Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 15, 2014

Deregulated microRNA expression in biospecimens from patients diagnosed with schizophrenia and bipolar disorder as a disease biomarker

  • Ivana Delalle EMAIL logo , Patricia Kao and Jason Choi

Abstract

The biological markers for schizophrenia (SZ) and bipolar disorder (BD) would represent a precious tool in evaluating the risk for the development of these common neuropsychiatric diseases and, possibly, in the prevention of either disease episodes and/or treatment efficiency monitoring. Since both SZ and BD are diseases with a significant genetic component, the research over the last decades has focused on the genes with altered function in the central nervous system (CNS) of individuals suffering from these illnesses. Recently, however, small non-coding RNA molecules (microRNAs, miRNAs, miRs) were shown to regulate the expression of human CNS genes involved in cell processes and functions negatively affected in neuropsychiatric disorders, including synaptic development and maturation, learning and memory. Differentially expressed sets of miRNAs have been reported in the tissues of SZ and BD patients in comparison to controls suggesting the emergence of a novel class of potential biomarkers. Here we review the reports on the changes in miRNA expression in postmortem brain tissue and peripheral blood in SZ and BD. We also evaluate the potential of miRNA packaged in exosomes, signaling vesicles released by neurons and glia, to contribute to the disaggregation of the molecular machinery underlying mental disorders and provide clinically useful biomarkers.

[1] Bhugra D., The global prevalence of schizophrenia. PLoS Med., 2005, 2, e151; quiz e175 http://dx.doi.org/10.1371/journal.pmed.002015110.1371/journal.pmed.0020151Search in Google Scholar

[2] Breslau J., Kendler K.S., Su M., Gaxiola-Aguilar S., Kessler R.C., Lifetime risk and persistence of psychiatric disorders across ethnic groups in the United States, Psychol. Med., 2005, 35, 317–327 http://dx.doi.org/10.1017/S003329170400351410.1017/S0033291704003514Search in Google Scholar

[3] Goldberg J.F., Harrow M., Consistency of remission and outcome in bipolar and unipolar mood disorders: a 10-year prospective follow-up, J. Affect. Disord., 2004, 81, 123–131 http://dx.doi.org/10.1016/S0165-0327(03)00161-710.1016/S0165-0327(03)00161-7Search in Google Scholar

[4] Sullivan P.F., The genetics of schizophrenia, PLoS Med., 2005, 2, e212 http://dx.doi.org/10.1371/journal.pmed.002021210.1371/journal.pmed.0020212Search in Google Scholar PubMed PubMed Central

[5] Barnett J.H., Smoller J.W., The genetics of bipolar disorder, Neuroscience, 2009, 164, 331–343 http://dx.doi.org/10.1016/j.neuroscience.2009.03.08010.1016/j.neuroscience.2009.03.080Search in Google Scholar PubMed PubMed Central

[6] Craddock N., O’Donovan M.C., Owen M.J., Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology, Schizophr. Bull., 2006, 32, 9–16 http://dx.doi.org/10.1093/schbul/sbj03310.1093/schbul/sbj033Search in Google Scholar PubMed PubMed Central

[7] Boshes R.A., Manschreck T.C., Konigsberg W., Genetics of the schizophrenias: a model accounting for their persistence and myriad phenotypes, Harv. Rev. Psychiatry, 2012, 20, 119–129 http://dx.doi.org/10.3109/10673229.2012.69432110.3109/10673229.2012.694321Search in Google Scholar PubMed

[8] Maric N.P., Svrakic D.M., Why schizophrenia genetics needs epigenetics: a review, Psychiatr. Danub., 2012, 24, 2–18 Search in Google Scholar

[9] Peedicayil J., Role of epigenetics in pharmacotherapy, psychotherapy and nutritional management of mental disorders, J. Clin. Pharm. Ther., 2012, 37, 499–501 http://dx.doi.org/10.1111/j.1365-2710.2012.01346.x10.1111/j.1365-2710.2012.01346.xSearch in Google Scholar PubMed

[10] Im H.I., Kenny P.J., MicroRNAs in neuronal function and dysfunction, Trends Neurosci., 2012, 35, 325–334 http://dx.doi.org/10.1016/j.tins.2012.01.00410.1016/j.tins.2012.01.004Search in Google Scholar PubMed PubMed Central

