Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 20, 2012

Cognitive deficits, obesity and disability in schizophrenia

  • Martin Strassnig EMAIL logo , Ricardo Caceda , John Newcomer and Philip Harvey

Abstract

Despite 50 years of pharmacological and psychosocial interventions schizophrenia remains one of the leading causes of disability. The inability to function in everyday settings includes deficits in performance of social, occupational, and independent living activities. Schizophrenia is also a life-shortening illness, caused mainly by poor physical health and its complications. Dysfunctional lifestyles including sedentary behavior and lack of physical activity prevail, while treatment with adipogenic antipsychotic medication interacts with poor performance in screening, monitoring, and intervention that result in shortening of life expectancies by 25–30 years. Disability interferes with self-care and medical care, further worsening physical health to produce a vicious cycle of disability. Further, the neurobiological impact of obesity on brain functioning is substantial and relevant to schizophrenia. Decision making deficits that lead to choices resulting in obesity themselves have neurobiological determinants. Simultaneous treatment of cognitive deficits and related deficits in functional skills, ubiquitous determinants of everyday functioning in schizophrenia, and targeted interventions aimed at poor physical health, especially obesity and associated comorbidities, may lead to additive or even interactive gains in everyday functioning in patients with schizophrenia not previously realized with other interventions.

[1] Green M.F., Kern R.S., Braff D.L., Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”?, Schizophr. Bull., 2000, 26, 119–136 http://dx.doi.org/10.1093/oxfordjournals.schbul.a03343010.1093/oxfordjournals.schbul.a033430Search in Google Scholar

[2] Green M.F., Cognitive impairment and functional outcome in schizophrenia and bipolar disorder, J. Clin. Psychiatry, 2006, 67(Suppl. 9), 3–8, discussion 36–42 10.4088/JCP.1006e12Search in Google Scholar

[3] Bowie C.R., Depp C., McGrath J.A., Wolyniec P., Mausbach B.T., Thornquist M.H., et al., Prediction of real world functional disability in chronic mental disorders: a comparison of schizophrenia and bipolar disorder, Am. J. Psychiatry, 2010, 167, 1116–1124 http://dx.doi.org/10.1176/appi.ajp.2010.0910140610.1176/appi.ajp.2010.09101406Search in Google Scholar

[4] Bowie, C.R., Leung, W.W., Reichenberg, A., McClure, M.M., Patterson, L., Heaton, R.K., Harvey, P.D., Predicting schizophrenia patients’ real world behavior with specific neuropsychological and functional capacity measures, Biol. Psychiatry, 2008, 63, 505–511 http://dx.doi.org/10.1016/j.biopsych.2007.05.02210.1016/j.biopsych.2007.05.022Search in Google Scholar

[5] Caspi A., Reichenberg A., Weiser M., Rabinowitz J., Kaplan Z., Knobler H., et al., Cognitive performance in schizophrenia patients assessed before and following the first psychotic episode, Schizophr. Res., 2003, 65, 87–94 http://dx.doi.org/10.1016/S0920-9964(03)00056-210.1016/S0920-9964(03)00056-2Search in Google Scholar

[6] Bowie C.R., Harvey P.D., Cognition in schizophrenia: impairments, determinants, and functional importance, Psychiatr. Clin. North Am., 2005, 28, 613–633 http://dx.doi.org/10.1016/j.psc.2005.05.00410.1016/j.psc.2005.05.004Search in Google Scholar PubMed

[7] Harvey P.D., Velligan D.I., Bellack A.S., Performance-based measures of functional skills: usefulness in clinical treatment studies, Schizophr. Bull., 2007, 33, 1138–1148 http://dx.doi.org/10.1093/schbul/sbm04010.1093/schbul/sbm040Search in Google Scholar PubMed PubMed Central

[8] Bowie C.R., McGurk S.R., Mausbach B., Patterson T.L., Harvey P.D., Combined cognitive remediation and functional skills training for schizophrenia: effects on cognition, functional competence, and real-world behavior, Am. J. Psychiatry, 2012, doi:10.1176/appi.ajp.2012.11091337 [Epub ahead of print] 10.1176/appi.ajp.2012.11091337Search in Google Scholar PubMed

[9] Harvey P.D., Cognitive impairment in schizophrenia: profile, course, and neurobiological determinants, Handb. Clin. Neurol., 2012, 106, 433–445 http://dx.doi.org/10.1016/B978-0-444-52002-9.00025-510.1016/B978-0-444-52002-9.00025-5Search in Google Scholar PubMed

