Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2006

Emerging concept of cancer as a stem cell disorder

  • Mariusz Ratajczak EMAIL logo , Magda Kucia , Hanna Dobrowolska , Jens Wanzeck , Ryan Reca and Janina Ratajczak
From the journal Open Life Sciences

Abstract

Evidence has accumulated that malignancy arises from maturation arrest of stem cells — rather than the dedifferentiation of somatic cells. To support this notion, stem cells in contrast to somatic cells are long lived cells and thus may become the subject of accumulating mutations that are crucial for the initiation/progression of cancer. More importantly they may maintain these mutations and pass them to daughter stem cells. Cancer stem cells (CSC) that derive from transformed normal stem cells (NSC) are responsible not only for tumor initiation, but also for its re-growth and metastasis. Accumulating evidence also indicates that adult tissues may contain a population of very small embryonic like (VSEL) stem cells that may give rise to some very immature tumors e.g., pediatric sarcomas. Similar molecular mechanisms operating in NSC and CSC regulate resistance to radio-chemotherapy and promote migration/metastasis. Thus, by studying the biology of NSC we can learn more about cancer.

[1] R. Virchow: Editorial Archive fuer pathologische Anatomie und Physiologie fuer klinische Medizin, Vol. 8, (1855), pp. 23–54. 10.1007/BF01935316Search in Google Scholar

[2] S. Sell and G.B. Pierce: “Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers”, Lab. Invest., Vol. 70, (1994), pp. 6–22. Search in Google Scholar

[3] R. Pardal, M.F. Clarke and S.J. Morrison: “Applying the principles of stem-cell biology to cancer”, Nat. Rev. Cancer, Vol. 3, (2003), pp. 895–902. http://dx.doi.org/10.1038/nrc123210.1038/nrc1232Search in Google Scholar PubMed

[4] T. Reya, S.J. Morrison, M.F. Clarke and I.L. Weissman: “Stem cells, cancer, and cancer stem cells”, Nature, Vol. 414, (2001), pp. 105–111. http://dx.doi.org/10.1038/3510216710.1038/35102167Search in Google Scholar PubMed

[5] T. Lapidot, F.P Pflumio, M. Doedens, B. Murdoch, D.E. Williams and J.E. Dick: “Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice”, Science, Vol. 255, (1992), pp. 1137–1141. Search in Google Scholar

[6] D. Bonnet and J.E. Dick: “Human acute myeloid leukemia is organized as hierarchy that originates from a primitive hematopoietic cell”, Nat. Med., Vol. 3, (1997), pp. 730–737. http://dx.doi.org/10.1038/nm0797-73010.1038/nm0797-730Search in Google Scholar PubMed

[7] S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, M.D. Cusimano and P.B. Dirks: “Identification of human brain tumour initiating cells”, Nature, Vol. 432, (2004), pp. 396–401. http://dx.doi.org/10.1038/nature0312810.1038/nature03128Search in Google Scholar PubMed

[8] G. Dontu, M. Al-Hajj, W.M. Abdallah, M.F. Clarke and M.S. Wicha: “Stem cells in normal breast development and breast cancer”, Cell Prolif., Vol. 36(Suppl.1), (2003), pp. 59–72. http://dx.doi.org/10.1046/j.1365-2184.36.s.1.6.x10.1046/j.1365-2184.36.s.1.6.xSearch in Google Scholar PubMed PubMed Central

[9] L. Xin, D.A. Lawson and O.N. Witte “The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis”, Proc. Natl. Acad. Sci. U.S.A., Vol. 102, (2005), pp. 6942–6947. http://dx.doi.org/10.1073/pnas.050232010210.1073/pnas.0502320102Search in Google Scholar PubMed PubMed Central

[10] P.E. Burger, X. Xiong, S. Coetzee, S.N. Salm, D. Moscatelli, K. Goto and E.L. Wilson: “Sca-1 expression identifies stem cell in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue”, Proc. Natl. Acad. Sci. U.S.A., Vol. 102, (2005), pp. 7180–7185. http://dx.doi.org/10.1073/pnas.050276110210.1073/pnas.0502761102Search in Google Scholar PubMed PubMed Central

