Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 17, 2014

Promoting plasticity in the somatosensory cortex to alter motor physiology

  • Christina Jones EMAIL logo and Aimee Nelson

Abstract

Somatosensory pathways and cortices contribute to the control of human movement. In humans, non-invasive transcranial magnetic stimulation techniques to promote plasticity within somatosensory pathways and cortices have revealed potent effects on the neurophysiology within motor cortices. In this mini-review, we present evidence to indicate that somatosensory cortex is positioned to influence motor cortical circuits and as such, is an ideal target for plasticity approaches that aim to alter motor physiology and behavior in clinical populations.

[1] Kaas J.H., Nelson R.J., Sur M., Lin C.S., Merzenich M.M., Multiple representations of the body within the primary somatosensory cortex of primates, Science, 1979, 204, 521–523 http://dx.doi.org/10.1126/science.10759110.1126/science.107591Search in Google Scholar PubMed

[2] Kaas J.H., What, if anything, is SI? Organization of first somatosensory area of cortex, Physiol. Rev., 1983, 63, 206–231 10.1152/physrev.1983.63.1.206Search in Google Scholar PubMed

[3] Phillips C.G., Powell T.P., Wiesendanger M., Projection from lowthreshold muscle afferents of hand and forearm to area 3a of baboon’s cortex, J. Physiol., 1971, 217, 419–446 10.1113/jphysiol.1971.sp009579Search in Google Scholar PubMed PubMed Central

[4] Krubitzer L.A., Kaas J.H., The organization and connections of somatosensory cortex in marmosets, J. Neurosci., 1990, 10, 952–974 10.1523/JNEUROSCI.10-03-00952.1990Search in Google Scholar

[5] Nelson R.J., Sur M., Felleman D.J., Kaas J.H., Representations of the body surface in postcentral parietal cortex of Macaca fascicularis, J. Comp. Neurol., 1980, 192, 611–643 http://dx.doi.org/10.1002/cne.90192040210.1002/cne.901920402Search in Google Scholar PubMed

[6] Merzenich M.M., Kaas J.H., Sur M., Lin C.S., Double representation of the body surface within cytoarchitectonic areas 3b and 1 in “SI” in the owl monkey (Aotus trivirgatus), J. Comp Neurol., 1978, 181, 41–73 http://dx.doi.org/10.1002/cne.90181010410.1002/cne.901810104Search in Google Scholar PubMed

[7] Schwarz D.W., Deecke L., Fredrickson J.M., Cortical projection of group I muscle afferents to areas 2, 3a, and the vestibular field in the rhesus monkey, Exp. Brain Res., 1973, 17, 516–526 http://dx.doi.org/10.1007/BF0023486510.1007/BF00234865Search in Google Scholar PubMed

[8] Pons T.P., Kaas J.H., Connections of area 2 of somatosensory cortex with the anterior pulvinar and subdivisions of the ventroposterior complex in macaque monkeys, J. Comp. Neurol., 1985, 240, 16–36 http://dx.doi.org/10.1002/cne.90240010310.1002/cne.902400103Search in Google Scholar PubMed

[9] Fang P.C., Stepniewska I., Kaas J.H., Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otolemur garnetti, J. Comp. Neurol., 2005, 490, 305–333 http://dx.doi.org/10.1002/cne.2066510.1002/cne.20665Search in Google Scholar PubMed

[10] Tokuno H., Tanji J., Input organization of distal and proximal forelimb areas in the monkey primary motor cortex: a retrograde double labeling study, J. Comp. Neurol., 1993, 333, 199–209 http://dx.doi.org/10.1002/cne.90333020610.1002/cne.903330206Search in Google Scholar PubMed

[11] Jones E.G., Powell T.P., Connexions of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral cortical connexions, Brain, 1969, 92, 477–502 http://dx.doi.org/10.1093/brain/92.3.47710.1093/brain/92.3.477Search in Google Scholar

[12] Jones E.G., Coulter J.D., Hendry S.H., Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys, J. Comp. Neurol., 1978, 181, 291–347 http://dx.doi.org/10.1002/cne.90181020610.1002/cne.901810206Search in Google Scholar

[13] Darian-Smith C., Darian-Smith I., Burman K., Ratcliffe N., Ipsilateral cortical projections to areas 3a, 3b, and 4 in the macaque monkey, J. Comp. Neurol., 1993, 335, 200–213 http://dx.doi.org/10.1002/cne.90335020510.1002/cne.903350205Search in Google Scholar

[14] DeFelipe J., Conley M., Jones E.G., Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex, J. Neurosci., 1986, 6, 3749–3766 10.1523/JNEUROSCI.06-12-03749.1986Search in Google Scholar

