Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 6, 2006

Partial reversal of transformed fusiform phenotype by overexpression of calreticulin

  • Michal Opas EMAIL logo and Marc Fadel

Abstract

Calreticulin, a Ca2+-storage and chaperone protein of the ER, has also been shown to affect cell adhesiveness. To examine the effects of differential expression of calreticulin on cellular adhesiveness, we used L fibroblast cell lines stably expressing either elevated or reduced amounts of full length, ER-targeted calreticulin. Overexpression of calreticulin correlates with an increase in adhesiveness of L fibroblasts such that these transformed cells acquire epithelioid morphology and form an epithelial-cell sheet when crowded. Functionally, the “reversal” of transformed phenotype in L fibroblasts differentially overexpressing calreticulin can be accounted for by changes in levels of expression of N-cadherin and vinculin. Structurally, however, although the form and extent of cell-cell contacts in L fibroblasts overexpressing calreticulin mimicked those in normal epithelia, electron microscopical examination revealed that cell-cell junctions formed by these transformed cells bore only superficial resemblance to those of normal epithelia in culture. Our data imply that overexpression of calreticulin, while partially reverses fusiform transformed phenotype is in itself insufficient to re-establish bona fide zonulae adherens in transformed fibroblasts.

[1] Gelebart, P., Opas, M. and Michalak, M. Calreticulin, a Ca(2+)-binding chaperone of the endoplasmic reticulum. Int. J. Biochem. Cell Biol. 37 (2005) 260–266. http://dx.doi.org/10.1016/j.biocel.2004.02.03010.1016/j.biocel.2004.02.030Search in Google Scholar

[2] Bedard, K., Szabo, E., Michalak, M. and Opas, M. Cellular functions of endoplasmic reticulum chaperones calreticulin, calnexin, and ERp57. Int. Rev. Cytol. 245 (2005) 91–121. 10.1016/S0074-7696(05)45004-4Search in Google Scholar

[3] Papp, S., Fadel, M.P. and Opas, M. ER-to-cell surface signalling: calreticulin and cell adhesion. J. Appl. Biomed. 2 (2004) 1–14. Search in Google Scholar

[4] Geiger, B., Volk, T. and Volberg, T. Molecular heterogeneity of adherens junctions. J. Cell Biol. 101 (1985) 1523–1531. Search in Google Scholar

[5] Geiger, B., Volk, T., Volberg, T. and Bendori, R. Molecular interactions in adherens-type contacts. J. Cell Sci. Suppl. 8 (1987) 251–272. Search in Google Scholar

[6] Opas, M., Szewczenko-Pawlikowski, M., Jass, G.K., Mesaeli, N. and Michalak, M. Calreticulin modulates cell adhesiveness via regulation of vinculin expression. J. Cell Biol. 135 (1996) 1913–1923. http://dx.doi.org/10.1083/jcb.135.6.191310.1083/jcb.135.6.1913Search in Google Scholar

[7] Fadel, M.P., Dziak, E., Lo, C.M., Ferrier, J., Mesaeli, N., Michalak, M. and Opas, M. Calreticulin affects focal contact-dependent but not close contactdependent cell-substratum adhesion. J. Biol. Chem. 274 (1999) 15085–15094. http://dx.doi.org/10.1074/jbc.274.21.1508510.1074/jbc.274.21.15085Search in Google Scholar

[8] Fadel, M.P., Szewczenko-Pawlikowski, M., Leclerc, P., Dziak, E., Symonds, J.M., Blaschuk, O., Michalak, M. and Opas, M. Calreticulin affects betacatenin associated pathways. J. Biol. Chem. 276 (2001) 27083–27089. http://dx.doi.org/10.1074/jbc.M10167620010.1074/jbc.M101676200Search in Google Scholar

[9] Dedhar, S. Novel functions for calreticulin: Interaction with integrins and modulation of gene expression. Trends Biochem. Sci. 19 (1994) 269–271. http://dx.doi.org/10.1016/0968-0004(94)90001-910.1016/0968-0004(94)90001-9Search in Google Scholar

[10] Coppolino, M., Leung-Hagesteijn, C., Dedhar, S. and Wilkins, J. Inducible interaction of integrin α2β1 with calreticulin-Dependence on the activation state of the integrin. J. Biol. Chem. 270 (1995) 23132–23138. http://dx.doi.org/10.1074/jbc.270.39.2313210.1074/jbc.270.39.23132Search in Google Scholar

[11] Afshar, N., Black, B.E. and Paschal, B.M. Retrotranslocation of the chaperone calreticulin from the endoplasmic reticulum lumen to the cytosol. Mol. Cell Biol. 25 (2005) 8844–8853. http://dx.doi.org/10.1128/MCB.25.20.8844-8853.200510.1128/MCB.25.20.8844-8853.2005Search in Google Scholar

