079-6123(08)62219-0Search in Google Scholar

[14] Li Y. and Bennett D.J., Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats, J Neurophysiol, 2003, 90(2), 857–869 http://dx.doi.org/10.1152/jn.00236.200310.1152/jn.00236.2003Search in Google Scholar PubMed

[15] Li Y., Gorassini M.A., and Bennett D.J., Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats, J Neurophysiol, 2004, 91(2), 767–783 http://dx.doi.org/10.1152/jn.00788.200310.1152/jn.00788.2003Search in Google Scholar PubMed

[16] Bennett D.J., Li Y., Harvey P.J., and Gorassini M., Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity, J Neurophysiol, 2001, 86(4), 1972–1982 10.1152/jn.2001.86.4.1972Search in Google Scholar PubMed

[17] Yates C.C., Charlesworth A., Reese N.B., Skinner R.D., and Garcia-Rill E., The effects of passive exercise therapy initiated prior to or after the development of hyperreflexia following spinal transection, Exp Neurol, 2008, 213(2), 405–409 http://dx.doi.org/10.1016/j.expneurol.2008.07.00210.1016/j.expneurol.2008.07.002Search in Google Scholar PubMed PubMed Central

[18] Yates C., Charlesworth A., Allen S.R., Reese N.B., Skinner R.D., and Garcia-Rill E., The onset of hyperreflexia in the rat following complete spinal cord transection, Spinal Cord, 2008 10.1038/sc.2008.49Search in Google Scholar PubMed PubMed Central

[19] Milanov I., Examination of the segmental pathophysiological mechanisms of spasticity, Electromyogr Clin Neurophysiol, 1994, 34(2), 73–79 Search in Google Scholar

[20] Angel R.W. and Hofmann W.W., The H Reflex in Normal, Spastic, and Rigid Subjects, Arch Neurol, 1963, 9, 591–596 10.1001/archneur.1963.00460060021002Search in Google Scholar PubMed

[21] Little J.W. and Halar E.M., H-reflex changes following spinal cord injury, Archives of Physical Medicine & Rehabilitation, 1985, 66(1), 19–22 Search in Google Scholar

[22] Olsen P.Z. and Diamantopoulos E., Excitability of spinal motor neurones in normal subjects and patients with spasticity, Parkinsonian rigidity, and cerebellar hypotonia, J Neurol Neurosurg Psychiatry, 1967, 30(4), 325–331 http://dx.doi.org/10.1136/jnnp.30.4.32510.1136/jnnp.30.4.325Search in Google Scholar PubMed PubMed Central

[23] Yablon S.A. and Stokic D.S., Neurophysiologic evaluation of spastic hypertonia: implications for management of the patient with the intrathecal baclofen pump, Am J Phys Med Rehabil, 2004, 83(10 Suppl), S10–S18 http://dx.doi.org/10.1097/01.PHM.0000141126.11008.7D10.1097/01.PHM.0000141126.11008.7DSearch in Google Scholar

[24] Ishikawa K., Ott K., Porter R.W., and Stuart D., Low frequency depression of the H wave in normal and spinal man, Exp Neurol, 1966, 15(1), 140–156 http://dx.doi.org/10.1016/0014-4886(66)90039-210.1016/0014-4886(66)90039-2Search in Google Scholar

[25] Curtis D.R. and Eccles J.C., Synaptic action during and after repetitive stimulation, J Physiol, 1960, 150, 374–398 10.1113/jphysiol.1960.sp006393Search in Google Scholar

[26] Reese N.B., Skinner R.D., Mitchell D., Yates C., Barnes C.N., Kiser T.S., et al., Restoration of frequency-dependent depression of the H-reflex by passive exercise in spinal rats, Spinal Cord, 2006, 44(1), 28–34 http://dx.doi.org/10.1038/sj.sc.310181010.1038/sj.sc.3101810Search in Google Scholar