[15] Galea M.P., Darian-Smith I., Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections, Cereb. Cortex, 1994, 4, 166–194 http://dx.doi.org/10.1093/cercor/4.2.16610.1093/cercor/4.2.166Search in Google Scholar

[16] Sakamoto T., Porter L.L., Asanuma H., Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning, Brain Res., 1987, 413, 360–364 http://dx.doi.org/10.1016/0006-8993(87)91029-810.1016/0006-8993(87)91029-8Search in Google Scholar

[17] Iriki A., Pavlides C., Keller A., Asanuma H., Long-term potentiation in the motor cortex, Science, 1989, 245, 1385–1387 http://dx.doi.org/10.1126/science.255103810.1126/science.2551038Search in Google Scholar PubMed

[18] Pavlides C., Miyashita E., Asanuma H., Projection from the sensory to the motor cortex is important in learning motor skills in the monkey, J. Neurophysiol., 1993, 70, 733–741 10.1152/jn.1993.70.2.733Search in Google Scholar PubMed

[19] Brinkman J., Colebatch J.G., Porter R., York D.H., Responses of precentral cells during cooling of post-central cortex in conscious monkeys, J. Physiol., 1985, 368, 611–625 10.1113/jphysiol.1985.sp015879Search in Google Scholar PubMed PubMed Central

[20] Widener G.L., Cheney P.D., Effects on muscle activity from microstimuli applied to somatosensory and motor cortex during voluntary movement in the monkey, J. Neurophysiol., 1997, 77, 2446–2465 10.1152/jn.1997.77.5.2446Search in Google Scholar PubMed

[21] Hikosaka O., Tanaka M., Sakamoto M., Iwamura Y., Deficits in manipulative behaviors induced by local injections of muscimol in the first somatosensory cortex of the conscious monkey, Brain Res., 1985, 325, 375–380 http://dx.doi.org/10.1016/0006-8993(85)90344-010.1016/0006-8993(85)90344-0Search in Google Scholar

[22] Nelson A.J., Chen R., Digit somatotopy within cortical areas of the postcentral gyrus in humans, Cereb. Cortex, 2008, 18, 2341–2351 http://dx.doi.org/10.1093/cercor/bhm25710.1093/cercor/bhm257Search in Google Scholar PubMed

[23] Takita M., Izaki Y., Jay T.M., Kaneko H., Suzuki S.S., Induction of stable long-term depression in vivo in the hippocampal-prefrontal cortex pathway, Eur. J. Neurosci., 1999, 11, 4145–4148 http://dx.doi.org/10.1046/j.1460-9568.1999.00870.x10.1046/j.1460-9568.1999.00870.xSearch in Google Scholar PubMed

[24] Huang Y.Z., Edwards M.J., Rounis E., Bhatia K.P., Rothwell J.C., Theta burst stimulation of the human motor cortex, Neuron, 2005, 45, 201–206 http://dx.doi.org/10.1016/j.neuron.2004.12.03310.1016/j.neuron.2004.12.033Search in Google Scholar PubMed

[25] Goldsworthy M.R., Pitcher J.B., Ridding M.C., A comparison of two different continuous theta burst stimulation paradigms applied to the human primary motor cortex, Clin. Neurophysiol., 2012, 123, 2256–2263 http://dx.doi.org/10.1016/j.clinph.2012.05.00110.1016/j.clinph.2012.05.001Search in Google Scholar PubMed

[26] Jacobs M.F., Tsang P., Lee K.G., Asmussen M.J., Zapallow C.M., Nelson A.J., 30 Hz theta-burst stimulation over primary somatosensory cortex modulates corticospinal output to the hand, Brain Stimul., 2014, 7, 269–274 http://dx.doi.org/10.1016/j.brs.2013.12.00910.1016/j.brs.2013.12.009Search in Google Scholar PubMed

[27] Tsang P., Jacobs M.F., Lee K.G., Asmussen M.J., Zapallow C.M., Nelson A.J., Continuous theta-burst stimulation over primary somatosensory cortex modulates short-latency afferent inhibition, Clin. Neurophysiol., 2014, S1388-2457(14)00171-0 Search in Google Scholar

[28] Ishikawa S., Matsunaga K., Nakanishi R., Kawahira K., Murayama N., Tsuji S., et al., Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials, Clin. Neurophysiol., 2007, 118, 1033–1043 http://dx.doi.org/10.1016/j.clinph.2007.02.00310.1016/j.clinph.2007.02.003Search in Google Scholar PubMed

[29] Katayama T., Suppa A., Rothwell J.C., Somatosensory evoked potentials and high frequency oscillations are differently modulated by theta burst stimulation over primary somatosensory cortex in humans, Clin. Neurophysiol., 2010, 121, 2097–2103 http://dx.doi.org/10.1016/j.clinph.2010.05.01410.1016/j.clinph.2010.05.014Search in Google Scholar PubMed