[11] Ashraf S.I., McLoon A.L., Sclarsic S.M., Kunes S., Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila, Cell, 2006, 124, 191–205 http://dx.doi.org/10.1016/j.cell.2005.12.01710.1016/j.cell.2005.12.017Search in Google Scholar PubMed

[12] Maffioletti E., Tardito D., Gennarelli M., Bocchio-Chiavetto L., Micro spies from the brain to the periphery: new clues from studies on microRNAs in neuropsychiatric disorders, Front. Cell. Neurosci., 2014, 8, 75 http://dx.doi.org/10.3389/fncel.2014.0007510.3389/fncel.2014.00075Search in Google Scholar PubMed PubMed Central

[13] Smalheiser N.R., Exosomal transfer of proteins and RNAs at synapses in the nervous system, Biol. Direct, 2007, 2, 35 http://dx.doi.org/10.1186/1745-6150-2-3510.1186/1745-6150-2-35Search in Google Scholar PubMed PubMed Central

[14] Fevrier B., Raposo G., Exosomes: endosomal-derived vesicles shipping extracellular messages, Curr. Opin. Cell Biol., 2004, 16, 415–421 http://dx.doi.org/10.1016/j.ceb.2004.06.00310.1016/j.ceb.2004.06.003Search in Google Scholar PubMed

[15] van Niel G., Porto-Carreiro I., Simoes S., Raposo G., Exosomes: a common pathway for a specialized function, J. Biochem., 2006, 140, 13–21 http://dx.doi.org/10.1093/jb/mvj12810.1093/jb/mvj128Search in Google Scholar PubMed

[16] Bakhti M., Winter C., Simons M., Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles, J. Biol. Chem., 2011, 286, 787–796 http://dx.doi.org/10.1074/jbc.M110.19000910.1074/jbc.M110.190009Search in Google Scholar PubMed PubMed Central

[17] Fitzner D., Schnaars M., van Rossum D., Krishnamoorthy G., Dibaj P., Bakhti M., et al., Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis, J. Cell Sci., 2011, 124, 447–458 http://dx.doi.org/10.1242/jcs.07408810.1242/jcs.074088Search in Google Scholar PubMed

[18] Taylor A.R., Robinson M.B., Gifondorwa D.J., Tytell M., Milligan C.E., Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases, Dev. Neurobiol., 2007, 67, 1815–1829 http://dx.doi.org/10.1002/dneu.2055910.1002/dneu.20559Search in Google Scholar PubMed

[19] Tytell M., Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues, Int. J. Hyperthermia, 2005, 21, 445–455 http://dx.doi.org/10.1080/0265673050004192110.1080/02656730500041921Search in Google Scholar PubMed

[20] Guescini M., Genedani S., Stocchi V., Agnati L.F., Astrocytes and Glioblastoma cells release exosomes carrying mtDNA, J. Neural Transm., 2010, 117, 1–4 http://dx.doi.org/10.1007/s00702-009-0288-810.1007/s00702-009-0288-8Search in Google Scholar PubMed

[21] Fauré J., Lachenal G., Court M., Hirrlinger J., Chatellard-Causse C., Blot B., et al., Exosomes are released by cultured cortical neurones, Mol. Cell. Neurosci., 2006, 31, 642–648 http://dx.doi.org/10.1016/j.mcn.2005.12.00310.1016/j.mcn.2005.12.003Search in Google Scholar PubMed

[22] Lachenal G., Pernet-Gallay K., Chivet M., Hemming F.J., Belly A., Bodon G., et al., Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity, Mol. Cell. Neurosci., 2011, 46, 409–418 http://dx.doi.org/10.1016/j.mcn.2010.11.00410.1016/j.mcn.2010.11.004Search in Google Scholar PubMed

[23] Mathivanan S., Simpson R.J. ExoCarta: a compendium of exosomal proteins and RNA, Proteomics, 2009, 9, 4997–5000 http://dx.doi.org/10.1002/pmic.20090035110.1002/pmic.200900351Search in Google Scholar PubMed

[24] Wang S., Cesca F., Loers G., Schweizer M., Buck F., Benfenati F., et al., Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes, J. Neurosci., 2011, 31, 7275–7290 http://dx.doi.org/10.1523/JNEUROSCI.6476-10.201110.1523/JNEUROSCI.6476-10.2011Search in Google Scholar PubMed PubMed Central