[11] C.F.B. Kim, E.L. Jackson, A.E. Woolfenden, S. Lawrence, I. Babar, S. Vogel, D. Crowley, R.T. Bronson and T. Jacks: “Identification of bronchioalveolar stem cells in normal lung and lung cancer”, Cell, Vol. 121, (2005), pp. 823–835. http://dx.doi.org/10.1016/j.cell.2005.03.03210.1016/j.cell.2005.03.032Search in Google Scholar PubMed

[12] S. Sell: “Stem cell origin of cancer and differentiation therapy”, Crit. Rev. Oncol. Hematol., Vol. 51, (2004), pp. 1–28. Search in Google Scholar

[13] P.A. Beachy, S.S. Karhadkar and D.M. Berman: “Tissue repair and stem cell renewal in carcinogenesis”, Nature, Vol. 432, (2004), pp. 324–330. http://dx.doi.org/10.1038/nature0310010.1038/nature03100Search in Google Scholar PubMed

[14] B.J.P. Huntly and D.G. Gilliland: “Leukemia stem cell and the evolution of cancer-stem-cell research”, Nat. Rev. Cancer, Vol. 5, (2005), pp. 311–321. http://dx.doi.org/10.1038/nrc159210.1038/nrc1592Search in Google Scholar PubMed

[15] M. Dean, T. Fojo and S. Bates: “Tumor stem cells and drug resistance”, Nat. Rev. Cancer, Vol. 5, (2005), pp. 275–283. http://dx.doi.org/10.1038/nrc159010.1038/nrc1590Search in Google Scholar PubMed

[16] M. Kucia, R. Reca, K. Miekus, J. Wanzeck, W. Wojakowski, A. Janowska-Wieczorek, J. Ratajczak and M.Z. Ratajczak: “Trafficking of Normal Stem Cells and Metastasis of Cancer Stem Cells Involve Similar Mechanisms: Pivotal Role of the SDF-1-CXCR4 Axis”, Stem. Cells, Vol. 23, (2005), pp. 897–894. http://dx.doi.org/10.1634/stemcells.2004-034210.1634/stemcells.2004-0342Search in Google Scholar PubMed

[17] K. Jankowski, M. Kucia, M. Wysoczynski, R. Reca, D. Zhao, E. Trzyna, J. Trent, S. Peiper, M. Zembala, J. Ratajczak and M.Z. Ratajczak: “Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhaces their resistance to radiochemotherapy”, Cancer Res., Vol. 63, (2003), pp. 7926–7935. Search in Google Scholar

[18] J. Libura, J. Drukala, M. Majka, O. Tomescu, J.M. Navenot, M. Kucia, L. Marquez, A.C. Peiper, F.G. Barr, A. Janowska-Wieczorek and M.Z. Ratajczak: “CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion”, Blood, Vol. 100, (2002), pp. 2597–2606. http://dx.doi.org/10.1182/blood-2002-01-003110.1182/blood-2002-01-0031Search in Google Scholar PubMed

[19] D. Ponti, A. Costa, N. Zaffaroni, G. Pratesi, G. Petrangolini, D. Coradini, S. Pilotti, M.A. Pierotti and M.G. Daidone: “Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties”, Cancer Res., Vol. 13, (2005), pp. 5506–5510. http://dx.doi.org/10.1158/0008-5472.CAN-05-062610.1158/0008-5472.CAN-05-0626Search in Google Scholar PubMed

[20] M. Ito, Y. Liu, Z. Yang, J. Nguyen, F. Liang, R.J. Morris and G. Cotsarelis: “Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis”, Nat. Med., Vol. 11, (2005), pp. 1351–1354. http://dx.doi.org/10.1038/nm132810.1038/nm1328Search in Google Scholar PubMed

[21] J.G. Toma, M. Akhavan, K.J.L. Fernandes, F. Barnabe-Heider, A. Sadikot, D.R. Kaplan and F.D. Miller: “Isolation of multipotent adult stem cells from the derims of mammalian skin”, Nat. Cell Biol., Vol. 3, (2001), pp. 778–784. http://dx.doi.org/10.1038/ncb0901-77810.1038/ncb0901-778Search in Google Scholar PubMed

