Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 30, 2009

Holographic imaging with a nanometer resolution using compact table-top EUV laser

  • P. Wachulak EMAIL logo , M. Marconi , R. Bartels , C. Menoni and J. Rocca
From the journal Opto-Electronics Review

Abstract

Holographic 2D/3D imaging with nanometer resolution using short wavelength extreme ultraviolet (EUV) light is presented in this paper. Gabor’s holograms were recorded with a highly coherent table top EUV laser with different numerical apertures demonstrating ultimately a spatial resolution of 46+/−2 nm, comparable with the illumination wavelength, in 2D holographic imaging. Three dimensional images were obtained from a single high numerical aperture hologram recorded in a high resolution photoresist and numerically reconstructed at different image planes, allowing numerical optical sectioning with a lateral resolution ∼170 nm and depth resolution of 2.4 µm. The holograms were recorded in a high resolution photoresist and digitized with an atomic force microscope. To assess the spatial resolution of the numerical reconstructions of the holograms a correlation method was used. The algorithm allows for simultaneous estimation of the resolution and the feature size of the image under analysis.

[1] D. Gabor, “A new microscopic principle”, Nature 161, 777 (1948). http://dx.doi.org/10.1038/161777a010.1038/161777a0Search in Google Scholar PubMed

[2] A.V. Baez. “A study in diffraction microscopy with special reference to X-rays”, J. Opt. Soc. Am. 42, 756 (1952). http://dx.doi.org/10.1364/JOSA.42.00075610.1364/JOSA.42.000756Search in Google Scholar

[3] E.N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory”, J. Opt. Soc. Am. 52, 1123 (1962). http://dx.doi.org/10.1364/JOSA.52.00112310.1364/JOSA.52.001123Search in Google Scholar

[4] H.H. Solak, D. He, W. Li, S. Singh, Gasson, F. Cerrina, B.H. Sohn, X.M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography”, Appl. Phys. Lett. 75, 2328 (1999). http://dx.doi.org/10.1063/1.12500510.1063/1.125005Search in Google Scholar

[5] P.W. Wachulak, M.G. Capeluto, C.S. Menoni, J.J. Rocca, and M.C. Marconi, Opto-Electron. Rev. 16, 444–450 (2008). http://dx.doi.org/10.2478/s11772-008-0038-810.2478/s11772-008-0038-8Search in Google Scholar

[6] J.W. Giles, “Image reconstruction from a Fraunhofer X-ray hologram with visible light”, J. Opt. Soc. Am. 59, 1179 (1969). http://dx.doi.org/10.1364/JOSA.59.00117910.1364/JOSA.59.001179Search in Google Scholar

[7] S. Aoki and S. Kikuta, “X ray holographic microscopy”, Jpn. J. Appl. Phys. 13, 1385 (1974). http://dx.doi.org/10.1143/JJAP.13.138510.1143/JJAP.13.1385Search in Google Scholar

[8] I. McNulty, J. Kirz, C. Jacobsen, E.H. Anderson, M.R. Howells, and D.P. Kern, “High-resolution imaging by Fourier transform X-ray holography”, Science 256, 1009–1012 (1992). http://dx.doi.org/10.1126/science.256.5059.100910.1126/science.256.5059.1009Search in Google Scholar PubMed

[9] J.E. Trebes, S.B. Brown, E.M. Campbell, D.L. Matthews, D.G. Nilson, G.F. Stone, and D.A. Whelan, “Demonstration of X-ray holography with an X-ray laser”, Science 238, 517 (1987). http://dx.doi.org/10.1126/science.238.4826.51710.1126/science.238.4826.517Search in Google Scholar PubMed

[10] C. Jacobsen, M. Howells, J. Kirz, and S. Rothman, “X-ray holographic microscopy using photoresists”, J. Opt. Soc. Am. A. 7, 1847–1861 (1990). http://dx.doi.org/10.1364/JOSAA.7.00184710.1364/JOSAA.7.001847Search in Google Scholar

[11] S. Lindaas, H. Howells, C. Jacobsen, and A. Kalinovsky, “X-ray holographic microscopy by means of photoresist recording and atomic-force microscope readout”, J. Opt. Soc. Am. A. 13, 1788–1800 (1996). http://dx.doi.org/10.1364/JOSAA.13.00178810.1364/JOSAA.13.001788Search in Google Scholar

[12] I. McNulty, J. Kirz, C. Jacobsen, E. Anderson, M.R. Howells, and D.P. Kern, “High resolution imaging by Fourier transform X-ray holography”, Science 256, 1009 (1992). http://dx.doi.org/10.1126/science.256.5059.100910.1126/science.256.5059.1009Search in Google Scholar PubMed

[13] D. Sayre, H.N. Chapman, and J. Miao, “On the extendibility of X-ray crystallography to noncrystals”, Acta Crystallogr. A 54, 232–239 (1998). http://dx.doi.org/10.1107/S010876739701557210.1107/S0108767397015572Search in Google Scholar

[14] S. Elsebitt, W.F. Schlotter, M. Lorgen, O. Hellwig, W. Eberhardt, and J. Stohr, “Lensless imaging of magnetic nanostructures by X-ray spectro holography”, Nature 432, 885 (2004). http://dx.doi.org/10.1038/nature0313910.1038/nature03139Search in Google Scholar PubMed

[15] R.A. Bartels, A. Paul, H. Green, H.C. Kapteyn, M.M. Murnane, S. Backus, I.P. Christov, Y.W. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths”, Science 297, 376–378 (2002). Search in Google Scholar