[30] Jacobs M.F., Zapallow C.M., Tsang P., Lee K.G., Asmussen M.J., Nelson A.J., Current direction specificity of continuous theta-burst stimulation in modulating human motor cortex excitability when applied to somatosensory cortex, Neuroreport, 2012, 23, 927–931 http://dx.doi.org/10.1097/WNR.0b013e328358b0f310.1097/WNR.0b013e328358b0f3Search in Google Scholar PubMed

[31] Tokimura H., Di Lazzaro V., Tokimura Y., Oliviero A., Profice P., Insola A., et al., Short latency inhibition of human hand motor cortex by somatosensory input from the hand, J. Physiol., 2000, 523, 503–513 http://dx.doi.org/10.1111/j.1469-7793.2000.t01-1-00503.x10.1111/j.1469-7793.2000.t01-1-00503.xSearch in Google Scholar PubMed PubMed Central

[32] Asmussen M.J., Jacobs M.F., Lee K.G., Zapallow C.M., Nelson A.J., Shortlatency afferent inhibition modulation during finger movement, PLoS One, 2013, 8, e60496 http://dx.doi.org/10.1371/journal.pone.006049610.1371/journal.pone.0060496Search in Google Scholar

[33] Asmussen M.J., Zapallow C.M., Jacobs M.F., Lee K.G., Tsang P., Nelson A.J., Modulation of short-latency afferent inhibition depends on digit and task-relevance, PLoS One, 2014, 9, e104807 http://dx.doi.org/10.1371/journal.pone.010480710.1371/journal.pone.0104807Search in Google Scholar

[34] Kaneko T., Caria M.A., Asanuma H., Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex, J. Comp. Neurol., 1994, 345, 172–184 http://dx.doi.org/10.1002/cne.90345020310.1002/cne.903450203Search in Google Scholar

[35] Di Lazzaro V., Profice P., Ranieri F., Capone F., Dileone M., Oliviero A., et al., I-wave origin and modulation, Brain Stimul., 2012, 5, 512–525 http://dx.doi.org/10.1016/j.brs.2011.07.00810.1016/j.brs.2011.07.008Search in Google Scholar

[36] Premji A., Rai N., Nelson A., Area 5 influences excitability within the primary motor cortex in humans, PLoS One, 2011, 6, e20023 http://dx.doi.org/10.1371/journal.pone.002002310.1371/journal.pone.0020023Search in Google Scholar

[37] Okuda B., Tanaka H., Tomino Y., Kawabata K., Tachibana H., Sugita M., The role of the left somatosensory cortex in human hand movement, Exp. Brain Res., 1995, 106, 493–498 http://dx.doi.org/10.1007/BF0023107310.1007/BF00231073Search in Google Scholar

[38] Stippich C., Ochmann H., Sartor K., Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging, Neurosci. Lett., 2002, 331, 50–54 http://dx.doi.org/10.1016/S0304-3940(02)00826-110.1016/S0304-3940(02)00826-1Search in Google Scholar

[39] Cosottini M., Pesaresi I., Piazza S., Diciotti S., Cecchi P., Fabbri S., et al., Structural and functional evaluation of cortical motor areas in amyotrophic lateral sclerosis, Exp. Neurol., 2012, 234, 169–180 http://dx.doi.org/10.1016/j.expneurol.2011.12.02410.1016/j.expneurol.2011.12.024Search in Google Scholar PubMed

[40] Pascual-Leone A., Torres F., Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers, Brain, 1993, 116, 39–52 http://dx.doi.org/10.1093/brain/116.1.3910.1093/brain/116.1.39Search in Google Scholar PubMed

[41] Bernard R.A., Goran D.A., Sakai S.T., Carr T.H., McFarlane D., Nordell B., et al., Cortical activation during rhythmic hand movements performed under three types of control: an fMRI study, Cogn. Affect. Behav. Neurosci., 2002, 2, 271–281 http://dx.doi.org/10.3758/CABN.2.3.27110.3758/CABN.2.3.271Search in Google Scholar

[42] Naito E., Roland P.E., Grefkes C., Choi H.J., Eickhoff S., Geyer S., et al., Dominance of the right hemisphere and role of area 2 in human kinesthesia, J. Neurophysiol., 2005, 93, 1020–1034 http://dx.doi.org/10.1152/jn.00637.200410.1152/jn.00637.2004Search in Google Scholar