[25] Gomes C., Keller S., Altevogt P., Costa J., Evidence for secretion of Cu,Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis, Neurosci. Lett., 2007, 428, 43–46 http://dx.doi.org/10.1016/j.neulet.2007.09.02410.1016/j.neulet.2007.09.024Search in Google Scholar PubMed

[26] Vella L.J., Sharples R.A., Lawson V.A., Masters C.L., Cappai R., Hill A. F., Packaging of prions into exosomes is associated with a novel pathway of PrP processing, J. Pathol., 2007, 211, 582–590 http://dx.doi.org/10.1002/path.214510.1002/path.2145Search in Google Scholar PubMed

[27] Saman S., Kim W., Raya M., Visnick Y., Miro S., Saman S., et al., Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease, J. Biol. Chem., 2012, 287, 3842–3849 http://dx.doi.org/10.1074/jbc.M111.27706110.1074/jbc.M111.277061Search in Google Scholar PubMed PubMed Central

[28] Skog J., Wurdinger T., van Rijn S., Meijer D.H., Gainche L., Sena-Esteves M., et al., Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nat. Cell Biol., 2008, 10, 1470–1476 http://dx.doi.org/10.1038/ncb180010.1038/ncb1800Search in Google Scholar PubMed PubMed Central

[29] Frühbeis C., Fröhlich D., Kramer-Albers E.M., Emerging roles of exosomes in neuron-glia communication, Front. Physiol., 2012, 3, 119 http://dx.doi.org/10.3389/fphys.2012.0011910.3389/fphys.2012.00119Search in Google Scholar PubMed PubMed Central

[30] Frühbeis C., Fröhlich D., Kuo W.P., Amphornrat J., Thilemann S., Saab A.S., et al., Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication, PLoS Biol., 2013, 11, e1001604 http://dx.doi.org/10.1371/journal.pbio.100160410.1371/journal.pbio.1001604Search in Google Scholar PubMed PubMed Central

[31] Feliciano D.M., Zhang S., Nasrallah C.M., Lisgo S.N., Bordey A., Embryonic cerebrospinal fluid nanovesicles carry evolutionarily conserved molecules and promote neural stem cell amplification, PLoS One, 2014, 9, e88810 http://dx.doi.org/10.1371/journal.pone.008881010.1371/journal.pone.0088810Search in Google Scholar PubMed PubMed Central

[32] An K., Klyubin I., Kim Y., Jung J.H., Mably A.J., O’Dowd S.T., et al., Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo, Mol. Brain, 2013, 6, 47 http://dx.doi.org/10.1186/1756-6606-6-4710.1186/1756-6606-6-47Search in Google Scholar PubMed PubMed Central

[33] Manterola L., Guruceaga E., Gállego Pérez-Larraya J., González-Huarriz M., Jauregui P., Tejada S., et al., A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool, Neuro Oncol., 2014, 16, 520–527 http://dx.doi.org/10.1093/neuonc/not21810.1093/neuonc/not218Search in Google Scholar PubMed PubMed Central

[34] Perkins D.O., Jeffries C.D., Jarskog L.F., Thomson J.M., Woods K., Newman M.A., et al., microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder, Genome Biol., 2007, 8, R27 http://dx.doi.org/10.1186/gb-2007-8-2-r2710.1186/gb-2007-8-2-r27Search in Google Scholar PubMed PubMed Central

[35] Santarelli D.M., Beveridge N.J., Tooney P.A., Cairns M.J., Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia, Biol. Psychiatry, 2011, 69, 180–187 http://dx.doi.org/10.1016/j.biopsych.2010.09.03010.1016/j.biopsych.2010.09.030Search in Google Scholar PubMed

[36] Beveridge N.J., Gardiner E., Carroll A.P., Tooney P.A., Cairns M.J., Schizophrenia is associated with an increase in cortical microRNA biogenesis, Mol. Psychiatry, 2010, 15, 1176–1189 http://dx.doi.org/10.1038/mp.2009.8410.1038/mp.2009.84Search in Google Scholar PubMed PubMed Central

[37] Beveridge N.J., Tooney P.A., Carroll A.P., Gardiner E., Bowden N., Scott R.J., et al., Dysregulation of miRNA 181b in the temporal cortex in schizophrenia, Hum. Mol. Genet., 2008, 17, 1156–1168 http://dx.doi.org/10.1093/hmg/ddn00510.1093/hmg/ddn005Search in Google Scholar PubMed