[27] Lance J.W., Pathophysiology of Spasticity and Clinical Experience with Baclofen., in Spasticity: Disordered Motor Control., R.G. Feldman, R.R. Young, and W.P. Koella., Editors. 1980, Year Book: Chicago. p. 185–203. Search in Google Scholar

[28] Kuhn R.A., Functional capacity of the isolated human spinal cord, Brain, 1950, 73(1), 1–51 http://dx.doi.org/10.1093/brain/73.1.110.1093/brain/73.1.1Search in Google Scholar

[29] Powers R.K. and Rymer W.Z., Effects of acute dorsal spinal hemisection on motoneuron discharge in the medial gastrocnemius of the decerebrate cat, J Neurophysiol, 1988, 59(5), 1540–1556 10.1152/jn.1988.59.5.1540Search in Google Scholar

[30] Ju M.S., Chen J.J., Lee H.M., Lin T.S., Lin C.C., and Huang Y.Z., Timecourse analysis of stretch reflexes in hemiparetic subjects using an on-line spasticity measurement system, J Electromyogr Kinesiol, 2000, 10(1), 1–14 http://dx.doi.org/10.1016/S1050-6411(99)00018-810.1016/S1050-6411(99)00018-8Search in Google Scholar

[31] Dietz V., Quintern J., and Berger W., Electrophysiological studies of gait in spasticity and rigidity. Evidence that altered mechanical properties of muscle contribute to hypertonia, Brain, 1981, 104(3), 431–449 http://dx.doi.org/10.1093/brain/104.3.43110.1093/brain/104.3.431Search in Google Scholar PubMed

[32] Sinkjaer T., Toft E., Larsen K., Andreassen S., and Hansen H.J., Nonreflex and reflex mediated ankle joint stiffness in multiple sclerosis patients with spasticity, Muscle Nerve, 1993, 16(1), 69–76 http://dx.doi.org/10.1002/mus.88016011210.1002/mus.880160112Search in Google Scholar PubMed

[33] Schmit B.D., Dhaher Y., Dewald J.P., and Rymer W.Z., Reflex torque response to movement of the spastic elbow: theoretical analyses and implications for quantification of spasticity, Annals of Biomedical Engineering, 1999, 27(6), 815–829 http://dx.doi.org/10.1114/1.23410.1114/1.234Search in Google Scholar PubMed

[34] Schmit B.D., Benz E.N., and Rymer W.Z., Afferent mechanisms for the reflex response to imposed ankle movement in chronic spinal cord injury, Exp Brain Res, 2002, 145(1), 40–49 http://dx.doi.org/10.1007/s00221-002-1080-210.1007/s00221-002-1080-2Search in Google Scholar PubMed

[35] Thompson F.J., Browd C.R., Carvalho P.M., and Hsiao J., Velocitydependent ankle torque in the normal rat, Neuroreport, 1996, 7(14), 2273–2276 Search in Google Scholar

[36] Bose P., Parmer R., and Thompson F.J., Velocity-dependent ankle torque in rats after contusion injury of the midthoracic spinal cord: time course, J Neurotrauma, 2002, 19(10), 1231–1249 http://dx.doi.org/10.1089/0897715026033802910.1089/08977150260338029Search in Google Scholar PubMed

[37] Calancie B., Molano M.R., and Broton J.G., Interlimb reflexes and synaptic plasticity become evident months after human spinal cord injury, Brain, 2002, 125(Pt 5), 1150–1161 http://dx.doi.org/10.1093/brain/awf11410.1093/brain/awf114Search in Google Scholar PubMed

[38] Nakazawa K., Kawashima N., and Akai M., Enhanced stretch reflex excitability of the soleus muscle in persons with incomplete rather than complete chronic spinal cord injury, Arch Phys Med Rehabil, 2006, 87(1), 71–75 http://dx.doi.org/10.1016/j.apmr.2005.08.12210.1016/j.apmr.2005.08.122Search in Google Scholar PubMed

[39] Soderberg G.L. and Knutson L.M., A guide for use and interpretation of kinesiologic electromyographic data, Phys Ther, 2000, 80(5), 485–498 10.1093/ptj/80.5.485Search in Google Scholar