[43] Kaas A.L., van Mier H., Goebel R., The neural correlates of human working memory for haptically explored object orientations, Cereb. Cortex, 2007, 17, 1637–1649 http://dx.doi.org/10.1093/cercor/bhl07410.1093/cercor/bhl074Search in Google Scholar

[44] Vidoni E.D., Acerra N.E., Dao E., Meehan S.K., Boyd L.A., Role of the primary somatosensory cortex in motor learning: an rTMS study, Neurobiol. Learn. Mem., 2010, 93, 532–539 http://dx.doi.org/10.1016/j.nlm.2010.01.01110.1016/j.nlm.2010.01.011Search in Google Scholar

[45] Ragert P., Franzkowiak S., Schwenkreis P., Tegenthoff M., Dinse H.R., Improvement of tactile perception and enhancement of cortical excitability through intermittent theta burst rTMS over human primary somatosensory cortex, Exp. Brain Res., 2008, 184, 1–11 http://dx.doi.org/10.1007/s00221-007-1073-210.1007/s00221-007-1073-2Search in Google Scholar

[46] Platz T., Roschka S., Christel M.I., Duecker F., Rothwell J.C., Sack A.T., Early stages of motor skill learning and the specific relevance of the cortical motor system — a combined behavioural training and θ burst TMS study, Restor. Neurol. Neurosci., 2012, 30, 199–211 10.3233/RNN-2012-110204Search in Google Scholar

[47] Bara-Jimenez W., Shelton P., Sanger T.D., Hallett M., Sensory discrimination capabilities in patients with focal hand dystonia, Ann. Neurol., 2000, 47, 377–380 http://dx.doi.org/10.1002/1531-8249(200003)47:3<377::AID-ANA16>3.0.CO;2-210.1002/1531-8249(200003)47:3<377::AID-ANA16>3.0.CO;2-2Search in Google Scholar

[48] Sanger T.D., Tarsy D., Pascual-Leone A., Abnormalities of spatial and temporal sensory discrimination in writer’s cramp, Mov. Disord., 2001, 16, 94–99 http://dx.doi.org/10.1002/1531-8257(200101)16:1<94::AID-MDS1020>3.0.CO;2-O10.1002/1531-8257(200101)16:1<94::AID-MDS1020>3.0.CO;2-OSearch in Google Scholar

[49] Fiorio M., Tinazzi M., Bertolasi L., Aglioti S.M., Temporal processing of visuotactile and tactile stimuli in writer’s cramp, Ann. Neurol., 2003, 53, 630–635 http://dx.doi.org/10.1002/ana.1052510.1002/ana.10525Search in Google Scholar

[50] Butterworth S., Francis S., Kelly E., McGlone F., Bowtell R., Sawle G.V., Abnormal cortical sensory activation in dystonia: an fMRI study, Mov. Disord., 2003, 18, 673–682 http://dx.doi.org/10.1002/mds.1041610.1002/mds.10416Search in Google Scholar

[51] Nelson A.J., Blake D.T., Chen R., Digit-specific aberrations in the primary somatosensory cortex in writer’s cramp, Ann. Neurol., 2009, 66, 146–154 http://dx.doi.org/10.1002/ana.2162610.1002/ana.21626Search in Google Scholar

[52] Bara-Jimenez W., Catalan M.J., Hallett M., Gerloff C., Abnormal somatosensory homunculus in dystonia of the hand, Ann. Neurol., 1998, 44, 828–831 http://dx.doi.org/10.1002/ana.41044052010.1002/ana.410440520Search in Google Scholar

[53] Lee M.S., Kim H.S., Lyoo C.H., “Off” gait freezing and temporal discrimination threshold in patients with Parkinson disease, Neurology, 2005, 64, 670–674 http://dx.doi.org/10.1212/01.WNL.0000151961.14861.BA10.1212/01.WNL.0000151961.14861.BASearch in Google Scholar

[54] Nelson A.J., Premji A., Rai N., Hoque T., Tommerdahl M., Chen R., Dopamine alters tactile perception in Parkinson’s disease, Can. J. Neurol. Sci., 2012, 39, 52–57 10.1017/S0317167100012683Search in Google Scholar

[55] Biermann-Ruben K., Miller A., Franzkowiak S., Finis J., Pollok B., Wach C., et al., Increased sensory feedback in Tourette syndrome, Neuroimage, 2012, 63, 119–125 http://dx.doi.org/10.1016/j.neuroimage.2012.06.05910.1016/j.neuroimage.2012.06.059Search in Google Scholar

[56] Rizzo V., Aricò I., Liotta G., Ricciardi L., Mastroeni C., Morgante F., et al., Impairment of sensory-motor integration in patients affected by restless legs syndrome (RLS), J. Neurol., 2010, 257, 1979–1985 http://dx.doi.org/10.1007/s00415-010-5644-y10.1007/s00415-010-5644-ySearch in Google Scholar