[16] A.S. Morlens, J. Gautier, G. Rey, P. Zeitoun, J.P. Caumes, M. Kos-Rosset, H. Merdji, S. Kazamias, K. Casson, and M. Fajardo, “Submicrometer digital in-line holographic microscopy at 32 nm with high-order harmonics”, Opt. Lett. 31, 3095–3097 (2006). http://dx.doi.org/10.1364/OL.31.00309510.1364/OL.31.003095Search in Google Scholar

[17] R.I. Tobey, M.E. Siemens, O. Cohen, M.M. Murnane, H.C. Kapteyn, and K.A. Nelson, “Ultrafast extreme ultraviolet holography: dynamic monitoring of surface deformation”, Opt. Lett. 32, 286–288 (2007). http://dx.doi.org/10.1364/OL.32.00028610.1364/OL.32.000286Search in Google Scholar

[18] P. Wachulak, R. Bartels, M.C. Marconi, C.S. Menoni, J.J. Rocca, Y. Lu, and B. Parkinson, “Sub 400 nm spatial resolution extreme ultraviolet holography with a table top laser”, Opt. Express 14, 9636–9642 (2006). http://dx.doi.org/10.1364/OE.14.00963610.1364/OE.14.009636Search in Google Scholar PubMed

[19] P. Wachulak, M.C. Marconi, R. Bartels, C.S. Menoni, and J.J. Rocca, “Volume extreme ultraviolet holographic imaging with numerical optical sectioning”, Opt. Express 15, 10622–10628 (2007). http://dx.doi.org/10.1364/OE.15.01062210.1364/OE.15.010622Search in Google Scholar PubMed

[20] J.W. Goodman, Introduction to Fourier Optics, McGraw Hill, Chap. 4, p. 66, 1996. Search in Google Scholar

[21] U. Schnars and W.P.O. Juptner, “Digital recording and reconstruction of holograms in hologram interferometry and shearography”, Appl. Optics 33, 4373–4377 (1994). http://dx.doi.org/10.1364/AO.33.00437310.1364/AO.33.004373Search in Google Scholar PubMed

[22] U. Schnars and W.P.O. Juptner, “Digital recording and numerical reconstruction of holograms”, Meas. Sci. Technol. 13, R85–R101 (2002). http://dx.doi.org/10.1088/0957-0233/13/9/20110.1088/0957-0233/13/9/201Search in Google Scholar

[23] A.C.F. Hoole, M.E. Welland, and A.N. Broers, “Negative PMMA as a high-resolution resist — the limits and possibilities”, Semicond. Sci. Technol. 12, 1166–1170 (1997). http://dx.doi.org/10.1088/0268-1242/12/9/01710.1088/0268-1242/12/9/017Search in Google Scholar

[24] K. Yamazaki, T. Yamaguchi, and H. Namatsu, “Three-dimensional nanofabrication with 10-nm resolution”, Jpn. J. Appl. Phys. 43, L1111–L1113 (2004). http://dx.doi.org/10.1143/JJAP.43.L111110.1143/JJAP.43.L1111Search in Google Scholar

[25] J.M. Heck, D.T. Attwood, W. Meyer-Ilse, and E.H. Anderson, “Resolution determination in X-ray microscopy: an analysis of the effects of partial coherence and illumination spectrum”, J. X-Ray Sci. Technol. 8, 95 (1998). Search in Google Scholar

[26] D. Attwood, Soft X-ray and Extreme Ultraviolet Radiation, Cambridge University Press, 1999. 10.1017/CBO9781139164429Search in Google Scholar

[27] CXRO, “http://www-cxro.lbl.gov/”. Search in Google Scholar

[28] P.W. Wachulak, M.C. Marconi, R.A. Bartels, C.S. Menoni, and J.J. Rocca, “Soft X-ray laser holography with wavelength resolution”, J. Opt. Soc. Am. B 25, 1811 (2008). http://dx.doi.org/10.1364/JOSAB.25.00181110.1364/JOSAB.25.001811Search in Google Scholar

[29] P.W. Wachulak, C.A. Brewer, F. Brizuela, W. Chao, E.H. Anderson, R.A. Bartels, C.S. Menoni, J.J. Rocca, and M.C. Marconi, “Simultaneous determination of feature size and resolution in soft X-ray microscopy images”, J. Opt. Soc. Am. B 25, B20–B26 (2008). http://dx.doi.org/10.1364/JOSAB.25.000B2010.1364/JOSAB.25.000B20Search in Google Scholar

[30] Y. Liu, M. Seminario, F.G. Tomasel, C. Chang, J.J. Rocca, and D.T. Attwood “Achievement of essentially full spatial coherence in a high-average-power soft-X-ray laser”, Phys. Rev. A 6303, 033802 (2001). http://dx.doi.org/10.1103/PhysRevA.63.03380210.1103/PhysRevA.63.033802Search in Google Scholar

[31] H.H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B.H. Sohn, X.M. Yang, and P. Nealey, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography”, Appl. Phys. Lett. 75, 2328–2330 (1999). http://dx.doi.org/10.1063/1.12500510.1063/1.125005Search in Google Scholar

[32] From Polysciences Inc. Search in Google Scholar

[33] G.L. Rogers, “Gabor diffraction microscopy. The hologram as a generalized zone-plate”, Nature 166, 236–237 (1950). http://dx.doi.org/10.1038/166236a010.1038/166236a0Search in Google Scholar PubMed

[34] Y. Wang, E. Granados, M.A. Larotonda, M. Berrill, B.M. Luther, D. Patel, C.S. Menoni, and J.J. Rocca, “High-brightness injection-seeded soft-X-ray-laser amplifier using a solid target”, Phys. Rev. Lett. 97, 123901 (2006). http://dx.doi.org/10.1103/PhysRevLett.97.12390110.1103/PhysRevLett.97.123901Search in Google Scholar PubMed

Published Online: 2009-12-30
Published in Print: 2010-3-1

© 2010 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-009-0023-x/html
Scroll to top button