[40] Hornby T.G., Rymer W.Z., Benz E.N., and Schmit B.D., Windup of Flexion Reflexes in Chronic Human Spinal Cord Injury: A Marker for Neuronal Plateau Potentials?, J Neurophysiol, 2003, 89(1), 416–426 http://dx.doi.org/10.1152/jn.00979.200110.1152/jn.00979.2001Search in Google Scholar PubMed

[41] Hornby T.G., Kahn J.H., Wu M., and Schmit B.D., Temporal facilitation of spastic stretch reflexes following human spinal cord injury, J Physiol, 2006, 571(Pt 3), 593–604 http://dx.doi.org/10.1113/jphysiol.2005.10204610.1113/jphysiol.2005.102046Search in Google Scholar PubMed PubMed Central

[42] Crone C., Hultborn H., Kiehn O., Mazieres L., and Wigstrom H., Maintained changes in motoneuronal excitability by short-lasting synaptic inputs in the decerebrate cat, J Physiol, 1988, 405, 321–343 10.1113/jphysiol.1988.sp017335Search in Google Scholar PubMed PubMed Central

[43] Hounsgaard J., Hultborn H., Jespersen B., and Kiehn O., Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan, Journal of Physiology, 1988, 405, 345–367 10.1113/jphysiol.1988.sp017336Search in Google Scholar PubMed PubMed Central

[44] Bennett D.J., Gorassini M., Fouad K., Sanelli L., Han Y., and Cheng J., Spasticity in rats with sacral spinal cord injury, J Neurotrauma, 1999, 16(1), 69–84 http://dx.doi.org/10.1089/neu.1999.16.6910.1089/neu.1999.16.69Search in Google Scholar PubMed

[45] Thompson F.J., Reier P.J., Lucas C.C., and Parmer R., Altered patterns of reflex excitability subsequent to contusion injury of the rat spinal cord, J Neurophysiol, 1992, 68(5), 1473–1486 10.1152/jn.1992.68.5.1473Search in Google Scholar PubMed

[46] A. Arafaj R.D.S., C. Yates, K. Garrison, N.B. Reese, E. Garcia-Rill. Reversal of H-reflex Hyperactivity by L-dopa and Exercise in Alert, Chronically Spinalized Rats. in Neurosci Abstr. 2009. Search in Google Scholar

[47] Reese N.B., Houlé, J.D., Peterson, C.A., Gurley, C.M., Berry, C.L., Skinner, R.D. and Garcia-Rill, E Effects of fetal spinal cord implants and exercise on muscle atrophy in chronic spinal rats. in Neurosci. Abstr. 1994. Search in Google Scholar

[48] Norrie B.A., Nevett-Duchcherer J.M., and Gorassini M.A., Reduced functional recovery by delaying motor training after spinal cord injury, J Neurophysiol, 2005, 94(1), 255–264 http://dx.doi.org/10.1152/jn.00970.200410.1152/jn.00970.2004Search in Google Scholar PubMed

[49] Kiser T.S., Reese N.B., Maresh T., Hearn S., Yates C., Skinner R.D., et al., Use of a motorized bicycle exercise trainer to normalize frequency-dependent habituation of the H-reflex in spinal cord injury, J Spinal Cord Med, 2005, 28(3), 241–245 10.1080/10790268.2005.11753818Search in Google Scholar PubMed

[50] Phadke C.P., Flynn S.M., Thompson F.J., Behrman A.L., Trimble M.H., and Kukulka C.G., Comparison of single bout effects of bicycle training versus locomotor training on paired reflex depression of the soleus H-reflex after motor incomplete spinal cord injury, Arch Phys Med Rehabil, 2009, 90(7), 1218–1228 http://dx.doi.org/10.1016/j.apmr.2009.01.02210.1016/j.apmr.2009.01.022Search in Google Scholar PubMed