[57] Patel N., Jankovic J., Hallett M., Sensory aspects of movement disorders, Lancet Neurol., 2014, 13, 100–112 http://dx.doi.org/10.1016/S1474-4422(13)70213-810.1016/S1474-4422(13)70213-8Search in Google Scholar

[58] Abbruzzese G., Berardelli A., Sensorimotor integration in movement disorders, Mov. Disord., 2003, 18, 231–240 http://dx.doi.org/10.1002/mds.1032710.1002/mds.10327Search in Google Scholar

[59] Kaas J.H., The reorganization of somatosensory and motor cortex after peripheral nerve or spinal cord injury in primates, Prog. Brain Res., 2000, 128, 173–179 http://dx.doi.org/10.1016/S0079-6123(00)28015-110.1016/S0079-6123(00)28015-1Search in Google Scholar

[60] Kaas J.H., Qi H.X., Burish M.J., Gharbawie O.A., Onifer S.M., Massey J.M., Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord, Exp. Neurol., 2008, 209, 407–416 http://dx.doi.org/10.1016/j.expneurol.2007.06.01410.1016/j.expneurol.2007.06.014Search in Google Scholar PubMed PubMed Central

[61] Jones E.G., Cortical and subcortical contributions to activitydependent plasticity in primate somatosensory cortex, Annu. Rev. Neurosci., 2000, 23, 1–37 http://dx.doi.org/10.1146/annurev.neuro.23.1.110.1146/annurev.neuro.23.1.1Search in Google Scholar PubMed

[62] Coq J.O., Xerri C., Environmental enrichment alters organizational features of the forepaw representation in the primary somatosensory cortex of adult rats, Exp. Brain Res., 1998, 121, 191–204 http://dx.doi.org/10.1007/s00221005045210.1007/s002210050452Search in Google Scholar PubMed

[63] Xerri C., Merzenich M.M., Jenkins W., Santucci S., Representational plasticity in cortical area 3b paralleling tactual-motor skill acquisition in adult monkeys, Cereb. Cortex, 1999, 9, 264–276 http://dx.doi.org/10.1093/cercor/9.3.26410.1093/cercor/9.3.264Search in Google Scholar PubMed

[64] Recanzone G.H., Merzenich M.M., Schreiner C.E., Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task, J. Neurophysiol., 1992, 67, 1071–1091 10.1152/jn.1992.67.5.1071Search in Google Scholar PubMed

[65] Recanzone G.H., Merzenich M.M., Jenkins W.M., Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a, J. Neurophysiol., 1992, 67, 1057–1070 10.1152/jn.1992.67.5.1057Search in Google Scholar PubMed

[66] Recanzone G.H., Merzenich M.M., Jenkins W.M., Grajski K.A., Dinse H.R., Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task, J. Neurophysiol., 1992, 67, 1031–1056 10.1152/jn.1992.67.5.1031Search in Google Scholar PubMed

[67] Recanzone G.H., Jenkins W.M., Hradek G.T., Merzenich M.M., Progressive improvement in discriminative abilities in adult owl monkeys performing a tactile frequency discrimination task, J. Neurophysiol., 1992, 67, 1015–1030 10.1152/jn.1992.67.5.1015Search in Google Scholar PubMed

[68] Merzenich M.M., Nelson R.J., Stryker M.P., Cynader M.S., Schoppmann A., Zook J.M., Somatosensory cortical map changes following digit amputation in adult monkeys, J. Comp. Neurol., 1984, 224, 591–605 http://dx.doi.org/10.1002/cne.90224040810.1002/cne.902240408Search in Google Scholar PubMed

[69] Allard T., Clark S.A., Jenkins W.M., Merzenich M.M., Reorganization of somatosensory area 3b representations in adult owl monkeys after digital syndactyly, J. Neurophysiol., 1991, 66, 1048–1058 10.1152/jn.1991.66.3.1048Search in Google Scholar PubMed

[70] Recanzone G.H., Merzenich M.M., Dinse H.R., Expansion of the cortical representation of a specific skin field in primary somatosensory cortex by intracortical microstimulation, Cereb. Cortex, 1992, 2, 181–196 http://dx.doi.org/10.1093/cercor/2.3.18110.1093/cercor/2.3.181Search in Google Scholar PubMed

[71] Calford M.B., Tweedale R., Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation, Nature, 1988, 332, 446–448 http://dx.doi.org/10.1038/332446a010.1038/332446a0Search in Google Scholar PubMed

[72] Calford M.B., Tweedale R., Acute changes in cutaneous receptive fields in primary somatosensory cortex after digit denervation in adult flying fox, J. Neurophysiol., 1991, 65, 178–187 10.1152/jn.1991.65.2.178Search in Google Scholar PubMed