[22] L. Alonso and E. Fuchs: “Stem cells of skin epithelium”, Proc. Natl. Acad. Sci. U.S.A., Vol. 100, (2003), pp. 11830–11835. http://dx.doi.org/10.1073/pnas.173420310010.1073/pnas.1734203100Search in Google Scholar PubMed PubMed Central

[23] J.Y. Kim, K.D. Siegmund, S. Tavare and D. Shibata: “Age-related human small intestine methylation: evidence for stem cell niches”, BioMed Central, Vol. 3, (2005), p. 10. Search in Google Scholar

[24] E. Marshman, C. Booth and C.S. Potten: “The intestinal epithelial stem cell”, Bio Essays, Vol. 24, (2002), pp. 91–98. Search in Google Scholar

[25] E.D. Williams, A.P. Lowes, D. Williams and G.T. Williams: “A stem cell niche theory of intestinal crypt maintenance based on a study of somatic mutation in colonic mucosa”, Am. J. Pathol., Vol. 141, (1992), pp. 773–776. Search in Google Scholar

[26] K. Tachibana, S. Hirota, H. Iizasa, H. Yoshida, K. Kawabata, Y. Kataoka, Y. Kitamura, K. Matsushima, N. Yoshida, S. Nishikawa, T. Kishimoto and T. Nagasawa: “The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract”, Nature, Vol. 393, (1998), pp. 591–594. http://dx.doi.org/10.1038/3126110.1038/31261Search in Google Scholar PubMed

[27] B. Heissig, Y. Ohki, Y. Sato, S. Rafii, Z. Werb and K. Hattori: “A role for niches in hematopoietic cell development”, Hematology, Vol. 10, (2005), pp. 247–253. http://dx.doi.org/10.1080/1024533050006724910.1080/10245330500067249Search in Google Scholar PubMed

[28] T. Suda, F. Arai and A. Hirao: “Hematopoietic stem cells and their niche”, Trends Immunol., Vol. 26, (2005), pp. 426–433. http://dx.doi.org/10.1016/j.it.2005.06.00610.1016/j.it.2005.06.006Search in Google Scholar

[29] F. Arai, A. Hirao and T. Suda: “Regulation of hematopoietic stem cells by the niche”, Trends Cardiovasc. Med., Vol. 15, (2005), pp. 75–79. http://dx.doi.org/10.1016/j.tcm.2005.03.00210.1016/j.tcm.2005.03.002Search in Google Scholar

[30] M. Valdes Chavarri, D. Pascual Figal, F. Prosper Cardoso, J. Moreno Montanes, D. Garcia Olmos and J.A. Barcia Albacar: “Regenerative medicine with adult stem cells”, Rev. Clin. Esp., Vol. 205, (2005), pp. 556–564. http://dx.doi.org/10.1016/S0014-2565(05)72638-210.1016/S0014-2565(05)72638-2Search in Google Scholar

[31] A. Hermann, M. Maisel, F. Wegner, S. Liebau, D.W. Kim, M. Gerlach, J. Schwarz, K.S. Kim and A. Storch: “Multipotent neural stem cells from the adult tegmentum with dopaminergic potential develop essential properties of functional neurons”, Stem Cells, (2005), ahead of print. 10.1634/stemcells.2005-0192Search in Google Scholar PubMed

[32] A. Privat: “Stem cells and neural repair”, Bull. Acad. Natl. Med., Vol. 189, (2005), pp. 605–613. Search in Google Scholar

[33] J.R. Munoz, B.R. Stoutenger, A.P. Robinson, J.L. Spees and D.J. Prockop: “Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous stem cells in the hippocampus of mice”, Proc. Natl. Acad. Sci. U.S.A., Vol. 102, (2005), pp. 18171–18176. http://dx.doi.org/10.1073/pnas.050894510210.1073/pnas.0508945102Search in Google Scholar PubMed PubMed Central