[51] Kita M. and Goodkin D.E., Drugs used to treat spasticity, Drugs, 2000, 59(3), 487–495 http://dx.doi.org/10.2165/00003495-200059030-0000610.2165/00003495-200059030-00006Search in Google Scholar PubMed

[52] Watanabe T., The role of therapy in spasticity management, Am J Phys Med Rehabil, 2004, 83(10 Suppl), S45–S49 http://dx.doi.org/10.1097/01.PHM.0000141130.58285.DA10.1097/01.PHM.0000141130.58285.DASearch in Google Scholar PubMed

[53] Park T.S. and Johnston J.M., Surgical techniques of selective dorsal rhizotomy for spastic cerebral palsy. Technical note, Neurosurg Focus, 2006, 21(2), e7 10.3171/foc.2006.21.2.8Search in Google Scholar

[54] Stempien L. and Tsai T., Intrathecal baclofen pump use for spasticity: a clinical survey, Am J Phys Med Rehabil, 2000, 79(6), 536–541 http://dx.doi.org/10.1097/00002060-200011000-0001010.1097/00002060-200011000-00010Search in Google Scholar PubMed

[55] Hsieh J.C. and Penn R.D., Intrathecal baclofen in the treatment of adult spasticity, Neurosurg Focus, 2006, 21(2), e5 http://dx.doi.org/10.3171/foc.2006.21.2.610.3171/foc.2006.21.2.6Search in Google Scholar PubMed

[56] Marciniak C., Rader L., and Gagnon C., The use of botulinum toxin for spasticity after spinal cord injury, Am J Phys Med Rehabil, 2008, 87(4), 312–317; quiz 318–20, 329 http://dx.doi.org/10.1097/PHM.0b013e318168ceaf10.1097/PHM.0b013e318168ceafSearch in Google Scholar PubMed

[57] Iwahara T., Van Hartesveldt C., Garcia-Rill E., and Skinner R.D., L-dopainduced air-stepping in decerebrate developing rats, Brain Res Dev Brain Res, 1991, 58(2), 257–264 http://dx.doi.org/10.1016/0165-3806(91)90013-910.1016/0165-3806(91)90013-9Search in Google Scholar

[58] Barbeau H. and Rossignol S., Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs, Brain Res, 1991, 546(2), 250–260 http://dx.doi.org/10.1016/0006-8993(91)91489-N10.1016/0006-8993(91)91489-NSearch in Google Scholar

[59] Pearson K.G. and Rossignol S., Fictive motor patterns in chronic spinal cats, J Neurophysiol, 1991, 66(6), 1874–1887 10.1152/jn.1991.66.6.1874Search in Google Scholar

[60] Hovda D.A. and Fenney D.M., Amphetamine with experience promotes recovery of locomotor function after unilateral frontal cortex injury in the cat, Brain Res, 1984, 298(2), 358–361 http://dx.doi.org/10.1016/0006-8993(84)91437-910.1016/0006-8993(84)91437-9Search in Google Scholar

[61] Sutton R.L., Hovda D.A., and Feeney D.M., Amphetamine accelerates recovery of locomotor function following bilateral frontal cortex ablation in cats, Behav Neurosci, 1989, 103(4), 837–841 http://dx.doi.org/10.1037/0735-7044.103.4.83710.1037/0735-7044.103.4.837Search in Google Scholar

[62] Feeney D.M., Gonzalez A., and Law W.A., Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury, Science, 1982, 217(4562), 855–857 http://dx.doi.org/10.1126/science.710092910.1126/science.7100929Search in Google Scholar

[63] Feeney D.M. and Hovda D.A., Amphetamine and apomorphine restore tactile placing after motor cortex injury in the cat, Psychopharmacology (Berl), 1983, 79(1), 67–71 http://dx.doi.org/10.1007/BF0043301810.1007/BF00433018Search in Google Scholar

[64] Crisostomo E.A., Duncan P.W., Propst M., Dawson D.V., and Davis J.N., Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients, Ann Neurol, 1988, 23(1), 94–97 http://dx.doi.org/10.1002/ana.41023011710.1002/ana.410230117Search in Google Scholar