[12] Shaffer, K.L., Sharma, A., Snapp, E.L. and Hegde, R.S. Regulation of protein compartmentalization expands the diversity of protein function. Dev. Cell 9 (2005) 545–554. http://dx.doi.org/10.1016/j.devcel.2005.09.00110.1016/j.devcel.2005.09.001Search in Google Scholar

[13] Michalak, M., Baksh, S. and Opas, M. Identification and immunolocalization of calreticulin in pancreatic cells: no evidence for “calciosomes”. Exp. Cell Res. 197 (1991) 91–99. http://dx.doi.org/10.1016/0014-4827(91)90484-C10.1016/0014-4827(91)90484-CSearch in Google Scholar

[14] Fliegel, L., Burns, K., Opas, M. and Michalak, M. The high-affinity calcium binding protein of sarcoplasmic reticulum. Tissue distribution, and homology with calregulin. Biochim. Biophys. Acta 982 (1989) 1–8. http://dx.doi.org/10.1016/0005-2736(89)90166-110.1016/0005-2736(89)90166-1Search in Google Scholar

[15] Opas, M., Dziak, E., Fliegel, L. and Michalak, M. Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of nonmuscle cells. J. Cell. Physiol. 149 (1991) 160–171. http://dx.doi.org/10.1002/jcp.104149012010.1002/jcp.1041490120Search in Google Scholar

[16] Szabo, E., Papp, S. and Opas, M. Calreticulin and cellular adhesion/migration-specific signalling pathways. J. Appl. Biomed. 4 (2006) 45–52. Search in Google Scholar

[17] Burns, K., Duggan, B., Atkinson, E.A., Famulski, K.S., Nemer, M., Bleackley, R.C. and Michalak, M. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367 (1994) 476–480. http://dx.doi.org/10.1038/367476a010.1038/367476a0Search in Google Scholar

[18] Burridge, K. and Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12 (1996) 463–518. http://dx.doi.org/10.1146/annurev.cellbio.12.1.46310.1146/annurev.cellbio.12.1.463Search in Google Scholar

[19] Gumbiner, B.M. Regulation of cadherin adhesive activity. J. Cell Biol. 148 (2000) 399–403. http://dx.doi.org/10.1083/jcb.148.3.39910.1083/jcb.148.3.399Search in Google Scholar

[20] Milner, R.E., Baksh, S., Shemanko, C., Carpenter, M.R., Smillie, L., Vance, J.E., Opas, M. and Michalak, M. Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J. Biol. Chem. 266 (1991) 7155–7165. Search in Google Scholar

[21] Geiger, B., Volberg, T., Ginsberg, D., Bitzur, S., Sabanay, I. and Hynes, R.O. Broad spectrum pan-cadherin antibodies, reactive with the C-terminal 24 amino acid residues of N-cadherin. J. Cell Sci. 97 (1990) 607–614. Search in Google Scholar

[22] Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 (1970) 680–685. http://dx.doi.org/10.1038/227680a010.1038/227680a0Search in Google Scholar

[23] Texteira, C.C., Hatori, M., Leboy, P.S., Pacifici, M. and Shapiro, I.M. A rapid and ultrasensitive method for measurement of DNA, calcium and protein content, and alkaline phosphatase activity of chondrocyte cultures. Calcif. Tissue Int. 56 (1995) 252–265. http://dx.doi.org/10.1007/BF0029862010.1007/BF00298620Search in Google Scholar

[24] Rohrschneider, L. and Reynolds, S. Regulation of cellular morphology by the Rous sarcoma virus src gene: analysis of fusiform mutants. Mol. Cell. Biol. 5 (1985) 3097–3107. Search in Google Scholar

[25] Papkoff, J. Regulation of complexed and free catenin pools by distinct mechanisms. Differential effects of Wnt-1 and v-Src. J. Biol. Chem. 272 (1997) 4536–4543. Search in Google Scholar

[26] Kowalczyk, A.P., Palka, H.L., Luu, H.H., Nilles, L.A., Anderson, J.E., Wheelock, M.J. and Green, K.J. Posttranslational regulation of plakoglobin expression. Influence of the desmosomal cadherins on plakoglobin metabolic stability. J. Biol. Chem. 269 (1994) 31214–31223. Search in Google Scholar

[27] Takeichi, M. Cadherins: A molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59 (1990) 237–252. http://dx.doi.org/10.1146/annurev.bi.59.070190.00132110.1146/annurev.bi.59.070190.001321Search in Google Scholar

[28] Gumbiner, B.M. and McCrea, P.D. Catenins as mediators of the cytoplasmic functions of cadherins. J. Cell Sci. 106 Suppl. 17 (1993) 155–158. Search in Google Scholar