[34] B. Berninger, M.A. Hack and M. Gotz: “Neural stem cells: on where they hide, in witch disguise, and how we may lure them out”, Handb. Exp. Pharmacol., Vol. 174, (2006), pp. 319–360. http://dx.doi.org/10.1007/978-3-540-77855-4_1410.1007/978-3-540-77855-4_14Search in Google Scholar

[35] G.P. Marshall, E.D. LAywell, T. Zheng, D.A. Steindler and E.W. Scott: “In vitro derived neural stem cells functiona as neural progenitors without the capacity for self-renewal”, Stem Cells, (2005), ahead of print. 10.1634/stemcells.2005-0245Search in Google Scholar PubMed

[36] B. Welm, F. Behbod, M.A. Goodell and J.M. Rosen: “Isolation and characterization of functional mammary gland stem cells”, Cell Prolif., Vol. 36, (2003), pp. 17–32. http://dx.doi.org/10.1046/j.1365-2184.36.s.1.3.x10.1046/j.1365-2184.36.s.1.3.xSearch in Google Scholar PubMed PubMed Central

[37] W.A. Woodward, M.S. Chen, F. Behbod and J.M. Rosen: “On mammary stem cells”, J. Cell Sci., Vol. 118, (2005), pp. 3585–3594. http://dx.doi.org/10.1242/jcs.0253210.1242/jcs.02532Search in Google Scholar PubMed

[38] M. Kucia, R. Reca, V.R. Jala, B. Down, J. Ratajczak and M.Z. Ratajczak: “Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells”, Leukemia, Vol. 19, (2005), pp. 1118–1127. http://dx.doi.org/10.1038/sj.leu.240379610.1038/sj.leu.2403796Search in Google Scholar PubMed

[39] M. Kucia, J. Ratajczak and M.Z. Ratajczak: “Are bone marrow stem cells plastic or heterogenous — that is the question”, Exp. Hematology, Vol. 33, (2005), pp. 613–623. http://dx.doi.org/10.1016/j.exphem.2005.01.01610.1016/j.exphem.2005.01.016Search in Google Scholar

[40] M. Kucia, J. Ratajczak and M.Z. Ratajczak: “Bone marrow as a source of circulating CXCR4+ tissue committed stem cells (TCSC)”, Biol. Cell, Vol. 97, (2005), pp. 133–146. http://dx.doi.org/10.1042/BC2004006910.1042/BC20040069Search in Google Scholar

[41] S. Rafii and D. Lyden: “Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration”, Nat. Med., Vol. 9, (2003), pp. 702–712. http://dx.doi.org/10.1038/nm0603-70210.1038/nm0603-702Search in Google Scholar

[42] C.R. Cogle, A.T. Yachnis, E.D. Laywell, D.S. Zander, J.R. Wingard, D.A. Steindler and E.W. Scott: “Bone marrow transdifferentiation in brain after transplantation: a retrospective study”, Lancet, Vol. 363, (2004), pp. 1432–1436. http://dx.doi.org/10.1016/S0140-6736(04)16102-310.1016/S0140-6736(04)16102-3Search in Google Scholar

[43] M. Kucia, Y.P. Zhang, R. Reca, M. Wysoczynski, B. Machalinski, M. Majka, S.T. ilstad, J. Ratajczak, C.B. Shields and M.Z. Ratajczak: “Cells enriches in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke”, Leukemia, Vol 20, (2006), pp. 18–28. http://dx.doi.org/10.1038/sj.leu.240417110.1038/sj.leu.2404171Search in Google Scholar PubMed

[44] M. Kucia, B. Dawn, G. Hunt, Y. Guo, M. Wysoczynski, M. Majka, J. Ratajczak, F. Rezzoung, S.T. Ildstad, R. Bolli and M.Z. Ratajczak: “Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infraction”, Circ. Res., Vol. 95, (2004), pp. 1191–1199. http://dx.doi.org/10.1161/01.RES.0000150856.47324.5b10.1161/01.RES.0000150856.47324.5bSearch in Google Scholar PubMed PubMed Central

[45] S.A. Kuznetsov, M.H. Mankani, S. Gronthos, K. Satomura, P. Bianco and P.G. Robey: “Circulating skeletal stem cells”, J. Cell Biol., Vol. 153, (2001), pp. 1133–1139. http://dx.doi.org/10.1083/jcb.153.5.113310.1083/jcb.153.5.1133Search in Google Scholar PubMed PubMed Central