[38] Miller B.H., Zeier Z., Xi L., Lanz T.A., Deng S., Strathmann J., et al., MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function, Proc. Natl. Acad. Sci. USA, 2012, 109, 3125–3130 http://dx.doi.org/10.1073/pnas.111379310910.1073/pnas.1113793109Search in Google Scholar PubMed PubMed Central

[39] Moreau M.P., Bruse S.E., David-Rus R., Buyske S., Brzustowicz L.M., Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder, Biol. Psychiatry, 2011, 69, 188–193 http://dx.doi.org/10.1016/j.biopsych.2010.09.03910.1016/j.biopsych.2010.09.039Search in Google Scholar PubMed PubMed Central

[40] Banigan M.G., Kao P.F., Kozubek J.A., Winslow A.R., Medina J., Costa J., et al., Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients, PLoS One, 2013, 8, e48814 http://dx.doi.org/10.1371/journal.pone.004881410.1371/journal.pone.0048814Search in Google Scholar PubMed PubMed Central

[41] Conkrite K., Sundby M., Mukai S., Thomson J.M., Mu D., Hammond S.M., et al., miR-17∼92 cooperates with RB pathway mutations to promote retinoblastoma, Genes Dev., 2011, 25, 1734–1745 http://dx.doi.org/10.1101/gad.1702741110.1101/gad.17027411Search in Google Scholar PubMed PubMed Central

[42] Wong J., Duncan C.E., Beveridge N.J., Webster M.J., Cairns M.J., Weickert C.S., Expression of NPAS3 in the human cortex and evidence of its posttranscriptional regulation by miR-17 during development, with implications for schizophrenia, Schizophr. Bull., 2013, 39, 396–406 http://dx.doi.org/10.1093/schbul/sbr17710.1093/schbul/sbr177Search in Google Scholar PubMed PubMed Central

[43] Barbato C., Ruberti F., Pieri M., Vilardo E., Costanzo M., Ciotti M. T., et al., MicroRNA-92 modulates K(+) Cl(−) co-transporter KCC2 expression in cerebellar granule neurons, J. Neurochem., 2010, 113, 591–600 http://dx.doi.org/10.1111/j.1471-4159.2009.06560.x10.1111/j.1471-4159.2009.06560.xSearch in Google Scholar PubMed

[44] Shi W., Du J., Qi Y., Liang G., Wang T., Li S., et al., Aberrant expression of serum miRNAs in schizophrenia, J. Psychiatr. Res., 2012, 46, 198–204 http://dx.doi.org/10.1016/j.jpsychires.2011.09.01010.1016/j.jpsychires.2011.09.010Search in Google Scholar PubMed

[45] Khanna A., Muthusamy S., Liang R., Sarojini H., Wang E., Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice, Aging, 2011, 3, 223–236 10.18632/aging.100276Search in Google Scholar PubMed PubMed Central

[46] Finnerty J.R., Wang W.X., Hébert S.S., Wilfred B.R., Mao G., Nelson P.T., The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases, J. Mol. Biol., 2010, 402, 491–509 http://dx.doi.org/10.1016/j.jmb.2010.07.05110.1016/j.jmb.2010.07.051Search in Google Scholar PubMed PubMed Central

[47] Gardiner E., Beveridge N.J., Wu J.Q., Carr V., Scott R.J., Tooney P.A., et al., Imprinted DLK1-DIO3 region of 14q32 defines a schizophreniaassociated miRNA signature in peripheral blood mononuclear cells, Mol. Psychiatry, 2012, 17, 827–840 http://dx.doi.org/10.1038/mp.2011.7810.1038/mp.2011.78Search in Google Scholar PubMed PubMed Central

[48] Kapinas K., Kessler C.B., Delany A.M., miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling, J. Cell. Biochem., 2009, 108, 216–224 http://dx.doi.org/10.1002/jcb.2224310.1002/jcb.22243Search in Google Scholar PubMed PubMed Central

[49] Valvezan A.J., Klein P.S., GSK-3 and Wnt signaling in neurogenesis and bipolar disorder, Front. Mol. Neurosci., 2012, 5, 1 http://dx.doi.org/10.3389/fnmol.2012.0000110.3389/fnmol.2012.00001Search in Google Scholar PubMed PubMed Central

