Research Article
BibTex RIS Cite

Low-Cost Mine Detector Design Using Magnetic Anomaly Method

Year 2022, Volume: 25 Issue: 4, 1729 - 1740, 16.12.2022
https://doi.org/10.2339/politeknik.1080410

Abstract

Buried mines pose great dangers to humans and animals around the world, which means thousands of people die each year from buried mines. Detecting and destroying these mines without harming people is an important issue. Today, these landmines are detected using different methods such as Ground Effect Radar, Electromagnetic induction, Infrared and Nuclear Quadrupole Resonance and active sensors are generally used in most of these methods. Although active sensor-based landmine detectors are often used for performance reasons, they can cause unintentional landmine explosions because they operate with transmitted and reflected signals. On the other hand, there is no such obstacle that can perform better in passive sensor-based landmine detectors depending on the design criteria. Therefore, in this study, a prototype design including passive sensor with magnetic anomaly method has been developed and shown. For the performance analysis of this detector, real landmines are used and the designed system is tested with different distance values in different soil types. The results show that the prototype produced successfully detects different types of landmines, is assertive in its lightness and only 1750 grams with its battery, providing sensitivity as well as advantages such as ease of use and low cost. It also shows the feature of being the first handheld landmine detector based on magnetic anomaly.

References

  • [1] Dyana A., Rao C.S. and Kuloor R., “3D Segmentation of ground penetrating radar data for landmine detection”, IEEE 14th International Conference on Ground Penetrating Radar (GPR), 858-863, (2012).
  • [2] Tanaka R. and Sato M., “A GPR system using a broadband passive optical sensor for land mine detection”, the Tenth International Conference on Grounds Penetrating Radar, 171-174, (2004).
  • [3] Budko N.V., Remis R.F. and van Den Berg P.M., “Advances in GPR data processing for antipersonnel landmine detection”, IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, 19-22, (2000).
  • [4] Cho S.J., Tanaka R. and Sato M., “Bistatic GPR by using an optical electric field sensor”, IEEE International Geoscience and Remote Sensing Symposium, 1-4, (2005).
  • [5] Ho K.C. and Gader P.D., “A linear prediction land mine detection algorithm for hand held ground penetrating radar”, IEEE transactions on geoscience and remote sensing, 40(6), 1374-1384, (2002).
  • [6] Cioni R., Sensani S., Bettini G., “Miniati M. and Moschini, M., A new general purpose 1300 MHz radar sensor suitable for detection of mines”, Second International Conference on Detection of Abandoned Land Mines, 55 – 59, (1998).
  • [7] Yan-guang, Y., Qian, S., and Zhi-min, Z., “A Novel Method of Landmines Detection Based on Improved SVM”, 8th international Conference on Signal Processing, (2006).
  • [8] Datema C.P., van der Schoor L.A., Bom, V.R., and van Ejjk C.W.E., “A portable landmine detector based on the combination of electromagnetic induction and neutron backscattering”, IEEE Nuclear Science Symposium Conference Record, 406-409, (2001).
  • [9] Zeng Y.Q. and Liu Q.H., “Acoustic detection of buried objects in 3-D fluid saturated porous media: Numerical modeling”, IEEE Transactions on Geoscience and Remote Sensing, 39(6), 1165-1173, (2001).
  • [10] Chu P.C., Cornelius M. and Wegstaff M., “Effect of Suspended Sediment on Acoustic Detection Using the Navy's CASS-GRAB Model”, OCEANS 2005 MTS/IEEE, 1-7, (2005).
  • [11] Zhu X. and Carin, L., “Application of the biorthogonal multiresolution time-domain method to the analysis of elastic-wave interactions with buried targets”, IEEE transactions on geoscience and remote sensing, 42(7), 1502-1511, (2004).
  • [12] Bourgeois J.R. and Smith G.S., “A complete electromagnetic simulation of the separated-aperture sensor for detecting buried land mines”, IEEE Transactions on Antennas and Propagation, 46(10), 1419-1426, (1998).