[65] Eriksson J., Olausson B., and Jankowska E., Antispastic effects of L-dopa, Exp Brain Res, 1996, 111(2), 296–304 http://dx.doi.org/10.1007/BF0022730710.1007/BF00227307Search in Google Scholar

[66] Scheidtmann K., Fries W., Muller F., and Koenig E., Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study, Lancet, 2001, 358(9284), 787–790 http://dx.doi.org/10.1016/S0140-6736(01)05966-910.1016/S0140-6736(01)05966-9Search in Google Scholar

[67] Mukai A. and Costa J.L., The effect of modafinil on self-esteem in spinal cord injury patients: a report of 2 cases and review of the literature, Arch Phys Med Rehabil, 2005, 86(9), 1887–1889 http://dx.doi.org/10.1016/j.apmr.2005.01.00910.1016/j.apmr.2005.01.009Search in Google Scholar

[68] Hurst D.L., Lajara-Nanson W.A., Dinakar P., and Schiffer R.B., Retrospective review of modafinil use for cerebral palsy, J Child Neurol, 2004, 19(12), 948–9851 10.1177/08830738040190120701Search in Google Scholar

[69] Hurst D.L. and Lajara-Nanson W., Use of modafinil in spastic cerebral palsy, J Child Neurol, 2002, 17(3), 169–172 http://dx.doi.org/10.1177/08830738020170030310.1177/088307380201700303Search in Google Scholar

[70] Hurst D.L., Lajara-Nanson W.A., and Lance-Fish M.E., Walking with modafinil and its use in diplegic cerebral palsy: retrospective review, J Child Neurol, 2006, 21(4), 294–297 http://dx.doi.org/10.1177/0883073806021004200110.1177/08830738060210042001Search in Google Scholar

[71] Yates C.C., Charlesworth A., Reese N.B., Ishida K., Skinner R.D., and Garcia-Rill E., Modafinil normalized hyperreflexia after spinal transection in adult rats, Spinal Cord, 2009, 47(6), 481–485 http://dx.doi.org/10.1038/sc.2008.15410.1038/sc.2008.154Search in Google Scholar

[72] Kistler W.M., De Jeu M.T., Elgersma Y., Van Der Giessen R.S., Hensbroek R., Luo C., et al., Analysis of Cx36 knockout does not support tenet that olivary gap junctions are required for complex spike synchronization and normal motor performance, Ann N Y Acad Sci, 2002, 978, 391–404 http://dx.doi.org/10.1111/j.1749-6632.2002.tb07582.x10.1111/j.1749-6632.2002.tb07582.xSearch in Google Scholar

[73] Skinner F.K., Zhang L., Velazquez J.L., and Carlen P.L., Bursting in inhibitory interneuronal networks: A role for gap-junctional coupling, J Neurophysiol, 1999, 81(3), 1274–1283 10.1152/jn.1999.81.3.1274Search in Google Scholar

[74] Urbano F.J., Leznik E., and Llinas R.R., Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling, Proc Natl Acad Sci U S A, 2007, 104(30), 12554–12559 http://dx.doi.org/10.1073/pnas.070508710410.1073/pnas.0705087104Search in Google Scholar

[75] Stelzner D.J., Ershler W.B., and Weber E.D., Effects of spinal transection in neonatal and weanling rats: survival of function, Exp Neurol, 1975, 46(1), 156–177 http://dx.doi.org/10.1016/0014-4886(75)90039-410.1016/0014-4886(75)90039-4Search in Google Scholar

[76] Fawcett J.W., Overcoming inhibition in the damaged spinal cord, J Neurotrauma, 2006, 23(3–4), 371–383 http://dx.doi.org/10.1089/neu.2006.23.37110.1089/neu.2006.23.371Search in Google Scholar PubMed