[10] Vinogradov S., Fisher M., de Villers-Sidani E., Cognitive training for impaired neural systems in neuropsychiatric illness, Neuropsychopharmacology, 2012, 37, 43–76 http://dx.doi.org/10.1038/npp.2011.25110.1038/npp.2011.251Search in Google Scholar PubMed PubMed Central

[11] Harvey P.D., Strassnig M., Predicting the severity of everyday functional disability in people with schizophrenia: cognitive deficits, functional capacity, symptoms, and health status, World Psychiatry, 2012, 11, 73–79 http://dx.doi.org/10.1016/j.wpsyc.2012.05.00410.1016/j.wpsyc.2012.05.004Search in Google Scholar

[12] Murray C.L., Lopez A.D., Global mortality, disability, and the contributions of risk factors: global burden of disease study, Lancet, 1997, 349, 1436–1442 http://dx.doi.org/10.1016/S0140-6736(96)07495-810.1016/S0140-6736(96)07495-8Search in Google Scholar

[13] US Dept of Health and Human Services, Physical activity and health: a report of the surgeon general, Atlanta (GA), US Dept of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, 1996 Search in Google Scholar

[14] Hennekens C.H., Hennekens A.R., Hollar D., Casey D.E., Schizophrenia and increased risks of cardiovascular disease, Am. Heart J., 2005, 150, 1115–1121 http://dx.doi.org/10.1016/j.ahj.2005.02.00710.1016/j.ahj.2005.02.007Search in Google Scholar PubMed

[15] McEvoy J.P., Meyer J.M., Goff D.C., Nasrallah H.A., Davis S.M., Sullivan L., et al., Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III, Schizophr. Res., 2005, 80, 19–32 http://dx.doi.org/10.1016/j.schres.2005.07.01410.1016/j.schres.2005.07.014Search in Google Scholar PubMed

[16] Jin H., Folsom D., Sasaki A., Mudaliar S., Henry R., Torres M., et al., Increased Framingham 10-year risk of coronary heart disease in middle-aged and older patients with psychotic symptoms, Schizophr. Res., 2011, 125, 295–299 http://dx.doi.org/10.1016/j.schres.2010.10.02910.1016/j.schres.2010.10.029Search in Google Scholar PubMed PubMed Central

[17] Newcomer J.W., Metabolic risk during antipsychotic treatment, Clin. Therapeutics, 2004, 26, 1936–1946 http://dx.doi.org/10.1016/j.clinthera.2004.12.00310.1016/j.clinthera.2004.12.003Search in Google Scholar PubMed

[18] Maayan L., Correll C.U., Weight gain and metabolic risks associated with antipsychotic medications in children and adolescents, J. Child Adolesc. Psychopharmacol., 2011, 21, 517–535 http://dx.doi.org/10.1089/cap.2011.001510.1089/cap.2011.0015Search in Google Scholar PubMed

[19] Casey D.E., Haupt D.W., Newcomer J.W., Henderson D.C., Sernyak M.J., Davidson M., et al., Antipsychotic-induced weight gain and metabolic abnormalities: implications for increased mortality in patients with schizophrenia. J. Clin. Psychiatry, 2004, 65(Suppl. 7), 4–18 Search in Google Scholar

[20] Newcomer J.W., Metabolic syndrome and mental illness. Am. J. Manag. Care, 2007, 13(Suppl. 7), S170–177 Search in Google Scholar

[21] Newcomer J., Hennekens C.H., Severe mental illness and risk of cardiovascular disease, JAMA, 2007, 298, 1794–1796 http://dx.doi.org/10.1001/jama.298.15.179410.1001/jama.298.15.1794Search in Google Scholar PubMed

[22] Druss B.G., Newcomer J.W., Challenges and solutions to integrating mental and physical health care, J. Clin. Psychiatry, 2007, 68, e09 http://dx.doi.org/10.4088/JCP.0407e0910.4088/JCP.0407e09Search in Google Scholar PubMed