  • [13] Behboodian A., Scott W.R. and McClellan J.H., “Signal processing of elastic surface waves for localizing buried land mines”, the Thirty-Third Asilomar Conference on Signals, Systems, and Computers, 827-830, (1999).
  • [14] Van Der Merwe A. and Gupta I.J., “A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines”, IEEE transactions on geoscience and remote sensing, 38(6), 2627-2637, (2000).
  • [15] Gao P., Collins L., Garber P. M., Geng N. and Carin L., “Classification of landmine-like metal targets using wideband electromagnetic induction”, IEEE Transactions on Geoscience and Remote Sensing, 38(3), 1352-1361, (2000).
  • [16] Lundberg M., “Reduction of surface clutter in infrared images with visual-wavelength measurements”, IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, 2377-2379, (2000).
  • [17] Jakobsson A., Mossberg M., Rowe M.D. and Smith J.A., “Exploiting temperature dependency in the detection of NQR signals”, IEEE Transactions on Signal Processing, 54(5), 1610-1616, (2006).
  • [18] Scott Jr W.R., Larson G.D. and Martin, J.S., “Simultaneous use of elastic and electromagnetic waves for the detection of buried land mines”, In Detection and Remediation Technologies for Mines and Minelike Targets V, 667-678, (2000).
  • [19] Clark W., Burns B., Sherbondy K., Ralston J. and Rappaport C., “Surface effects on ground penetrating radar imagery”, IEEE Antennas and Propagation Society International Symposium, 404-407, (2005).
  • [20] Schulze S. and van Rienen U., “Computation of land mine signatures using domain decomposition with Lagrange multipliers”, IEEE transactions on magnetics, 43(4), 1189-1192, (2007).
  • [21] Lopez P., Vilarino D.L., Cabello D., Sahli H. and Balsi, M., “CNN-based 3D thermal modeling of the soil for antipersonnel mine detection”, In Cellular Neural Networks And Their Applications, 307-314, (2002).
  • [22] Vanier P.E., Forman L., Hunter S.J., Harris E.J. and Smith, G.C., “Thermal neutron backscatter imaging”, In IEEE Symposium Conference Record Nuclear Science, 201-205, (2004).
  • [23] Sheinker A., Frumkis L., Ginzburg B., Salomonski N. and Kaplan B.Z., “Magnetic anomaly detection using a three-axis magnetometer”, IEEE Transactions on Magnetics, 45(1), 160-167, (2009).
  • [24] Yılmaz C., Sönmez Y., Kahraman H.T., Soyler S. and Güvenç U., “Developing of decision support system for land mine classification by meta-heuristic classifier”, In 2016 International Symposium on Inovations in Intelligent SysTems and Applications (INISTA), 1-5, (2016).
  • [25] Mori K., “Detection of magnetic anomaly signal by applying adjustable weight functions”, IEEE transactions on magnetics, 26(2), 1083-1087, (1990).
  • [26] Clem T.R., Overway D.J., Purpura J.W., Bono J.T., Koch R.H., Rozen J.R. and Mohling R.A., “High-T/sub c/SQUID gradiometer for mobile magnetic anomaly detection”, IEEE transactions on applied superconductivity, 11(1), 871-875, (2001).
  • [27] Tobely T.E. and Salem A., “Position detection of unexploded ordnance from airborne magnetic anomaly data using 3-D self organized feature map”, The Fifth IEEE International Symposium on Signal Processing and Information Technology, 322-327, (2005).
  • [28] Kosmas K. and Hristoforou E., “The effect of magnetic anomaly detection technique in eddy current non-destructive testing”, International Journal of Applied Electromagnetics and Mechanics, 319-324, (2007).
  • [29] Söyler, S., Kurt, E., & Dağ, O., “Optimization of the magnetic anomaly signals from a new land mine detection device”. Recent Researches in Applications of Electrical and Computer Engineering, 178-183, (2007).
  • [30] Suiçmez Ç, “Mayın dedektörü prototip tasarımı”, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, (2020).
  • [31] Ripka P., “Advances in fluxgate sensors”, Sensors and Actuators A: Physical, 106(1-3), 8-14, (2003).
  • [32] Butta M., “Orthogonal fluxgate magnetometers”, In High Sensitivity Magnetometers, 63-102, (2017).