[73] Calford M.B., Tweedale R., Immediate expansion of receptive fields of neurons in area 3b of macaque monkeys after digit denervation, Somatosens. Mot. Res., 1991, 8, 249–260 http://dx.doi.org/10.3109/0899022910914474810.3109/08990229109144748Search in Google Scholar PubMed

[74] Faggin B.M., Nguyen K.T., Nicolelis M.A., Immediate and simultaneous sensory reorganization at cortical and subcortical levels of the somatosensory system, Proc. Natl. Acad. Sci. USA, 1997, 94, 9428–9433 http://dx.doi.org/10.1073/pnas.94.17.942810.1073/pnas.94.17.9428Search in Google Scholar PubMed PubMed Central

[75] Recanzone G.H., Allard T.T., Jenkins W.M., Merzenich M.M., Receptive-field changes induced by peripheral nerve stimulation in SI of adult cats, J. Neurophysiol., 1990, 63, 1213–1225 10.1152/jn.1990.63.5.1213Search in Google Scholar PubMed

[76] Castro-Alamancos M.A., Donoghue J.P., Connors B.W., Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex, J. Neurosci., 1995, 15, 5324–5333 10.1523/JNEUROSCI.15-07-05324.1995Search in Google Scholar

[77] Feldman D.E., Synaptic mechanisms for plasticity in neocortex, Annu. Rev. Neurosci., 2009, 32, 33–55 http://dx.doi.org/10.1146/annurev.neuro.051508.13551610.1146/annurev.neuro.051508.135516Search in Google Scholar PubMed PubMed Central

[78] Lamsa K.P., Kullmann D.M., Woodin M.A., Spike-timing dependent plasticity in inhibitory circuits, Front. Synaptic Neurosci., 2010, 2, 8 10.3389/fnsyn.2010.00008Search in Google Scholar PubMed PubMed Central

[79] Kullmann D.M., Lamsa K.P., LTP and LTD in cortical GABAergic interneurons: emerging rules and roles, Neuropharmacology, 2011, 60, 712–719 http://dx.doi.org/10.1016/j.neuropharm.2010.12.02010.1016/j.neuropharm.2010.12.020Search in Google Scholar PubMed

[80] Bi G., Poo M., Synaptic modification by correlated activity: Hebb’s postulate revisited, Annu. Rev. Neurosci., 2001, 24, 139–166 http://dx.doi.org/10.1146/annurev.neuro.24.1.13910.1146/annurev.neuro.24.1.139Search in Google Scholar PubMed

[81] Satow T., Mima T., Yamamoto J., Oga T., Begum T., Aso T., et al., Shortlasting impairment of tactile perception by 0.9Hz-rTMS of the sensorimotor cortex, Neurology, 2003, 60, 1045–1047 http://dx.doi.org/10.1212/01.WNL.0000052821.99580.D310.1212/01.WNL.0000052821.99580.D3Search in Google Scholar

[82] Knecht S., Ellger T., Breitenstein C., Bernd R.E., Henningsen H., Changing cortical excitability with low-frequency transcranial magnetic stimulation can induce sustained disruption of tactile perception, Biol. Psychiatry, 2003, 53, 175–179 http://dx.doi.org/10.1016/S000632230201382310.1016/S0006322302013823Search in Google Scholar

[83] Ragert P., Dinse H.R., Pleger B., Wilimzig C., Frombach E., Schwenkreis P., et al., Combination of 5 Hz repetitive transcranial magnetic stimulation (rTMS) and tactile coactivation boosts tactile discrimination in humans, Neurosci. Lett., 2003, 348, 105–108 http://dx.doi.org/10.1016/S0304-3940(03)00745-610.1016/S0304-3940(03)00745-6Search in Google Scholar

[84] Tegenthoff M., Ragert P., Pleger B., Schwenkreis P., Förster A.F., Nicolas V., et al., Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS, PLoS Biol., 2005, 3, e362 http://dx.doi.org/10.1371/journal.pbio.003036210.1371/journal.pbio.0030362Search in Google Scholar PubMed PubMed Central

[85] Pleger B., Blankenburg F., Bestmann S., Ruff C.C., Wiech K., Stephan K.E., et al., Repetitive transcranial magnetic stimulation-induced changes in sensorimotor coupling parallel improvements of somatosensation in humans, J. Neurosci., 2006, 26, 1945–1952 http://dx.doi.org/10.1523/JNEUROSCI.4097-05.200610.1523/JNEUROSCI.4097-05.2006Search in Google Scholar PubMed PubMed Central