[23] Morrato E.H., Druss B., Hartung D.M., Valuck R.J., Allen R., Campagna E., et al., Metabolic testing rates in 3 state Medicaid programs after FDA warnings and ADA/APA recommendations for second-generation antipsychotic drugs, Arch. Gen. Psychiatry 2010, 67, 17–24 http://dx.doi.org/10.1001/archgenpsychiatry.2009.17910.1001/archgenpsychiatry.2009.179Search in Google Scholar PubMed

[24] Brown S., Birtwistle J., Roe L., Thompson C., The unhealthy lifestyle of people with schizophrenia, Psychol. Med., 1999, 29, 697–701 http://dx.doi.org/10.1017/S003329179800818610.1017/S0033291798008186Search in Google Scholar

[25] Strassnig M., Brar J.S., Ganguli R., Increased caffeine and nicotine consumption in community-dwelling patients with schizophrenia, Schizophr. Res., 2006, 86, 269–275 http://dx.doi.org/10.1016/j.schres.2006.05.01310.1016/j.schres.2006.05.013Search in Google Scholar

[26] Strassnig M., Brar J.S., Ganguli R., Nutritional assessment of patients with schizophrenia: a preliminary study, Schizophr. Bull., 2003, 29, 393–397 http://dx.doi.org/10.1093/oxfordjournals.schbul.a00701310.1093/oxfordjournals.schbul.a007013Search in Google Scholar

[27] Newcomer J.W. Metabolic risk during antipsychotic treatment. Clin. Ther., 2004, 26, 1936–1946 http://dx.doi.org/10.1016/j.clinthera.2004.12.00310.1016/j.clinthera.2004.12.003Search in Google Scholar

[28] Patterson R.E., Haines P.S., Poplin B.M., Diet quality index: capturing a multidimensional behavior, J. Am. Diet. Assoc., 1994, 94, 57–64 http://dx.doi.org/10.1016/0002-8223(94)92042-710.1016/0002-8223(94)92042-7Search in Google Scholar

[29] Strassnig M., Singh Brar J., Ganguli R., Dietary fatty acid and antioxidant intake in community-dwelling patients suffering from schizophrenia, Schizophr. Res., 2005, 76, 343–351 http://dx.doi.org/10.1016/j.schres.2005.03.00210.1016/j.schres.2005.03.002Search in Google Scholar PubMed

[30] McCreadie R., Macdonald E., Blacklock C., Tilak-Singh D., Wiles D., Halliday J., et al., Dietary intake of schizophrenic patients in Nithsdale, Scotland: case-control study, BMJ, 1998, 317, 784–785 10.1136/bmj.317.7161.784Search in Google Scholar PubMed PubMed Central

[31] McCrory M.A., Fuss P.J., McCallum J.E., Yao M., Vinken A.G., Hays N.P., et al., Dietary variety within food groups: association with energy intake and body fatness in adult men and women, Am. J. Clin. Nutr., 1999, 69, 440–447 10.1093/ajcn/69.3.440Search in Google Scholar PubMed

[32] Drewnowski A., Energy density, palatability, and satiety: implications for weight control, Nutr. Rev., 1998, 56, 347–353 http://dx.doi.org/10.1111/j.1753-4887.1998.tb01677.x10.1111/j.1753-4887.1998.tb01677.xSearch in Google Scholar PubMed

[33] Strassnig M., Brar J.S., Ganguli R., Low cardiorespiratory fitness and physical functional capacity in obese patients with schizophrenia, Schizophr. Res., 2011, 126, 103–109 http://dx.doi.org/10.1016/j.schres.2010.10.02510.1016/j.schres.2010.10.025Search in Google Scholar PubMed PubMed Central

[34] Ganguli R., Strassnig M., Prevention of metabolic syndrome in serious mental illness, Psychiatr. Clin. North. Am., 2011, 34, 109–125 http://dx.doi.org/10.1016/j.psc.2010.11.00410.1016/j.psc.2010.11.004Search in Google Scholar PubMed

[35] Strassnig M., Brar J.S., Ganguli R., Self-reported body weight perception and dieting practices in community-dwelling patients with schizophrenia, Schizophr. Res., 2005, 15,75, 425–432 http://dx.doi.org/10.1016/j.schres.2004.04.00710.1016/j.schres.2004.04.007Search in Google Scholar PubMed

[36] Vancampfort D., Probst M., Knapen J., Carraro A., De Hert M., Associations between sedentary behaviour and metabolic parameters in patients with schizophrenia, Psychiatry Res., 2012 [Epub ahead of print] 10.1016/j.psychres.2012.03.046Search in Google Scholar PubMed