[29] Aberle, H., Schwartz, H. and Kemler, R. Cadherin-catenin complex: Protein interactions and their implications for cadherin function. J. Cell. Biochem. 61 (1996) 514–523. http://dx.doi.org/10.1002/(SICI)1097-4644(19960616)61:4<514::AID-JCB4>3.0.CO;2-R10.1002/(SICI)1097-4644(19960616)61:4<514::AID-JCB4>3.0.CO;2-RSearch in Google Scholar

[30] Eaton, S. and Cohen, S. Wnt signal transduction: More than one way to skin a (β-)cat? Trends Cell Biol. 6 (1996) 287–290. http://dx.doi.org/10.1016/0962-8924(96)20026-110.1016/0962-8924(96)20026-1Search in Google Scholar

[31] Hirano, S., Nose, A., Hatta, K., Kawakami, A. and Takeichi, M. Calciumdependent cell-cell adhesion molecules (dycadherins): Subclass specificities and possible involvement of actin bundles. J. Cell Biol. 105 (1987) 2501–2510. http://dx.doi.org/10.1083/jcb.105.6.250110.1083/jcb.105.6.2501Search in Google Scholar

[32] Itoh, M., Yonemura, S., Nagafuchi, A. and Tsukita, S. A 220-kD undercoatconstitutive protein: Its specific localization at cadherin-based cell-cell adhesion sites. J. Cell Biol. 115 (1991) 1449–1462. http://dx.doi.org/10.1083/jcb.115.5.144910.1083/jcb.115.5.1449Search in Google Scholar

[33] Matsuyoshi, N., Hamaguchi, M., Taniguchi, S., Nagafuchi, A., Tsukita, S. and Takeichi, M. Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J. Cell Biol. 118 (1992) 703–714. http://dx.doi.org/10.1083/jcb.118.3.70310.1083/jcb.118.3.703Search in Google Scholar

[34] Knudsen, K.A., Soler, A.P., Johnson, K.R. and Wheelock, M.J. Interaction of α-actinin with the cadherin/catenin cell-cell adhesion complex via α-catenin. J. Cell Biol. 130 (1995) 67–77. http://dx.doi.org/10.1083/jcb.130.1.6710.1083/jcb.130.1.67Search in Google Scholar

[35] Yonemura, S., Itoh, M., Nagafuchi, A. and Tsukita, S. Cell-to-cell adherens junction formation and actin filament organization: Similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell Sci. 108 (1995) 127–142. Search in Google Scholar

[36] Matsuyoshi, N. and Imamura, S. Multiple cadherins are expressed in human fibroblasts. Biochemical and Biophysical Research Communications 235 (1997) 355–358. http://dx.doi.org/10.1006/bbrc.1997.670710.1006/bbrc.1997.6707Search in Google Scholar

[37] Angres, B., Barth, A. and Nelson, W.J. Mechanism for transition from initial to stable cell-cell adhesion: Kinetic analysis of E-cadherin-mediated adhesion using a quantitative adhesion assay. J. Cell Biol. 134 (1996) 549–557. http://dx.doi.org/10.1083/jcb.134.2.54910.1083/jcb.134.2.549Search in Google Scholar

[38] Hazan, R.B., Kang, L., Roe, S., Borgen, P.I. and Rimm, D.L. Vinculin is associated with the E-cadherin adhesion complex. J. Biol. Chem. 272 (1997) 32448–32453. http://dx.doi.org/10.1074/jbc.272.51.3244810.1074/jbc.272.51.32448Search in Google Scholar

[39] Hazan, R.B. and Norton, L. The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. J. Biol. Chem. 273 (1998) 9078–9084. http://dx.doi.org/10.1074/jbc.273.15.907810.1074/jbc.273.15.9078Search in Google Scholar

[40] Provost, E. and Rimm, D.L. Controversies at the cytoplasmic face of the cadherin-based adhesion complex. Curr. Opin. Cell Biol. 11 (1999) 567–572. http://dx.doi.org/10.1016/S0955-0674(99)00015-010.1016/S0955-0674(99)00015-0Search in Google Scholar

[41] Pokutta, S. and Weis, W.I. The cytoplasmic face of cell contact sites. Curr. Opin. Struct. Biol. 12 (2002) 255–262. http://dx.doi.org/10.1016/S0959-440X(02)00318-410.1016/S0959-440X(02)00318-4Search in Google Scholar

[42] Paradies, N.E. and Grunwald, G.B. Purification and characterization of NCAD90, a soluble endogenous form of N-cadherin, which is generated by proteolysis during retinal development and retains adhesive and neuritepromoting function. J. Neurosci. Res. 36 (1993) 33–45. http://dx.doi.org/10.1002/jnr.49036010510.1002/jnr.490360105Search in Google Scholar