[86] Conte A., Rocchi L., Ferrazzano G., Leodori G., Bologna M., Li Voti P., et al., Primary somatosensory cortical plasticity and tactile temporal discrimination in focal hand dystonia, Clin. Neurophysiol., 2014, 125, 537–543 http://dx.doi.org/10.1016/j.clinph.2013.08.00610.1016/j.clinph.2013.08.006Search in Google Scholar PubMed

[87] Premji A., Ziluk A., Nelson A.J., Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation, BMC Neurosci., 2010, 11, 91 http://dx.doi.org/10.1186/1471-2202-11-9110.1186/1471-2202-11-91Search in Google Scholar PubMed PubMed Central

[88] Stefan K., Kunesch E., Cohen L.G., Benecke R., Classen J., Induction of plasticity in the human motor cortex by paired associative stimulation, Brain, 2000, 123, 572–584 http://dx.doi.org/10.1093/brain/123.3.57210.1093/brain/123.3.572Search in Google Scholar PubMed

[89] Wolters A., Sandbrink F., Schlottmann A., Kunesch E., Stefan K., Cohen L.G., et al., A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex, J. Neurophysiol., 2003, 89, 2339–2345 http://dx.doi.org/10.1152/jn.00900.200210.1152/jn.00900.2002Search in Google Scholar PubMed

[90] Litvak V., Zeller D., Oostenveld R., Maris E., Cohen A., Schramm A., et al., LTP-like changes induced by paired associative stimulation of the primary somatosensory cortex in humans: source analysis and associated changes in behaviour, Eur. J. Neurosci., 2007, 25, 2862–2874 http://dx.doi.org/10.1111/j.1460-9568.2007.05531.x10.1111/j.1460-9568.2007.05531.xSearch in Google Scholar PubMed

[91] Wolters A., Schmidt A., Schramm A., Zeller D., Naumann M., Kunesch E., et al., Timing-dependent plasticity in human primary somatosensory cortex, J. Physiol, 2005, 565, 1039–1052 http://dx.doi.org/10.1113/jphysiol.2005.08495410.1113/jphysiol.2005.084954Search in Google Scholar PubMed PubMed Central

[92] Allison T., McCarthy G., Wood C.C., Williamson P.D., Spencer D.D., Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity, J. Neurophysiol., 1989, 62, 711–722 10.1152/jn.1989.62.3.711Search in Google Scholar

[93] Allison T., McCarthy G., Wood C.C., Darcey T.M., Spencer D.D., Williamson P.D., Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating shortlatency activity, J. Neurophysiol., 1989, 62, 694–710 10.1152/jn.1989.62.3.694Search in Google Scholar

[94] Guggenmos D.J., Azin M., Barbay S., Mahnken J.D., Dunham C., Mohseni P., et al., Restoration of function after brain damage using a neural prosthesis, Proc. Natl. Acad. Sci. USA, 2013, 110, 21177–21182 http://dx.doi.org/10.1073/pnas.131688511010.1073/pnas.1316885110Search in Google Scholar

[95] Hamdy S., Rothwell J.C., Aziz Q., Singh K.D., Thompson D.G., Longterm reorganization of human motor cortex driven by short-term sensory stimulation, Nat. Neurosci., 1998, 1, 64–68 http://dx.doi.org/10.1038/26410.1038/264Search in Google Scholar

[96] Ridding M.C., Brouwer B., Miles T.S., Pitcher J.B., Thompson P.D., Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects, Exp. Brain Res., 2000, 131, 135–143 http://dx.doi.org/10.1007/s00221990026910.1007/s002219900269Search in Google Scholar

[97] Fraser C., Power M., Hamdy S., Rothwell J., Hobday D., Hollander I., et al., Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury, Neuron, 2002, 34, 831–840 http://dx.doi.org/10.1016/S0896-6273(02)00705-510.1016/S0896-6273(02)00705-5Search in Google Scholar

[98] Kaelin-Lang A., Luft A.R., Sawaki L., Burstein A.H., Sohn Y.H., Cohen L.G., Modulation of human corticomotor excitability by somatosensory input, J. Physiol, 2002, 540, 623–633 http://dx.doi.org/10.1113/jphysiol.2001.01280110.1113/jphysiol.2001.012801Search in Google Scholar PubMed PubMed Central

[99] McDonnell M.N., Ridding M.C., Afferent stimulation facilitates performance on a novel motor task, Exp. Brain Res., 2006, 170, 109–115 http://dx.doi.org/10.1007/s00221-005-0192-x10.1007/s00221-005-0192-xSearch in Google Scholar PubMed