Manyetik Anomali Yöntemi Kullanılarak Düşük Maliyetli Mayın Dedektörü Tasarımı

Year 2022, Volume: 25 Issue: 4, 1729 - 1740, 16.12.2022
https://doi.org/10.2339/politeknik.1080410

Abstract

Gömülü mayınlar, dünyanın her yerindeki insanlar ve hayvanlar için büyük tehlikeler oluşturuyor, bu da her yıl binlerce insanın gömülü mayınlardan ölmesi anlamına geliyor. Bu mayınların insanlara zarar vermeden tespit edilip imha edilmesi önemli bir konudur. Günümüzde bu kara mayınları Yer Etkili Radar, Elektromanyetik indüksiyon, Kızılötesi ve Nükleer Dört Kutuplu Rezonans gibi farklı yöntemlerle tespit edilmekte ve bu yöntemlerin çoğunda genellikle aktif sensörler kullanılmaktadır. Aktif sensör tabanlı kara mayını dedektörleri genellikle performans nedenleriyle kullanılsa da, iletilen ve yansıyan sinyallerle çalıştıkları için kasıtsız kara mayını patlamalarına neden olabilirler. Öte yandan, tasarım kriterlerine bağlı olarak pasif sensör tabanlı kara mayını dedektörlerinde daha iyi performans gösterebilecek böyle bir engel yoktur. Bu nedenle bu çalışmada manyetik anomali yöntemi ile pasif sensör içeren bir prototip tasarımı geliştirilmiş ve gösterilmiştir. Bu dedektörün performans analizi için gerçek mayınlar kullanılmış ve tasarlanan sistem farklı toprak tiplerinde farklı mesafe değerleri ile test edilmiştir. Elde edilen sonuçlar, üretilen prototipin farklı tipteki mayınları başarıyla tespit ettiğini, hafifliğiyle iddialı olduğunu ve piliyle sadece 1750 gramlık hassasiyet sağladığını, kullanım kolaylığı ve düşük maliyet gibi avantajların yanında hassasiyet sağladığını gösteriyor. Ayrıca manyetik anomaliye dayalı ilk el mayın dedektörü olma özelliğini de göstermektedir.

