Skip to main content
Log in

Effects of estuarine organic matter biogeochemistry on the bioaccumulation of PAHs by two epibenthic species

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbon (PAH) biota-sediment accumulation factors (BSAF) were quantified in sediments from two sites in southeastern Louisiana in a 14 d microcosm study usingPalaemonetes pugio, andRangia cuneata and two radiolabeled PAHs, phenanthrene and benzo[a]pyrene (b[a]p). For both PAHs studied, mean BSAFs were significantly higher (p<0.0001) in both organisms in sediments from Bayou Trepagnier, (BSAF=0.628 g OC g TLE−1), a brackish swamp, compared to Pass Fourchon (0.065 g OC g TLE−1), a coastal salt marsh. In order to explain observed patterns in BSAFs, organic carbon-normalized PAH distribution coefficients between the sediment and freely dissolved phases (KOC)OBS were determined as well as the various geochemical variables of particulate and dissolved organic matter (POM and DOM, respectively). These included analyses of particle surface area, total organic carbon (TOC), carbon to nitrogen ratios (C∶N), and dissolved organic carbon (DOC). Bayou Trepagnier was higher in surface area, TOC, C∶N, as well as DOC suggesting that the difference in BSAFs may be attributed to compositional differences in POM and DOM between sites. We can not exclude the possibility that other factors (such as differences in organism behavior resulting from contrasting sediment characteristics) were responsible for BSAFs varying between the two sites. Phenanthrene BSAFs were typically higher than b[a]p BSAFs, suggesting contaminants were limited in their desorption from sediment particles as a function of PAH molecular weight. Mean BSAFs for both PAHs were higher on Day 7 than on Day 14. The reason for this decrease is unclear, but did not appear to be due to organisms becoming increasingly stressed in the microcosms. Visual observations indicated that animals remained feeding while no decreases in organism total lipid levels were detected. The trends in BSAFs between sites and over the time course of this experiment suggest that contaminant bioaccumulation in estuarine systems should not be considered to be an equilibrium process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adams, W. J. 1987. Bioavailability of neutral lipophilic organic chemicals contained in sediments: A review, p. 219–244.In K. L. Dickson, A. W. Maki, and W. A. Brungs (eds.), Fate and Effects of Sediment-Bound Chemicals in Aquatic Systems. Pergamon Press, New York.

    Google Scholar 

  • Baumard, P., H. Budzinski, P. Garrigues, H. Dizer, andP. D. Hansen. 1999. Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: Occurrence, bioavailability, and seasonal variations.Marine Environmental Research 47:17–47.

    Article  CAS  Google Scholar 

  • Bligh, E. G. andW. J. Dyer. 1959. A rapid method of total lipid extraction and purification.Canadian Journal of Biochemical Physiology 37:911–917.

    CAS  Google Scholar 

  • Burgess, R. M. andR. A. McKinney. 1999. Importance of interstitial, overlying water, and whole sediment exposures to bioaccumulation by marine bivalves.Environmental Pollution 104:373–382.

    Article  CAS  Google Scholar 

  • Carman, K. R., J. C. Means, andS. Pomarico. 1996. Response of sedimentary bacteria in a Louisiana salt marsh to contamination by diesel fuel.A quatic Microbial Ecology 10:231–241.

    Article  Google Scholar 

  • Connell, D. 1997. Basic Concepts of Environmental Chemistry. Lewis Publishing, Boca Raton, Florida.

    Google Scholar 

  • Dickhut, R. M. andK. L. Gustafson. 1995. Atmospheric inputs of selected polycyclic aromatic hydrocarbons and polychlorinated biphenyls to southern Chesapeake Bay.Marine Pollution Bulletin 30:385–396.

    Article  CAS  Google Scholar 

  • DiToro, D. M., C. S. Zarba, D. J. Hansen, W. J. Berry, R. C. Swartz, C. E. Cowan, S. P. Pavlou, H. E. Allen, N. A. Thomas, andP. R. Paquin. 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning.Environmental Toxicology and Chemistry 10:1541–1583.

