Skip to main content
Log in

Micromechanical model of rough contact between rock blocks with application to wave propagation

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The relationship between effective stiffness of rough contacts of rock blocks and transmission of plane waves is well known. Effective stiffness of a rough contact may be related to the force-deformation behavior of the asperity contacts and the statistical description of rock joint surface topography through micromechanical methods. In this paper, a micromechanical methodology for computing the overall rock contact effective stiffness is utilized along with the imperfectly bonded interface model to investigate how transmitted and reflected wave amplitudes are affected by the incident wave frequency, rock joint closure and the existing rock joint normal stress conditions. As a result, expressions for reflected and transmitted wave amplitudes as well as group time delay of the wave-packets are obtained and parametrically evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach, J.D. (1973), Wave Propagation in Elastic Solids, North Holland, New York.

    Google Scholar 

  • Adler, R.J., and D. Firman (1981), A non-Gaussian model for random surfaces, Phil. Trans. Roy. Soc. Lond. A 303, 433–462.

    Article  Google Scholar 

  • Boitnott, G.N., R.L. Biegel, C.H. Scholz, N. Yoshioka, and W. Wang (1992), Micromechanics of rock friction 2. Quantitative modeling of initial friction with contact theory, J. Geophys. Res. 97, 8965–8978, DOI: 10.1029/92JB00019.

    Article  Google Scholar 

  • Brown, S.R., and C.H. Scholz (1985), Closure of random elastic surfaces in contact, J. Geophys. Res. 90, B7, 5531–5545, DOI: 10.1029/JB090iB07p05531

    Article  Google Scholar 

  • Brown, S.R., and C.H. Scholz (1986), Closure of rock joints, J. Geophys. Res. 91, B7, 4939–4945, DOI: 10.1029/JB091iB05p04939.

    Article  Google Scholar 

  • Gu, B., R. Suarez-Rivera, K.T. Nihei, and L.R. Myer (1996), Incidence of plane waves upon a fracture, J. Geophys. Res. 101, B11, 25337–25346.

    Article  Google Scholar 

  • Johnson, K.L. (1985), Contact Mechanics, Cambridge University Press, London.

    Google Scholar 

  • Kendal, K., and D. Tabor (1971), An ultrasonic study of area of contact between stationary and sliding surfaces, Proc. R. Soc. A 323, 321–340, DOI: 10.1098/rspa.1971.0108.

    Article  Google Scholar 

  • Mindlin, R.D., and H. Deresiewicz (1953), Elastic spheres in contact under varying oblique forces, J. Appl. Mech. 20, 3, 327–344.

    Google Scholar 

  • Misra, A. (1995), Interfaces in particulate materials. In: A.P.S. Selavadurai and M.P. Boulon (eds.), Mechanics of Geomaterial Interfaces, 513–536, Elsevier Sci., New York, DOI: 10.1016/S0922-5382(06)80024-3.

    Chapter  Google Scholar 

  • Misra, A. (1997), Mechanistic model for contact between rough surfaces, J. Eng. Mech., 123, 5, 475–484, DOI: 10.1061/(ASCE)0733-9399(1997)123:5(475).

    Article  Google Scholar 

  • Misra, A. (1999), Micromechanical model for anisotropic rock joints, J. Geophys. Res. 104, 23175–23187, DOI: 10.1029/1999JB900210.

    Article  Google Scholar 

  • Misra, A. (2002), Effect of asperity damage on shear behavior of single fracture, Eng. Fracture Mech. 69, 17, 1997–2014, DOI: 10.1016/S0013-7944(02)00073-5.

    Article  Google Scholar 

  • Murty, G.S. (1975), A theoretical for the attenuation and dispersion of stoneley waves at the loosely bonded interface of elastic half-space, Phys. Earth. Planet. Int. 11, 65–79, DOI: 10.1016/0031-9201(75)90076-X.

    Article  Google Scholar 

  • Murty, G.S., and V. Kumar (1991), Elastic wave propagation with kinematics discontinuity along a non-ideal interface between two isotropic elastic halfspaces, J. Nondest. Eval. 10, 2, 39–53, DOI: 10.1007/BF00568099.

    Article  Google Scholar 

  • Nagy, P.B. (1992), Ultrasonic classification of imperfect interfaces, J. Nondest. Eval. 11, 3/4, 127–139, DOI: 10.1007/BF00566404.

    Article  Google Scholar 

  • Nakagawa, S., K.T. Nihei, and L.R. Myer (2004), Plane wave solution for elastic wave scattering by heterogeneous fracture, J. Acoust. Soc. Am. 115, 6, 2761–2772, DOI: 10.1121/1.1739483.

    Article  Google Scholar 

  • Nayak, P.R. (1971), Random process model of rough surfaces, J. Lubr. Technol. 93, 398–407.

    Google Scholar 

  • Pecorari, C. (2003), Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact, J. Acoust. Soc. Am. 113, 6, 3065–3072, DOI: 10.1121/1.1570437.

    Article  Google Scholar 

  • Pyrak-Nolte, L.J., and D.D. Nolte (1992), Frequency dependence of fracture stiffness, Geophys. Res. Lett. 19, 3, 325–328, DOI: 10.1029/91GL03179.

    Article  Google Scholar 

  • Pyrak-Nolte, L.J, L.R. Myer, and N.G.W. Cook (1990), Transmission of seismic waves across single natural fractures, J. Geophys. Res. 95, 8617–8638, DOI: 10.1029/JB095iB06p08617.

    Article  Google Scholar 

  • Rokhlin, S.I., and Y.J. Wang (1991), Analysis of boundary conditions for elastic wave interaction with an interface between two solids, J. Acoust. Soc Am. 89, 503–515, DOI: 10.1121/1.400374.

    Article  Google Scholar 

  • Schoenberg, M. (1980), Elastic wave behavior across linear slip interfaces, J. Acoust. Soc Am. 68, 1516–1521, DOI: 10.1121/1.385077.

    Article  Google Scholar 

  • Swan, G. (1983), Determination of stiffness and other joint properties from roughness measurements, Rock Mech. Rock Eng. 16, 19–38, DOI: 10.1007/BF01030216.

    Article  Google Scholar 

  • Yoshioka, N. (1994), Elastic behavior of contacting surfaces under normal loads: A computer simulation using three-dimensional surface topographies, J. Geophys. Res. 99, 15549–15560, DOI: 10.1029/94JB00938.

    Article  Google Scholar 

  • Yoshioka, N. (1997), A review of the micromechanical approach to the physics of contacting surfaces, Tectonophysics 277, 29–40, DOI: 10.1016/S0040-1951(97)00076-0.

    Article  Google Scholar 

  • Yoshioka, N., and C.H. Scholz (1989a), Elastic properties of contacting surfaces under normal and shear loads. 1: Theory, J. Geophys. Res. 94, 17681–17690, DOI: 10.1029/JB094iB12p17681.

    Article  Google Scholar 

  • Yoshioka, N., and C.H. Scholz (1989b), Elastic properties of contacting surfaces under normal and shear loads. 2: Comparison of theory with experiment, J. Geophys. Res. 94, 17691–17700, DOI: 10.1029/JB094iB12p17691.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, A., Marangos, O. Micromechanical model of rough contact between rock blocks with application to wave propagation. Acta Geophys. 56, 1109–1128 (2008). https://doi.org/10.2478/s11600-008-0050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-008-0050-x

Key words

Navigation