[46] M.Z. Ratajczak, M. Majka, M. Kucia, J. Drukala, Z. Pietrzkowski, S. Peiper and A. Janowska-Wieczorek: “Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles”, Stem Cells, Vol. 21, (2003), pp. 363–371. http://dx.doi.org/10.1634/stemcells.21-3-36310.1634/stemcells.21-3-363Search in Google Scholar PubMed

[47] D. Orlic, J. Kajstura, S. Chimenti, D.M. Bodine, A. Leri and P. Anversa: “Bone marrow cells regenerate infracted myocardium”, Pediatr. Transplant., Vol. 7, (2003), pp. 86–88. http://dx.doi.org/10.1034/j.1399-3046.7.s3.13.x10.1034/j.1399-3046.7.s3.13.xSearch in Google Scholar PubMed

[48] J.R. Sanchez-Ramoz: “Neural cells derived from adult bone marrow and umbilical cord blood”, J. Neurosci. Res., Vol. 96, (2002), pp. 880–893. http://dx.doi.org/10.1002/jnr.1033710.1002/jnr.10337Search in Google Scholar PubMed

[49] B.E. Petersen, W.C. Bowen, K.D. Patrene, W.M. Mars, A.K. Sullivan, N. Murase, S.S. Boggs, J.S. Greenberger and J.P. Goff: “Bone marrow as a potential source of hepatic oval cells”, Science, Vol. 284, (1999), pp. 1168–1170. http://dx.doi.org/10.1126/science.284.5417.116810.1126/science.284.5417.1168Search in Google Scholar PubMed

[50] V.M. Lee and M. Stoffel: “Bone marrow: an extra pancreatic hideout for the elusive pancreatic stem cells?”, J. Clin. Invest., Vol. 111, (2003), pp. 799–801. http://dx.doi.org/10.1172/JCI20031706310.1172/JCI200317063Search in Google Scholar

[51] D. Hess, L. Li, M. Martin, S. Sakano, D. Hill, B. Strutt, S. Thyssen, D.A. Gray and M. Bhatia: “Bone marrow-derived stem cells initiate pancreatic regeneration”, Nat. Biotechnol., Vol. 21, (2003), pp. 763–770. http://dx.doi.org/10.1038/nbt84110.1038/nbt841Search in Google Scholar PubMed

[52] S.H. Oh, T.M. Muzzonigro, S.H. Bae, J.M. LaPlante, H.M. Hatch and B.E. Petersen: “Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes”, Lab. Invest., Vol. 84, (2004), pp. 607–617. http://dx.doi.org/10.1038/labinvest.370007410.1038/labinvest.3700074Search in Google Scholar PubMed

[53] N.D. Theise, M. Nimmakayalu, R. Gardner, P.B. Illei, G. Morgan, L. Teperman O. Henegariu and D.S. Krause: “Liver from bone marrow in humans”, Hepatology, Vol. 32, (2000), pp. 11–16. http://dx.doi.org/10.1053/jhep.2000.912410.1053/jhep.2000.9124Search in Google Scholar PubMed

[54] D. Krause and L.G. Cantley: “Bone marrow plasticity revisited: protection or differentiation in the kidney tubule?”, J. Clin. Invest., Vol. 115, (2005), pp. 1705–1755. http://dx.doi.org/10.1172/JCI2554010.1172/JCI25540Search in Google Scholar PubMed PubMed Central

[55] N. Terada, T. Hamazaki, M. Oka, M. Hoki, D.M. Mastalerz, Y. Nakano, E.M. Meyer, L. Morel, B.E. Petersen and E.W. Scott: “Bone marrow cells adopt to phenotype of other cells by spontaneous cell fusion”, Nature, Vol. 416, (2002), pp. 542–545. http://dx.doi.org/10.1038/nature73010.1038/nature730Search in Google Scholar PubMed