References

  • [1] Dyana A., Rao C.S. and Kuloor R., “3D Segmentation of ground penetrating radar data for landmine detection”, IEEE 14th International Conference on Ground Penetrating Radar (GPR), 858-863, (2012).
  • [2] Tanaka R. and Sato M., “A GPR system using a broadband passive optical sensor for land mine detection”, the Tenth International Conference on Grounds Penetrating Radar, 171-174, (2004).
  • [3] Budko N.V., Remis R.F. and van Den Berg P.M., “Advances in GPR data processing for antipersonnel landmine detection”, IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, 19-22, (2000).
  • [4] Cho S.J., Tanaka R. and Sato M., “Bistatic GPR by using an optical electric field sensor”, IEEE International Geoscience and Remote Sensing Symposium, 1-4, (2005).
  • [5] Ho K.C. and Gader P.D., “A linear prediction land mine detection algorithm for hand held ground penetrating radar”, IEEE transactions on geoscience and remote sensing, 40(6), 1374-1384, (2002).
  • [6] Cioni R., Sensani S., Bettini G., “Miniati M. and Moschini, M., A new general purpose 1300 MHz radar sensor suitable for detection of mines”, Second International Conference on Detection of Abandoned Land Mines, 55 – 59, (1998).
  • [7] Yan-guang, Y., Qian, S., and Zhi-min, Z., “A Novel Method of Landmines Detection Based on Improved SVM”, 8th international Conference on Signal Processing, (2006).
  • [8] Datema C.P., van der Schoor L.A., Bom, V.R., and van Ejjk C.W.E., “A portable landmine detector based on the combination of electromagnetic induction and neutron backscattering”, IEEE Nuclear Science Symposium Conference Record, 406-409, (2001).
  • [9] Zeng Y.Q. and Liu Q.H., “Acoustic detection of buried objects in 3-D fluid saturated porous media: Numerical modeling”, IEEE Transactions on Geoscience and Remote Sensing, 39(6), 1165-1173, (2001).
  • [10] Chu P.C., Cornelius M. and Wegstaff M., “Effect of Suspended Sediment on Acoustic Detection Using the Navy's CASS-GRAB Model”, OCEANS 2005 MTS/IEEE, 1-7, (2005).
  • [11] Zhu X. and Carin, L., “Application of the biorthogonal multiresolution time-domain method to the analysis of elastic-wave interactions with buried targets”, IEEE transactions on geoscience and remote sensing, 42(7), 1502-1511, (2004).
  • [12] Bourgeois J.R. and Smith G.S., “A complete electromagnetic simulation of the separated-aperture sensor for detecting buried land mines”, IEEE Transactions on Antennas and Propagation, 46(10), 1419-1426, (1998).
  • [13] Behboodian A., Scott W.R. and McClellan J.H., “Signal processing of elastic surface waves for localizing buried land mines”, the Thirty-Third Asilomar Conference on Signals, Systems, and Computers, 827-830, (1999).
  • [14] Van Der Merwe A. and Gupta I.J., “A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines”, IEEE transactions on geoscience and remote sensing, 38(6), 2627-2637, (2000).
  • [15] Gao P., Collins L., Garber P. M., Geng N. and Carin L., “Classification of landmine-like metal targets using wideband electromagnetic induction”, IEEE Transactions on Geoscience and Remote Sensing, 38(3), 1352-1361, (2000).
  • [16] Lundberg M., “Reduction of surface clutter in infrared images with visual-wavelength measurements”, IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, 2377-2379, (2000).
  • [17] Jakobsson A., Mossberg M., Rowe M.D. and Smith J.A., “Exploiting temperature dependency in the detection of NQR signals”, IEEE Transactions on Signal Processing, 54(5), 1610-1616, (2006).
  • [18] Scott Jr W.R., Larson G.D. and Martin, J.S., “Simultaneous use of elastic and electromagnetic waves for the detection of buried land mines”, In Detection and Remediation Technologies for Mines and Minelike Targets V, 667-678, (2000).
  • [19] Clark W., Burns B., Sherbondy K., Ralston J. and Rappaport C., “Surface effects on ground penetrating radar imagery”, IEEE Antennas and Propagation Society International Symposium, 404-407, (2005).
  • [20] Schulze S. and van Rienen U., “Computation of land mine signatures using domain decomposition with Lagrange multipliers”, IEEE transactions on magnetics, 43(4), 1189-1192, (2007).
  • [21] Lopez P., Vilarino D.L., Cabello D., Sahli H. and Balsi, M., “CNN-based 3D thermal modeling of the soil for antipersonnel mine detection”, In Cellular Neural Networks And Their Applications, 307-314, (2002).
  • [22] Vanier P.E., Forman L., Hunter S.J., Harris E.J. and Smith, G.C., “Thermal neutron backscatter imaging”, In IEEE Symposium Conference Record Nuclear Science, 201-205, (2004).
  • [23] Sheinker A., Frumkis L., Ginzburg B., Salomonski N. and Kaplan B.Z., “Magnetic anomaly detection using a three-axis magnetometer”, IEEE Transactions on Magnetics, 45(1), 160-167, (2009).
  • [24] Yılmaz C., Sönmez Y., Kahraman H.T., Soyler S. and Güvenç U., “Developing of decision support system for land mine classification by meta-heuristic classifier”, In 2016 International Symposium on Inovations in Intelligent SysTems and Applications (INISTA), 1-5, (2016).
  • [25] Mori K., “Detection of magnetic anomaly signal by applying adjustable weight functions”, IEEE transactions on magnetics, 26(2), 1083-1087, (1990).
  • [26] Clem T.R., Overway D.J., Purpura J.W., Bono J.T., Koch R.H., Rozen J.R. and Mohling R.A., “High-T/sub c/SQUID gradiometer for mobile magnetic anomaly detection”, IEEE transactions on applied superconductivity, 11(1), 871-875, (2001).
  • [27] Tobely T.E. and Salem A., “Position detection of unexploded ordnance from airborne magnetic anomaly data using 3-D self organized feature map”, The Fifth IEEE International Symposium on Signal Processing and Information Technology, 322-327, (2005).
  • [28] Kosmas K. and Hristoforou E., “The effect of magnetic anomaly detection technique in eddy current non-destructive testing”, International Journal of Applied Electromagnetics and Mechanics, 319-324, (2007).
  • [29] Söyler, S., Kurt, E., & Dağ, O., “Optimization of the magnetic anomaly signals from a new land mine detection device”. Recent Researches in Applications of Electrical and Computer Engineering, 178-183, (2007).
  • [30] Suiçmez Ç, “Mayın dedektörü prototip tasarımı”, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, (2020).
  • [31] Ripka P., “Advances in fluxgate sensors”, Sensors and Actuators A: Physical, 106(1-3), 8-14, (2003).
  • [32] Butta M., “Orthogonal fluxgate magnetometers”, In High Sensitivity Magnetometers, 63-102, (2017).
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Fatih Işık 0000-0003-3064-7131