[100] Celnik P., Hummel F., Harris-Love M., Wolk R., Cohen L.G., Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke, Arch. Phys. Med. Rehabil., 2007, 88, 1369–1376 http://dx.doi.org/10.1016/j.apmr.2007.08.00110.1016/j.apmr.2007.08.001Search in Google Scholar PubMed

[101] Meehan S.K., Dao E., Linsdell M.A., Boyd L.A., Continuous theta burst stimulation over the contralesional sensory and motor cortex enhances motor learning post-stroke, Neurosci. Lett., 2011, 500, 26–30 http://dx.doi.org/10.1016/j.neulet.2011.05.23710.1016/j.neulet.2011.05.237Search in Google Scholar PubMed

[102] Brodie S.M., Meehan S., Borich M.R., Boyd L.A., 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke, Front Hum. Neurosci., 2014, 8, 143 http://dx.doi.org/10.3389/fnhum.2014.0014310.3389/fnhum.2014.00143Search in Google Scholar PubMed PubMed Central

[103] Siebner H.R., Tormos J.M., Ceballos-Baumann A.O., Auer C., Catala M.D., Conrad B., et al., Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp, Neurology, 1999, 52, 529–537 http://dx.doi.org/10.1212/WNL.52.3.52910.1212/WNL.52.3.529Search in Google Scholar

[104] Murase N., Rothwell J.C., Kaji R., Urushihara R., Nakamura K., Murayama N., et al., Subthreshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex modulates writer’s cramp, Brain, 2005, 128, 104–115 http://dx.doi.org/10.1093/brain/awh31510.1093/brain/awh315Search in Google Scholar PubMed

[105] Sanger T.D., Pascual-Leone A., Tarsy D., Schlaug G., Nonlinear sensory cortex response to simultaneous tactile stimuli in writer’s cramp, Mov. Disord., 2002, 17, 105–111 http://dx.doi.org/10.1002/mds.123710.1002/mds.1237Search in Google Scholar PubMed

[106] Garraux G., Bauer A., Hanakawa T., Wu T., Kansaku K., Hallett M., Changes in brain anatomy in focal hand dystonia, Ann. Neurol., 2004, 55, 736–739 http://dx.doi.org/10.1002/ana.2011310.1002/ana.20113Search in Google Scholar PubMed

[107] Lerner A., Shill H., Hanakawa T., Bushara K., Goldfine A., Hallett M., Regional cerebral blood flow correlates of the severity of writer’s cramp symptoms, Neuroimage, 2004, 21, 904–913 http://dx.doi.org/10.1016/j.neuroimage.2003.10.01910.1016/j.neuroimage.2003.10.019Search in Google Scholar PubMed

[108] Hu X.Y., Wang L., Liu H., Zhang S.Z., Functional magnetic resonance imaging study of writer’s cramp, Chin Med. J., 2006, 119, 1263–1271 10.1097/00029330-200608010-00006Search in Google Scholar

[109] Havrankova P., Jech R., Walker N.D., Operto G., Tauchmanova J., Vymazal J., et al., Repetitive TMS of the somatosensory cortex improves writer’s cramp and enhances cortical activity, Neuro Endocrinol. Lett., 2010, 31, 73–86 Search in Google Scholar

[110] Schneider S.A., Pleger B., Draganski B., Cordivari C., Rothwell J.C., Bhatia K.P., et al., Modulatory effects of 5Hz rTMS over the primary somatosensory cortex in focal dystonia — an fMRI-TMS study, Mov. Disord., 2010, 25, 76–83 http://dx.doi.org/10.1002/mds.2282510.1002/mds.22825Search in Google Scholar PubMed PubMed Central

[111] Murakami T., Muller-Dahlhaus F., Lu M.K., Ziemann U., Homeostatic metaplasticity of corticospinal excitatory and intracortical inhibitory neural circuits in human motor cortex, J. Physiol., 2012, 590, 5765–5781 http://dx.doi.org/10.1113/jphysiol.2012.23851910.1113/jphysiol.2012.238519Search in Google Scholar PubMed PubMed Central

[112] Gentner R., Wankerl K., Reinsberger C., Zeller D., Classen J., Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity, Cereb. Cortex, 2008, 18, 2046–2053 http://dx.doi.org/10.1093/cercor/bhm23910.1093/cercor/bhm239Search in Google Scholar PubMed

[113] Stefan K., Gentner R., Zeller D., Dang S., Classen J., Theta-burst stimulation: remote physiological and local behavioral after-effects, Neuroimage, 2008, 40, 265–274 http://dx.doi.org/10.1016/j.neuroimage.2007.11.03710.1016/j.neuroimage.2007.11.037Search in Google Scholar PubMed

Published Online: 2014-9-17
Published in Print: 2014-12-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.2478/s13380-014-0230-x/html
Scroll to top button