[77] Fulton B.P., Miledi R., and Takahashi T., Electrical synapses between motoneurons in the spinal cord of the newborn rat, Proc R Soc Lond B Biol Sci, 1980, 208(1170), 115–120 http://dx.doi.org/10.1098/rspb.1980.004510.1098/rspb.1980.0045Search in Google Scholar

[78] Walton K.D. and Navarrete R., Postnatal changes in motoneurone electrotonic coupling studied in the in vitro rat lumbar spinal cord, J Physiol, 1991, 433, 283–305 10.1113/jphysiol.1991.sp018426Search in Google Scholar

[79] Wenner P. and O’Donovan M.J., Mechanisms that initiate spontaneous network activity in the developing chick spinal cord, J Neurophysiol, 2001, 86(3), 1481–1498 10.1152/jn.2001.86.3.1481Search in Google Scholar

[80] Hinckley C.A. and Ziskind-Conhaim L., Electrical coupling between locomotor-related excitatory interneurons in the mammalian spinal cord, J Neurosci, 2006, 26(33), 8477–8483 http://dx.doi.org/10.1523/JNEUROSCI.0395-06.200610.1523/JNEUROSCI.0395-06.2006Search in Google Scholar

[81] Connors B.W. and Long M.A., Electrical synapses in the mammalian brain, Annu Rev Neurosci, 2004, 27, 393–418 http://dx.doi.org/10.1146/annurev.neuro.26.041002.13112810.1146/annurev.neuro.26.041002.131128Search in Google Scholar

[82] Condorelli D.F., Parenti R., Spinella F., Trovato Salinaro A., Belluardo N., Cardile V., et al., Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons, Eur J Neurosci, 1998, 10(3), 1202–1208 http://dx.doi.org/10.1046/j.1460-9568.1998.00163.x10.1046/j.1460-9568.1998.00163.xSearch in Google Scholar

[83] Deans M.R., Gibson J.R., Sellitto C., Connors B.W., and Paul D.L., Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36, Neuron, 2001, 31(3), 477–485 http://dx.doi.org/10.1016/S0896-6273(01)00373-710.1016/S0896-6273(01)00373-7Search in Google Scholar

[84] Tresch M.C. and Kiehn O., Motor coordination without action potentials in the mammalian spinal cord, Nat Neurosci, 2000, 3(6), 593–599 http://dx.doi.org/10.1038/7576810.1038/75768Search in Google Scholar PubMed

[85] Laird D.W., Life cycle of connexins in health and disease, Biochem J, 2006, 394(Pt 3), 527–543 10.1042/BJ20051922Search in Google Scholar PubMed PubMed Central

[86] Heister D.S., Hayar A., Charlesworth A., Yates C., Zhou Y.H., and Garcia-Rill E., Evidence for Electrical Coupling in the SubCoeruleus (SubC) Nucleus, J Neurophysiol, 2007, 97(4), 3142–3147 http://dx.doi.org/10.1152/jn.01316.200610.1152/jn.01316.2006Search in Google Scholar PubMed PubMed Central

[87] Galarreta M. and Hestrin S., Electrical synapses between GABA-releasing interneurons, Nat Rev Neurosci, 2001, 2(6), 425–433 http://dx.doi.org/10.1038/3507756610.1038/35077566Search in Google Scholar PubMed

[88] McCracken C.B., Patel K.M., Vrana K.E., Paul D.L., and Roberts D.C., Amphetamine withdrawal produces region-specific and timedependent changes in connexin36 expression in rat brain, Synapse, 2005, 56(1), 39–44 http://dx.doi.org/10.1002/syn.2012710.1002/syn.20127Search in Google Scholar PubMed

[89] Oguro K., Jover T., Tanaka H., Lin Y., Kojima T., Oguro N., et al., Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice, J Neurosci, 2001, 21(19), 7534–7542 10.1523/JNEUROSCI.21-19-07534.2001Search in Google Scholar

Published Online: 2010-10-22
Published in Print: 2010-6-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.2478/v10134-010-0021-z/html
Scroll to top button