Çağrı Suiçmez 0000-0002-9709-2276

Cemal Yılmaz 0000-0003-2053-052X

Publication Date December 16, 2022
Submission Date February 28, 2022
Published in Issue Year 2022 Volume: 25 Issue: 4

Cite

APA Işık, M. F., Suiçmez, Ç., & Yılmaz, C. (2022). Low-Cost Mine Detector Design Using Magnetic Anomaly Method. Politeknik Dergisi, 25(4), 1729-1740. https://doi.org/10.2339/politeknik.1080410
AMA Işık MF, Suiçmez Ç, Yılmaz C. Low-Cost Mine Detector Design Using Magnetic Anomaly Method. Politeknik Dergisi. December 2022;25(4):1729-1740. doi:10.2339/politeknik.1080410
Chicago Işık, Mehmet Fatih, Çağrı Suiçmez, and Cemal Yılmaz. “Low-Cost Mine Detector Design Using Magnetic Anomaly Method”. Politeknik Dergisi 25, no. 4 (December 2022): 1729-40. https://doi.org/10.2339/politeknik.1080410.
EndNote Işık MF, Suiçmez Ç, Yılmaz C (December 1, 2022) Low-Cost Mine Detector Design Using Magnetic Anomaly Method. Politeknik Dergisi 25 4 1729–1740.
IEEE M. F. Işık, Ç. Suiçmez, and C. Yılmaz, “Low-Cost Mine Detector Design Using Magnetic Anomaly Method”, Politeknik Dergisi, vol. 25, no. 4, pp. 1729–1740, 2022, doi: 10.2339/politeknik.1080410.
ISNAD Işık, Mehmet Fatih et al. “Low-Cost Mine Detector Design Using Magnetic Anomaly Method”. Politeknik Dergisi 25/4 (December 2022), 1729-1740. https://doi.org/10.2339/politeknik.1080410.
JAMA Işık MF, Suiçmez Ç, Yılmaz C. Low-Cost Mine Detector Design Using Magnetic Anomaly Method. Politeknik Dergisi. 2022;25:1729–1740.
MLA Işık, Mehmet Fatih et al. “Low-Cost Mine Detector Design Using Magnetic Anomaly Method”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1729-40, doi:10.2339/politeknik.1080410.
Vancouver Işık MF, Suiçmez Ç, Yılmaz C. Low-Cost Mine Detector Design Using Magnetic Anomaly Method. Politeknik Dergisi. 2022;25(4):1729-40.