[50] Lai C.Y., Yu S.L., Hsieh M.H., Chen C.H., Chen H.Y., Wen C.C., et al., MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia, PLoS One, 2011, 6, e21635 http://dx.doi.org/10.1371/journal.pone.002163510.1371/journal.pone.0021635Search in Google Scholar PubMed PubMed Central

[51] Rong H., Liu T.B., Yang K.J., Yang H.C., Wu D.H., Liao C.P., et al., MicroRNA-134 plasma levels before and after treatment for bipolar mania, J. Psychiatr. Res., 2011, 45, 92–95 http://dx.doi.org/10.1016/j.jpsychires.2010.04.02810.1016/j.jpsychires.2010.04.028Search in Google Scholar PubMed

[52] Zhang W.D., Yu X., Fu X., Huang S., Jin S.J., Ning Q., et al., MicroRNAs function primarily in the pathogenesis of human anencephaly via the mitogen-activated protein kinase signaling pathway, Genet. Mol. Res., 2014, 13, 1015–1029 http://dx.doi.org/10.4238/2014.February.20.310.4238/2014.February.20.3Search in Google Scholar PubMed

[53] Zhang Y., Kim J., Mueller A.C., Dey B., Yang Y., Lee D.H., et al. Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT5B, and glioblastoma, Cell Death Differ., 2014, 21, 720–734 http://dx.doi.org/10.1038/cdd.2013.19610.1038/cdd.2013.196Search in Google Scholar PubMed PubMed Central

[54] Niu C.S., Yang Y., Cheng C.D., MiR-134 regulates the proliferation and invasion of glioblastoma cells by reducing Nanog expression, Int. J. Oncol., 2013, 42, 1533–1540 10.3892/ijo.2013.1844Search in Google Scholar PubMed PubMed Central

[55] Sheinerman K.S., Tsivinsky V.G., Abdullah L., Crawford F., Umansky S.R., Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study, Aging, 2013, 5, 925–938 10.18632/aging.100624Search in Google Scholar PubMed PubMed Central

[56] Henshall D.C., MicroRNAs in the pathophysiology and treatment of status epilepticus, Front. Mol. Neurosci., 2013, 6, 37 http://dx.doi.org/10.3389/fnmol.2013.0003710.3389/fnmol.2013.00037Search in Google Scholar PubMed PubMed Central

[57] Gaughwin P., Ciesla M., Yang H., Lim B., Brundin P., Stage-specific modulation of cortical neuronal development by Mmu-miR-134, Cereb. Cortex, 2011, 21, 1857–1869 http://dx.doi.org/10.1093/cercor/bhq26210.1093/cercor/bhq262Search in Google Scholar PubMed

[58] Han L., Wen Z., Lynn R.C., Baudet M.L., Holt C.E., Sasaki Y., et al., Regulation of chemotropic guidance of nerve growth cones by microRNA, Mol. Brain, 2011, 4, 40 http://dx.doi.org/10.1186/1756-6606-4-4010.1186/1756-6606-4-40Search in Google Scholar PubMed PubMed Central

[59] Christensen M., Larsen L.A., Kauppinen S., Schratt G., Recombinant adeno-associated virus-mediated microRNA delivery into the postnatal mouse brain reveals a role for miR-134 in dendritogenesis in vivo, Front. Neural Circuits, 2010, 3, 16 10.3389/neuro.04.016.2009Search in Google Scholar PubMed PubMed Central

[60] Bicker S., Khudayberdiev S., Weiβ K., Zocher K., Baumeister S., Schratt G., The DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-microRNA-134, Genes Dev., 2013, 27, 991–996 http://dx.doi.org/10.1101/gad.211243.11210.1101/gad.211243.112Search in Google Scholar PubMed PubMed Central

[61] Gao J., Wang W.Y., Mao Y.W., Gräff J., Guan J.S., Pan L., et al., A novel pathway regulates memory and plasticity via SIRT1 and miR-134, Nature, 2010, 466, 1105–1109 http://dx.doi.org/10.1038/nature0927110.1038/nature09271Search in Google Scholar PubMed PubMed Central

[62] Zhao Y.N., Li W.F., Li F., Zhang Z., Dai Y.D., Xu A.L., et al., Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway, Biochem. Biophys. Res. Commun., 2013, 435, 597–602 http://dx.doi.org/10.1016/j.bbrc.2013.05.02510.1016/j.bbrc.2013.05.025Search in Google Scholar PubMed