[37] Chwastiak L.A., Rosenheck R.A., Kazis L.E., Association of psychiatric illness and obesity, physical inactivity, and smoking among a national sample of veterans, Psychosomatics, 2011, 52, 230–236 http://dx.doi.org/10.1016/j.psym.2010.12.00910.1016/j.psym.2010.12.009Search in Google Scholar PubMed PubMed Central

[38] Strassnig M., Brar J.S., Ganguli R., Health-related quality of life, adiposity, and sedentary behavior in patients with early schizophrenia: preliminary study, Diabetes Metab. Syndr. Obes., 2012, 5, 389–394 10.2147/DMSO.S33619Search in Google Scholar PubMed PubMed Central

[39] Bowie C.R., Reichenberg A., Patterson T.L., Heaton R.K., Harvey P.D., Determinants of real-world functional performance in schizophrenia subjects: correlations with cognition, functional capacity, and symptoms, Am. J. Psychiatry, 2006, 163, 418–425 http://dx.doi.org/10.1176/appi.ajp.163.3.41810.1176/appi.ajp.163.3.418Search in Google Scholar PubMed

[40] Gupta M., Bassett E., Iftene F., Bowie C.R., Functional outcomes in schizophrenia: understanding the competence-performance discrepancy, J. Psychiatr. Res., 2012, 46, 205–211 http://dx.doi.org/10.1016/j.jpsychires.2011.09.00210.1016/j.jpsychires.2011.09.002Search in Google Scholar PubMed

[41] Kelleher I., Murtagh A., Clarke M.C., Murphy J., Rawdon C., Cannon M., Neurocognitive performance of a community-based sample of young people at putative ultra high risk for psychosis: Support for the processing speed hypothesis, Cogn. Neuropsychiatry., 2012, [Epub ahead of print] 10.1080/13546805.2012.682363Search in Google Scholar PubMed

[42] Patterson T.L., Goldman S., McKibbin C.L., Hughs T., Jeste D.V., UCSD Performance-Based Skills Assessment: development of a new measure of everyday functioning for severely mentally ill adults, Schizophr. Bull., 2001, 27, 235–245 http://dx.doi.org/10.1093/oxfordjournals.schbul.a00687010.1093/oxfordjournals.schbul.a006870Search in Google Scholar PubMed

[43] Semkovska M., Bédard M.A., Godbout L., Limoge F., Stip E., Assessment of executive dysfunction during activities of daily living in schizophrenia, Schizophr. Res., 2004, 69, 289–300 http://dx.doi.org/10.1016/j.schres.2003.07.00510.1016/j.schres.2003.07.005Search in Google Scholar PubMed

[44] Keefe R.S., Vinogradov S., Medalia A., Silverstein S.M., Bell M.D., Dickinson D., et al., Report from the working group conference on multisite trial design for cognitive remediation in schizophrenia, Schizophr. Bull., 2011, 37, 1057–1065 http://dx.doi.org/10.1093/schbul/sbq01010.1093/schbul/sbq010Search in Google Scholar PubMed PubMed Central

[45] Levitt J.J., Bobrow L., Lucia D., Srinivasan P., A selective review of volumetric and morphometric imaging in schizophrenia, Curr. Top. Behav. Neurosci, 2010, 4, 243–281 http://dx.doi.org/10.1007/7854_2010_5310.1007/7854_2010_53Search in Google Scholar PubMed

[46] Dowd E.C., Barch D.M., Pavlovian reward prediction and receipt in schizophrenia: relationship to anhedonia, PLoS One, 2012, 7, e35622 http://dx.doi.org/10.1371/journal.pone.003562210.1371/journal.pone.0035622Search in Google Scholar PubMed PubMed Central

[47] Padrão G., Mallorquí A., Cucurell D., Marco-Pallares J., Rodriguez-Fornells A., Neurophysiological differences in reward processing in anhedonics, Cogn. Affect. Behav. Neurosci., 2012 [Epub ahead of print] 10.3758/s13415-012-0119-5Search in Google Scholar PubMed

[48] Ahn WY., Rass O., Fridberg D.J., Bishara A.J., Forsyth J.K., Breier A., et al. Temporal discounting and rewards in patients with bipolar disorder and schizophrenia, J. Abnorm. Psychology, 2011, 120, 911–921 http://dx.doi.org/10.1037/a002333310.1037/a0023333Search in Google Scholar PubMed PubMed Central