[56] Q.L. Ying, J. Nichols, E.P. Evans and A.G. Smith: “Changing potency by spontaneous fusion”, Nature, Vol. 416, (2002), pp. 545–548. http://dx.doi.org/10.1038/nature72910.1038/nature729Search in Google Scholar PubMed

[57] M.Z. Ratajczak, M. Kucia, R. Reca, M. Majka, A. Janowska-Wieczorek and J. Ratajczak: “Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle,liver and neural cells ‘hide out’ in the bone marrow”, Leukemia, Vol. 18, (2004), pp. 29–40. http://dx.doi.org/10.1038/sj.leu.240318410.1038/sj.leu.2403184Search in Google Scholar PubMed

[58] J.M. Houghton, C. Stoicov, S. Nomura, A.B. Rogers, J. Carlson, H. Li, X. Cai, J.G. Fox, J.R. Goldenring and T.C. Wang: “Gastric cancer originating from bone marrow derived cells”, Science, Vol. 306, (2004), pp. 1568–1571. http://dx.doi.org/10.1126/science.109951310.1126/science.1099513Search in Google Scholar PubMed

[59] C.R. de Almodavar, A. Luttun and P. Carmeliet: “An SDF-1 trap for myeloid cells stimuate angiogenesis”, Cell, Vol. 124, (2006), pp. 18–21. http://dx.doi.org/10.1016/j.cell.2005.12.02310.1016/j.cell.2005.12.023Search in Google Scholar

[60] M.Z. Ratajczak: “Cancer stem cells-normal stem cells “Jedi” that went over to the “dark Side””, Folia Histochem. Cytobiol., Vol. 43, (2005), pp. 175–81. Search in Google Scholar

[61] D. Bonnet: “Cancer stem cells: lessons from leukaemia”, Cell Prolif., Vol. 38, (2005), pp. 357–361. http://dx.doi.org/10.1111/j.1365-2184.2005.00353.x10.1111/j.1365-2184.2005.00353.xSearch in Google Scholar

[62] A. Soltysova, V. Altanerova and C. Altaner: “Cancer stem cells”, Neoplasma, Vol. 52, (2005), pp. 435–440. Search in Google Scholar

[63] Y.X. Sun, J. Wang, C.E. Shelburne, D.E. Lopatin, A.M. Chinnaiyan, M.A. Rubin, K.J. Pienta and R.S. Taichman: “Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (Pca) in vivo“, J. Cell. Biochem., Vol. 89, (2003), pp. 462–473. http://dx.doi.org/10.1002/jcb.1052210.1002/jcb.10522Search in Google Scholar

[64] H. Geminder, O. Sagi-Assif, L. Goldberg, T. Meshel, G. Rechavi, I.P. Witz and A. Ben-Baruch: “A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1,in the development of bone marrow metastases in neuroblastoma”, J. Immunol., Vol. 167, (2001), pp. 4747–4757. Search in Google Scholar

[65] C. Porcile, A. Bajetto, S. Barbero, P. Pirani and G. Schettini: “CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line”, Ann. N. Y. Acad. Sci., Vol. 1030, (2004), pp. 162–169. http://dx.doi.org/10.1196/annals.1329.02110.1196/annals.1329.021Search in Google Scholar

[66] A.T. Askari, S. Unzek, Z.B. Popovic, C.K. Goldman, F. Forudi, M. Kiedrowski, A. Rovner, S.G. Ellis, J.D. Thomas, P.E. DiCorleto, E.J. Topol and M.S. Penn: “Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy”, Lancet, Vol. 362, (2003), pp. 697–703. http://dx.doi.org/10.1016/S0140-6736(03)14232-810.1016/S0140-6736(03)14232-8Search in Google Scholar

[67] D.J. Ceradini, A.R. Kulkarni, M.J. Callaghan, O.M. Tepper, N. Bastidas, M.E. Kleinman, J.M. Capla, R.D. Galiano, J.P. Levine and G.C. Gurtner: “Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1”, Nat. Med., Vol. 10, (2004), pp. 858–864. http://dx.doi.org/10.1038/nm107510.1038/nm1075Search in Google Scholar PubMed