    Article  CAS  Google Scholar 

  • Flowers, G. C., J. N. Suhayda, J. W. Clymire, G. L. McPherson, L. V. Koplitz, andM. A. Poirrier. 1998. Impact of industrial effluent diversion on Bayou Trepagnier, Louisiana.Environmental and Engineering Geoscience 4:77–91.

    Google Scholar 

  • Freidig, A. P., E. A. Garicano, F. J. M. Busser, andJ. L. M. Hermens. 1998. Estimating impact of humic acid on bioavailability and bioaccumulation of hydrophobic chemicals in guppies using kinetic solid-phase extraction.Environmental Toxicology and Chemistry 17:998–1004.

    Article  CAS  Google Scholar 

  • Gauthier, T. D., W. R. Seitz, andC. Grant. 1987. Effects of structural and compositional variations of dissolved humic materials on pyrene KOC values.Environmental Science and Technology 21:243–248.

    Article  CAS  Google Scholar 

  • Gelboin, H. 1980. Benzo [a] pyrene metabolism, activation, and carcinogenesis: Role and regulation of mixed function oxidases and related enzymes.Physiological Reviews 60:1107–1166.

    CAS  Google Scholar 

  • Green, S. A. andN. V. Blough. 1994. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters.Limnology and Oceanography 39:1903–1916.

    Article  CAS  Google Scholar 

  • Gregg, S. J. andK. S. W. Sing. 1982. Adsorption, Surface Area, and Porosity. Academic Press, New York.

    Google Scholar 

  • Gunnarsson, J. S., K. Hollertz, andR. Rosenberg. 1999. Effects of organic enrichment and burrowing activity of the polychaeteNereis diversicolor on the fate of tetrachlorobiphenyl in marine sediments.Environmental Toxicology and Chemistry 18:1149–1156.

    Article  CAS  Google Scholar 

  • Haitzer, M., S. Hoss, W. Traunspurger, andC. Steinberg. 1998. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms: A review.Chemosphere 37:1335–1362.

    Article  CAS  Google Scholar 

  • Harkey, G. A., M. J. Lydy, J. Kukkonen, andP. Landrum. 1994. Feeding selectivity and assimilation of PAH and PCB inDiporeia spp.Environmental Toxicology and Chemistry 13:1445–1455.

    Article  CAS  Google Scholar 

  • James, M. O. 1989. Biotransformation and disposition of PAH in aquatic invertebrates, p. 69–91.In U. Varanasi (ed.), Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Knezovich, J. P., F. L. Harrison, andR. G. Wilhelm. 1987. The bioavailability of sediment-sorbed organic chemicals: A review.Water, Air, and Soil Pollution 32:233–245.

    Article  CAS  Google Scholar 

  • Kukkonen, J. andP. F. Landrum. 1994. Toxicokinetics and toxicity of sediment-associated pyrene toLumbriculus variegatus (Oligochaeta).Environmental Toxicology and Chemistry 13:1457–1468.

    Article  CAS  Google Scholar 

  • Kukkonen, J. andA. Oikari. 1991. Bioavailability of organic pollutants in boreal waters with varying levels of dissolved organic material.Water Research 25:455–463.

    Article  CAS  Google Scholar 

  • Landrum, P. F.. 1989. Bioavailability and toxicokinetics of polycyclic aromatic hydrocarbons sorbed to sediments for the amphipodPontoporeia hoyi.Environmental Science and Technology 23:588–595.

    Article  CAS  Google Scholar 

  • Landrum, P. F., M. D. Reinhold, S. R. Nihart, andB. J. Eadie. 1985. Predicting the bioavailability of organic xenobiotics toPontoporeia hoyi in the presence of humic and fulvic materials and natural dissolved organic matter.Environmental Toxicology and Chemistry 4:459–467.