[49] Folley B.S., Park S., Relative food preference and hedonic judgments in schizophrenia, Psychiatry Res., 2010, 175, 33–37 http://dx.doi.org/10.1016/j.psychres.2008.07.02610.1016/j.psychres.2008.07.026Search in Google Scholar PubMed PubMed Central

[50] Heerey E.A., Robinson B.M., McMahon R.P., Gold J.M., Delay discounting in schizophrenia, Cogn. Neuropsychiatry, 2007, 12, 213–221 http://dx.doi.org/10.1080/1354680060100590010.1080/13546800601005900Search in Google Scholar PubMed PubMed Central

[51] Kranz G.S., Kasper S., Lanzenberger R., Reward and the serotonergic system, Neuroscience, 2010, 166, 1023–1035 http://dx.doi.org/10.1016/j.neuroscience.2010.01.03610.1016/j.neuroscience.2010.01.036Search in Google Scholar PubMed

[52] Berridge K.C., Kringelbach M.L., Affective neuroscience of pleasure: reward in humans and animals, Psychopharmacology, 2008, 199, 457–480 http://dx.doi.org/10.1007/s00213-008-1099-610.1007/s00213-008-1099-6Search in Google Scholar PubMed PubMed Central

[53] Der-Avakian A., Markou A., The neurobiology of anhedonia and other reward-related deficits, Trends Neurosci., 2012, 35, 68–77 http://dx.doi.org/10.1016/j.tins.2011.11.00510.1016/j.tins.2011.11.005Search in Google Scholar PubMed PubMed Central

[54] Elman I., Borsook D., Lukas S.E., Food intake and reward mechanisms in patients with schizophrenia: implications for metabolic disturbances and treatment with second-generation antipsychotic agents, Neuropsychopharmacology, 2006, 31, 2091–2120 http://dx.doi.org/10.1038/sj.npp.130114110.1038/sj.npp.1301141Search in Google Scholar PubMed PubMed Central

[55] Ng J., Stice E., Yokum S., Bohon C., An fMRI study of obesity, food reward, and perceived caloric density. Does a low-fat label make food less appealing?, Appetite, 2011, 57, 65–72 http://dx.doi.org/10.1016/j.appet.2011.03.01710.1016/j.appet.2011.03.017Search in Google Scholar PubMed PubMed Central

[56] Wang G.J., Volkow N.D., Thanos P.K., Fowler J.S., Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review, J. Addict. Dis., 23, 39–53 10.1300/J069v23n03_04Search in Google Scholar PubMed

[57] Grimm O., Vollstaedt-Klein S., Krebs L., Zink M., Smolka M.N., Reduced striatal activation during reward anticipation due to appetiteprovoking cues in chronic schizophrenia: fMRI study, Schizophr. Res., 2012, 134, 151–157 http://dx.doi.org/10.1016/j.schres.2011.11.02710.1016/j.schres.2011.11.027Search in Google Scholar PubMed

[58] McCreadie R.G., Kelly C., Connolly M., Williams S., Baxter G., Lean M., et al., Dietary improvement in people with schizophrenia: randomised controlled trial, Br. J. Psychiatry, 2005, 187, 346–351 http://dx.doi.org/10.1192/bjp.187.4.34610.1192/bjp.187.4.346Search in Google Scholar PubMed

[59] Heerley E.A., Bell-Warren K.R., Gold J.M., Decision-making impairments in the context of intact reward sensitivity in schizophrenia, Biol. Psychiatry, 2008, 64, 62–69 http://dx.doi.org/10.1016/j.biopsych.2008.02.01510.1016/j.biopsych.2008.02.015Search in Google Scholar PubMed PubMed Central

[60] Knolle-Veentjer S., Huth V., Ferstl R., Aldenhoff J.B., Hinze-Selch D., Delay of gratification and executive performance in individuals with schizophrenia: putative role for eating behavior and body weight regulation, J. Psychiatr. Res., 2008, 42, 98–105 http://dx.doi.org/10.1016/j.jpsychires.2006.10.00310.1016/j.jpsychires.2006.10.003Search in Google Scholar PubMed