[63] The Schizophrenia Psychiatric Genome-Wide Association Study Consortium, Genome-wide association study identifies five new schizophrenia loci, Nat. Genet., 2011, 43, 969–976 http://dx.doi.org/10.1038/ng.94010.1038/ng.940Search in Google Scholar PubMed PubMed Central

[64] Strazisar M., Cammaerts S., van der Ven K., Forero D.A., Lenaerts A.S., Nordin A., et al., MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets, Mol. Psychiatry, 2014, Epub ahead of print, DOI: 10.1038/mp.2014.53 10.1038/mp.2014.53Search in Google Scholar PubMed

[65] van Erp T.G., Guella I., Vawter M.P., Turner J., Brown G.G., McCarthy G., et al., Schizophrenia miR-137 locus risk genotype is associated with dorsolateral prefrontal cortex hyperactivation, Biol. Psychiatry, 2014, 75, 398–405 http://dx.doi.org/10.1016/j.biopsych.2013.06.01610.1016/j.biopsych.2013.06.016Search in Google Scholar PubMed PubMed Central

[66] Guella I., Sequeira A., Rollins B., Morgan L., Torri F., van Erp T.G., et al., Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex, J. Psychiatr. Res., 2013, 47, 1215–1221 http://dx.doi.org/10.1016/j.jpsychires.2013.05.02110.1016/j.jpsychires.2013.05.021Search in Google Scholar PubMed PubMed Central

[67] Kwon E., Wang W., Tsai L.H., Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets, Mol. Psychiatry, 2013, 18, 11–12 http://dx.doi.org/10.1038/mp.2011.17010.1038/mp.2011.170Search in Google Scholar PubMed

[68] Geekiyanage H., Jicha G.A., Nelson P.T., Chan C., Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease, Exp. Neurol., 2012, 235, 491–496 http://dx.doi.org/10.1016/j.expneurol.2011.11.02610.1016/j.expneurol.2011.11.026Search in Google Scholar PubMed PubMed Central

[69] Koshkin P.A., Chistiakov D.A., Nikitin A.G., Konovalov A.N., Potapov A.A., Usachev D.Y., et al., Analysis of expression of microRNAs and genes involved in the control of key signaling mechanisms that support or inhibit development of brain tumors of different grades, Clin. Chim. Acta, 2014, 430, 55–62 http://dx.doi.org/10.1016/j.cca.2014.01.00110.1016/j.cca.2014.01.001Search in Google Scholar PubMed

[70] Leidinger P., Backes C., Meder B., Meese E., Keller A., The human miRNA repertoire of different blood compounds, BMC Genomics, 2014, 15, 474 http://dx.doi.org/10.1186/1471-2164-15-47410.1186/1471-2164-15-474Search in Google Scholar PubMed PubMed Central

[71] Chivet M., Hemming F., Pernet-Gallay K., Fraboulet S., Sadoul R., Emerging role of neuronal exosomes in the central nervous system, Front. Physiol., 2012, 3, 145 http://dx.doi.org/10.3389/fphys.2012.0014510.3389/fphys.2012.00145Search in Google Scholar PubMed PubMed Central

[72] Pusic A.D., Pusic K.M., Clayton B.L., Kraig R.P., IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination, J. Neuroimmunol., 2014, 266, 12–23 http://dx.doi.org/10.1016/j.jneuroim.2013.10.01410.1016/j.jneuroim.2013.10.014Search in Google Scholar PubMed PubMed Central

[73] Zhuang X., Xiang X., Grizzle W., Sun D., Zhang S., Axtell R.C., et al., Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain, Mol. Ther., 2011, 19, 1769–1779 http://dx.doi.org/10.1038/mt.2011.16410.1038/mt.2011.164Search in Google Scholar PubMed PubMed Central

[74] Alvarez-Erviti L., Seow Y., Yin H., Betts C., Lakhal S., Wood M.J., Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes, Nat. Biotechnol., 2011, 29, 341–345 http://dx.doi.org/10.1038/nbt.180710.1038/nbt.1807Search in Google Scholar PubMed

[75] Lakhal S., Wood M.J., Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers, Bioessays, 2011, 33, 737–741 http://dx.doi.org/10.1002/bies.20110007610.1002/bies.201100076Search in Google Scholar PubMed

Published Online: 2014-8-15
Published in Print: 2014-9-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s13380-014-0224-8/html
Scroll to top button