[43] Lagunowich, L.A. and Grunwald, G.B. Tissue and age-specificity of posttranslational modifications of N-cadherin during chick embryo development. Differentiation 47 (1991) 19–27. http://dx.doi.org/10.1111/j.1432-0436.1991.tb00217.x10.1111/j.1432-0436.1991.tb00217.xSearch in Google Scholar

[44] Lee, M.M., Fink, B.D. and Grunwald, G.B. Evidence that tyrosine phosphorylation regulates N-cadherin turnover during retinal development. Dev. Genet. 20 (1997) 224–234. http://dx.doi.org/10.1002/(SICI)1520-6408(1997)20:3<224::AID-DVG5>3.0.CO;2-910.1002/(SICI)1520-6408(1997)20:3<224::AID-DVG5>3.0.CO;2-9Search in Google Scholar

[45] Navarro, P., Caveda, L., Breviario, F., Mândoteanu, I., Lampugnani, M.G. and Dejana, E. Catenin-dependent and-independent functions of vascular endothelial cadherin. J. Biol. Chem. 270 (1995) 30965–30972. http://dx.doi.org/10.1074/jbc.270.52.3096510.1074/jbc.270.52.30965Search in Google Scholar

[46] Kreft, B., Berndorff, D., Böttinger, A., Finnemann, S., Wedlich, D., Hortsch, M., Tauber, R. and Gessner, R. LI-cadherin-mediated cell-cell adhesion does not require cytoplasmic interactions. J. Cell Biol. 136 (1997) 1109–1121. http://dx.doi.org/10.1083/jcb.136.5.110910.1083/jcb.136.5.1109Search in Google Scholar

[47] Volberg, T., Geiger, B., Kam, Z., Pankov, R., Simcha, I., Sabanay, H., Coll, J.-L., Adamson, E. and Ben-Ze’ev, A. Focal adhesion formation by F9 embryonal carcinoma cells after vinculin gene disruption. J. Cell Sci. 108 (1995) 2253–2260. Search in Google Scholar

[48] Rodríguez Fernández, J.L., Geiger, B., Salomon, D. and Ben-Ze’ev, A. Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility, and anchorage-dependent growth of 3T3 cells. J. Cell Biol. 122 (1993) 1285–1294. http://dx.doi.org/10.1083/jcb.122.6.128510.1083/jcb.122.6.1285Search in Google Scholar

[49] Rodríguez Fernández, J.L., Geiger, B., Salomon, D., Sabanay, H., Zöller, M. and Ben-Ze’ev, A. Suppression of tumorigenicity in transformed cells after transfection with vinculin cDNA. J. Cell Biol. 119 (1992) 427–438. http://dx.doi.org/10.1083/jcb.119.2.42710.1083/jcb.119.2.427Search in Google Scholar

[50] Coll, J.L., Ben-Ze’ev, A., Ezzell, R.M., Fernández, J.L.R., Baribault, H., Oshima, R.G. and Adamson, E.D. Targeted disruption of vinculin genes in F9 and embryonic stem cells changes cell morphology, adhesion, and locomotion. Proc. Natl. Acad. Sci. USA 92 (1995) 9161–9165. http://dx.doi.org/10.1073/pnas.92.20.916110.1073/pnas.92.20.9161Search in Google Scholar

[51] Goldmann, W.H., Schindl, M., Cardozo, T.J. and Ezzell, R.M. Motility of vinculin-deficient F9 embryonic carcinoma cells analyzed by video, laser confocal, and reflection interference contrast microscopy. Exp. Cell Res. 221 (1995) 311–319. http://dx.doi.org/10.1006/excr.1995.138010.1006/excr.1995.1380Search in Google Scholar

[52] Geiger, B., Dutton, A.H., Tokuyasu, K.T. and Singer, S.J. Immunoelectron microscope studies of membrane-microfilament interactions: Distributions of alpha-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J. Cell Biol. 91 (1981) 614–628. http://dx.doi.org/10.1083/jcb.91.3.61410.1083/jcb.91.3.614Search in Google Scholar

[53] Takeichi, M., Atsumi, T., Yoshida, C., Uno, K. and Okada, T.S. Selective adhesion of embryonal carcinoma cells and differentiated cells by Ca2+-dependent sites. Dev. Biol. 87 (1981) 340–350. http://dx.doi.org/10.1016/0012-1606(81)90157-310.1016/0012-1606(81)90157-3Search in Google Scholar

[54] Hatta, K., Nose, A., Nagafuchi, A. and Takeichi, M. Cloning and expression of cDNA encoding a neural calcium-dependent cell adhesion molecule: its identity in the cadherin gene family. J. Cell Biol. 106 (1988) 873–881. http://dx.doi.org/10.1083/jcb.106.3.87310.1083/jcb.106.3.873Search in Google Scholar PubMed PubMed Central

Published Online: 2006-12-6
Published in Print: 2007-4-1

© 2006 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-006-0065-8/html
Scroll to top button