[61] Elman I., Borsook D., Lukas S.E., Food intake and reward mechanisms in patients with schizophrenia: implications for metabolic disturbances and treatment with second-generation antipsychotic agents, Neuropsychopharmacology, 2006, 31, 2091–2120 http://dx.doi.org/10.1038/sj.npp.130114110.1038/sj.npp.1301141Search in Google Scholar

[62] Boeka A.G., Lokken K.L., Neuropsychological performance of a clinical sample of extremely obese individuals, Arch. Clin. Neuropsychol., 2008, 23, 467–474 http://dx.doi.org/10.1016/j.acn.2008.03.00310.1016/j.acn.2008.03.003Search in Google Scholar PubMed

[63] Willeumier K.C., Taylor D.V., Amen D.G., Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults, Obesity, 2011, 19, 1095–1097 http://dx.doi.org/10.1038/oby.2011.1610.1038/oby.2011.16Search in Google Scholar PubMed PubMed Central

[64] Brogan A., Hevey D., O’Callaghan G., Yoder R., O’shea D., Impaired decision making among morbidly obese adults, J. Psychosom. Res., 2011, 70, 189–196 http://dx.doi.org/10.1016/j.jpsychores.2010.07.01210.1016/j.jpsychores.2010.07.012Search in Google Scholar

[65] Beeri M.S., Ravona-Springer R., Silverman J.M., Haroutunian V., The effects of cardiovascular risk factors on cognitive compromise, Dialogues Clin. Neurosci., 2009, 11, 201–212 10.31887/DCNS.2009.11.2/msbeeriSearch in Google Scholar

[66] Panza F., Frisardi V., Capurso C., Imbimbo B.P., Vendemiale G., Santamato A., et al., Metabolic syndrome and cognitive impairment: current epidemiology and possible underlying mechanisms, J. Alzheimers Dis., 2010, 21, 691–724 10.3233/JAD-2010-091669Search in Google Scholar

[67] McCrimmon R.J., Ryan C.M., Frier B.M., Diabetes and cognitive dysfunction, Lancet, 2012, 379, 2291–2299 http://dx.doi.org/10.1016/S0140-6736(12)60360-210.1016/S0140-6736(12)60360-2Search in Google Scholar

[68] Novak V., Hajjar I., The relationship between blood pressure and cognitive function, Nat. Rev. Cardiol., 2010, 7, 686–698 10.1038/nrcardio.2010.161Search in Google Scholar PubMed PubMed Central

[69] Willeumier K.C., Taylor D.V., Amen D.G., Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults, Obesity, 2011, 19, 1095–1097 http://dx.doi.org/10.1038/oby.2011.1610.1038/oby.2011.16Search in Google Scholar PubMed PubMed Central

[70] Pannacciulli N., Del Parigi A., Chen K., Le D.S., Reiman E.M., Tataranni P.A., Brain abnormalities in human obesity: a voxel-based morphometric study, Neuroimage, 2006, 31, 1419–1425 http://dx.doi.org/10.1016/j.neuroimage.2006.01.04710.1016/j.neuroimage.2006.01.047Search in Google Scholar PubMed

[71] Walther K., Birdsill A.C., Gilsky E.L., Ryan L., Structural brain differences and cognitive functioning related to body mass index in older females, Hum. Brain. Mapp., 2010, 31, 1052–1064 http://dx.doi.org/10.1002/hbm.2091610.1002/hbm.20916Search in Google Scholar PubMed PubMed Central

[72] Volkow N.D., Wang G-J., Telang F., Fowler J.S., Goldstein R.Z., Alia-Klein N., et al., Inverse association between BMI and prefrontal metabolic activity in healthy adults, Obesity, 2008, 17, 60–65 http://dx.doi.org/10.1038/oby.2008.46910.1038/oby.2008.469Search in Google Scholar PubMed PubMed Central

[73] Mozley L.H., Gur, R.H., Mozley P.D., Gur R.E., Striatal dopamine transporters and cognitive functioning in healthy men and women, Am. J. Psychiatry, 2001, 158, 1492–1499 http://dx.doi.org/10.1176/appi.ajp.158.9.149210.1176/appi.ajp.158.9.1492Search in Google Scholar PubMed

[74] Volkow N.D., Logan J., Fowler J.S., Wang G.J., Gur R.C., Wong C., et al., Association between age-related decline in brain dompaine activity and impairment in frontal and cingulate metabolism, Am. J. Psychiatry, 2000, 157, 75–80 http://dx.doi.org/10.1176/appi.ajp.157.10.170910.1176/appi.ajp.157.10.1709Search in Google Scholar