[68] T. Ponomaryov, A. Peled, I. Petit, R.S. Taichman, L. Habler, J. Sandbank, F. Arenzana-Seisdedos, A. Magerus, A. Caruz, N. Fujii, A. Nagler, M. Lahav, M. Szyper-Kravitz, D. Zipori and T. Lapidot: “Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function”, J. Clin. Invest., Vol. 106, (2000), pp. 1331–1339. http://dx.doi.org/10.1172/JCI1032910.1172/JCI10329Search in Google Scholar PubMed PubMed Central

[69] R.N. Kaplan, R.D. Riba, S. Zacharoulis, A.H. Bramley, L. Vincent, C. Costa, D.D. MacDonald, D.K. Jin, K. Shido, S.A. Kerns, Z. Zhu, D. Hicklin, Y. Wu, J.L. Port, N. Altorki, E.R. Port, D. Ruggero, S.V. Shmelkov, K.K. Jensen, S. Raffi and D. Lyden: “VEGFR1-positive hematopoietic bone marrow progenitors initiate the premetastatic niche”, Nature, Vol. 438, (2005), pp. 750–751. http://dx.doi.org/10.1038/nature0418610.1038/nature04186Search in Google Scholar PubMed PubMed Central

[70] Q. Shi, S. Raffi, M.H. Wu, E.S. Wijelath, C. Yu, A. Ishida, Y. Fujita, S. Kothari, R. Mohle, L.R. Sauvage, M.A. Moore, R.F. Storb and W.P. Hammond: “Evidence for circulating bone marrow-derived endothelial cells”, Blood, Vol. 92, (1998), pp. 362–367. Search in Google Scholar

[71] N.C. Direkze, K. Hodivala-Dilke, R. Jeffery, T. Hunt, R. Poilsom, D. Oukrif, M.R. Alison and N.A. Wright: “Bone marrow contribution to tumor-associated myofibroblast and fibroblasts”, Cancer Res., Vol. 64, (2004), pp. 8492–8495. http://dx.doi.org/10.1158/0008-5472.CAN-04-170810.1158/0008-5472.CAN-04-1708Search in Google Scholar PubMed

[72] W.C. Greene: “The brightening future of HIV therapeutics”, Nat. Immunol., Vol. 5, (2004), pp. 867–871. http://dx.doi.org/10.1038/ni0904-86710.1038/ni0904-867Search in Google Scholar PubMed

[73] S.M. Devine, N. Flomenberg, D.H. Vesole, J. Liesveld, D. Weisdorf, K. Badel, G. Calandra and J.F. DiPersio: “Rapid mobilization of CD34+cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma”, J. Clin. Oncol. Vol. 22, (2004), pp. 1095–1102. http://dx.doi.org/10.1200/JCO.2004.07.13110.1200/JCO.2004.07.131Search in Google Scholar PubMed

[74] Y. Chen, G. Stamatoyannopoulos and C.Z. Song: “Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro”, Cancer Res., Vol. 63, (2003), pp. 4801–4804. Search in Google Scholar

[75] N.M. Mazure, M.C. Brahimi-Horn, M.A. Berta, E. Benizri, R.L. Bilton, F. Dayan, A. Ginouves, E. Berra and J. Pouyssegur: “HIF-1:master and commander of the hypoxic world. A pharmacological approach to its regulation by siRNAs”, Biochem. Pharmacol., Vol. 68, (2004), pp. 971–980. http://dx.doi.org/10.1016/j.bcp.2004.04.02210.1016/j.bcp.2004.04.022Search in Google Scholar PubMed

[76] A.L. Kung, S.D. Zabludoff, D.S. France, S.J. Freedman, E.A. Tanner, A. Vieira, S. Cornell-Kennon, J. Lee, B. Wang, J. Wang, K. Memmert, H.U. Nageli, F. Petersen, M.J. Eck, K.W. Bair, A.W. Wood and D.M. Livingston: “Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway”, Cancer Cell, Vol. 6, (2004), pp. 33–43. http://dx.doi.org/10.1016/j.ccr.2004.06.00910.1016/j.ccr.2004.06.009Search in Google Scholar PubMed

Published Online: 2006-3-1
Published in Print: 2006-3-1

© 2006 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-006-0006-6/html
Scroll to top button