[75] Volkow N.D., Gur R.C., Wang G.J., Fowler J.S., Moberg P.J., Ding Y.S., et al., Association between decline in train dopamine activity with age and cognitive and motor impairment in healthy individuals, Am. J. Psychiatry, 1998, 155, 344–349 Search in Google Scholar

[76] Mozley L.H., Gur, R.H., Mozley P.D., Gur R.E., Striatal dopamine transporters and cognitive functioning in healthy men and women, Am. J. Psychiatry, 2001, 158, 1492–1499 http://dx.doi.org/10.1176/appi.ajp.158.9.149210.1176/appi.ajp.158.9.1492Search in Google Scholar

[77] Volkow N.D., Wang G.J., Telang F., Fowler J.S., Thanos P.K., Logan J., et al., Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible e contributing factors, Neuroimage, 2008, 42, 1537–1543 http://dx.doi.org/10.1016/j.neuroimage.2008.06.00210.1016/j.neuroimage.2008.06.002Search in Google Scholar

[78] Kanoski S.E., Cognitive and neuronal systems underlying obesity, Physiol. Behav, 2012, 106, 337–344 http://dx.doi.org/10.1016/j.physbeh.2012.01.00710.1016/j.physbeh.2012.01.007Search in Google Scholar

[79] McCrimmon R.J., Ryan C.M., Frier B.M., Diabetes and cognitive dysfunction, Lancet, 2012, 379, 2291–2299 http://dx.doi.org/10.1016/S0140-6736(12)60360-210.1016/S0140-6736(12)60360-2Search in Google Scholar

[80] Biessels G.J., Gispen W.H., The impact of diabetes on cognition: what can be learned from rodent models?, Neurobiol. Aging, 2005, 26(Suppl. 1), 36–41 http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.01510.1016/j.neurobiolaging.2005.08.015Search in Google Scholar PubMed

[81] Fotuhi M., Do D., Jack C., Modifiable factors that alter the size of the hippocampus with ageing, Nat. Rev. Neurol., 2012, 8, 189–202 10.1038/nrneurol.2012.27Search in Google Scholar PubMed

[82] Nehlig A., Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia, Diabetes Metab., 1997, 23, 18–29 Search in Google Scholar

[83] McNay E.C., Recknagel A.K., Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes, Neurobiol. Learn. Mem., 2011, 96, 432–442 http://dx.doi.org/10.1016/j.nlm.2011.08.00510.1016/j.nlm.2011.08.005Search in Google Scholar PubMed PubMed Central

[84] van den Berg E., Kloppenborg R.P., Kessels R.P., Kappelle L.J., Biessels G.J., Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: A systematic comparison of their impact on cognition, Biochem. Biophys. Acta, 2009, 1792, 470–481 http://dx.doi.org/10.1016/j.bbadis.2008.09.00410.1016/j.bbadis.2008.09.004Search in Google Scholar PubMed

[85] Friedman J.I., Wallenstein S., Moshier E., Parrella M., White L., Bowler S., et al., The effects of hypertension and body mass index on cognition in schizophrenia. Am. J. Psychiatry, 2010, 167, 1232–1239 http://dx.doi.org/10.1176/appi.ajp.2010.0909132810.1176/appi.ajp.2010.09091328Search in Google Scholar PubMed

[86] Dickinson D., Gold J.M., Dickerson F.B., Medoff D., Dixon L.B., Evidence of exacerbated cognitive deficits in schizophrenia patients with comorbid diabetes, Psychosomatics, 2008, 49, 123–131 http://dx.doi.org/10.1176/appi.psy.49.2.12310.1176/appi.psy.49.2.123Search in Google Scholar

[87] National Heart, Lung and Blood Institute, National Institutes of Health, Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report, National Institutes of Health, Bethesda (MD), 1998, Publication 98-4083 Search in Google Scholar

[88] Knowler W.C., Barrett-Connor E., Fowler S.E., Hamman R.F., Lachin J.M., Walker E.A., et al., Diabetes Prevention Program Research Group, Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin, N. Engl. J. Med., 2002, 346, 393–403 http://dx.doi.org/10.1056/NEJMoa01251210.1056/NEJMoa012512Search in Google Scholar

[89] Look AHEAD Research Group, Wing R.R., Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD trial, Arch. Intern. Med., 2010, 170, 1566–1575 http://dx.doi.org/10.1001/archinternmed.2010.33410.1001/archinternmed.2010.334Search in Google Scholar

[90] Marks B.L., Katz L.M., Styner M., Smith J.K., Aerobic fitness and obesity: relationship to cerebral white matter integrity in the brain of active and sedentary older adults, Br. J. Sports Med., 2011, 45, 1208–1215 http://dx.doi.org/10.1136/bjsm.2009.06811410.1136/bjsm.2009.068114Search in Google Scholar

[91] van den Berg E., Kloppenborg R.P., Kessels R.P., Kappelle L.J., Biessels G.J., Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: A systematic comparison of their impact on cognition, Biochem. Biophys. Acta, 2009, 1792, 470–481 10.1016/j.bbadis.2008.09.004Search in Google Scholar

[92] Crichton G.E., Murphy K.J., Howe P.R., Buckley J.D., Bryan J., Dairy consumption and working memory performance in overweight and obese adults, Appetite, 2012, 59, 34–40 http://dx.doi.org/10.1016/j.appet.2012.03.01910.1016/j.appet.2012.03.019Search in Google Scholar

[93] Sünram-Lea S.I., Foster J.K., Durlach P., Perez C., The effect of retrograde and anterograde glucose administration on memory performance in healthy young adults, Behav. Brain Res., 2002, 134, 505–516 http://dx.doi.org/10.1016/S0166-4328(02)00086-410.1016/S0166-4328(02)00086-4Search in Google Scholar

[94] Siervo M., Arnold R., Wells J.C., Tagliabue A., Colantuoni A., Albanese E., et al., Intentional weight loss in overweight and obese individuals and cognitive function: a systematic review and metaanalysis, Obes. Rev., 2011, 12, 968–983 http://dx.doi.org/10.1111/j.1467-789X.2011.00903.x10.1111/j.1467-789X.2011.00903.xSearch in Google Scholar PubMed

[95] Joseph R.J., Alonso-Alonso M., Bond D.S., Pascual-Leone A., Blackburn G.L., The neurocognitive connection between physical activity and eating behavior, Obes. Rev., 2011, 12, 800–812 http://dx.doi.org/10.1111/j.1467-789X.2011.00893.x10.1111/j.1467-789X.2011.00893.xSearch in Google Scholar PubMed PubMed Central

[96] Takahashi H., Sassa T., Shibuya T., Kato M., Koeda M., Murai T., et al., Effects of sports participation on psychiatric symptoms and brain activations during sports observation in schizophrenia, Transl. Psychiatry, 2012, 2, e96 http://dx.doi.org/10.1038/tp.2012.2210.1038/tp.2012.22Search in Google Scholar PubMed PubMed Central

[97] Pajonk F.G., Wobrock T., Gruber O., Scherk H., Berner D., Kaizl I., et al., Hipocampal plasticity in response to exercise in schziophrenia, Arch. Gen. Psychiatry, 2010, 67, 133–143 http://dx.doi.org/10.1001/archgenpsychiatry.2009.19310.1001/archgenpsychiatry.2009.193Search in Google Scholar PubMed

[98] Strassnig M., Ganguli, R., Weight loss interventions for patients with schizophrenia, Clin. Schizophr. Relat. Psychoses, 2007, 1, 43–53 http://dx.doi.org/10.3371/CSRP.1.1.310.3371/CSRP.1.1.3Search in Google Scholar

[99] Ganguli R., Behavioral therapy for weight loss in patients with schizophrenia, J. Clin. Psychiatry, 2007, 68(Suppl 4.), 19–25 Search in Google Scholar

[100] Wykes T., Huddy V., Cellard C., McGurk S.R., Czobor P., A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes, Am. J. Psychiatry, 2011, 168, 472–485 http://dx.doi.org/10.1176/appi.ajp.2010.1006085510.1176/appi.ajp.2010.10060855Search in Google Scholar PubMed

[101] Brekke J., The relationship between cognitive and environmental determinants of the functional dimensions in schizophrenia, NIMH-sponsored conference, Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS—CT), Bethesda, Maryland, 2007 Search in Google Scholar

Published Online: 2012-11-20
Published in Print: 2012-12-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.2478/s13380-012-0046-5/html
Scroll to top button