    Article  CAS  Google Scholar 

  • Lay, P. W. 1996. Demersal predator exposure to toxic organic contaminants: Direct effects of macrofauna in trophic transfer. Ph.D. Dissertation, Virginia Institute of Marine Science, School of Marine Science, College of William and Mary. Gloucester Point, Virginia.

    Google Scholar 

  • Leppanen, M. T. andJ. V. K. Kukkonen. 1998. Relative importance of ingested sediment and porewater as bioaccumulation routes for pyrene to oligochaete (Lumbriculus variegatus, Miller).Environmental Science and Technology 32:1503–1508.

    Article  Google Scholar 

  • Li, T. 1996. Lipid class composition of oysters,Crassostrea virginica, exposed to sediment-associated PAHs. M.S. Thesis, Virginia Institute of Marine Science, School of Marine Science, College of William and Mary. Gloucester Point, Virginia.

    Google Scholar 

  • Madureira, M. J., A. M. Picado, A. M. Ferriera, E. Mendonca, Y. Le Gal, andC. Vale. 1993. PCB contamination in the oysterCrassostrea angulata: Effects on lipids and adenylic energetic change.The Science of the Total Environment Supplement 1993:599–605.

    Article  Google Scholar 

  • Maruya, K. A. andR. F. Lee. 1998. Biota-sediment accumulation and trophic transfer factors for extremely hydrophobic polychlorinated biphenyls.Environmental Toxicology and Chemistry 17:2463–2469.

    Article  Google Scholar 

  • Maruya, K. A., R. A. Risebrough, andA. J. Horne. 1997. The bioaccumulation of polynuclear aromatic hydrocarbons by benthic invertebrates in an intertidal marsh.Environmental Toxicology and Chemistry 16:1087–1097.

    Article  CAS  Google Scholar 

  • Mayer, L. 1994. Surface area control of organic carbon accumulation in continental shelf sediments.Geochimica et Cosmochimica Acta 58:1271–1284.

    Article  CAS  Google Scholar 

  • Mayer, L., Z. Chen, R. Findlay, J. Fang, S. Sampson, L. Self, P. Jumars, C. Quetel, andO. Donard. 1996. Bioavailability of sedimentary contaminants subject to deposit-feeder digestion.Environmental Science and Technology 30:2641–2645.

    Article  Google Scholar 

  • McCarthy, J. F., L. E. Roberson, andL. W. Burrus. 1989. Association of benzo[a]pyrene with dissolved organic matter: Prediction of KDOM from structural and chemical properties of the organic matter.Chemosphere 19:1911–1920.

    Article  CAS  Google Scholar 

  • McGroddy, S. E. andJ. W. Farrington. 1995. Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston Harbor, Massachusetts.Environmental Science and Technology 29:1542–1550.

    Article  CAS  Google Scholar 

  • McMurthy, M. J., D. J. Rapport, andK. E. Chau. 1983. Substrate selection by tubificid oligochaetes.Canadian Journal of Aquatic Sciences 40:1639–1646.

    Google Scholar 

  • Mitra, S., R. M. Dickhut, S. A. Kuehl, andK. L. Kimbrough. 1999. Polycyclic aromatic hydrocarbon (PAH) source, sediment deposition patterns, and particle geochemistry as factors influencing PAH distribution coefficients in sediments of the Elizabeth River, VA, USA.Marine Chemistry 66:113–127.

    Article  CAS  Google Scholar 

  • National Research Council. 1983. Polycyclic Aromatic Hydrocarbons: Evaluation of Sources and Effects. National Academy Press, Washington, D.C.

    Google Scholar 

  • Neff, J. M. andJ. W. Anderson. 1981. Response of Marine Animals to Petroleum and Specific Petroleum Hydrocarbons. Applied Science Publishers Ltd, London.

    Google Scholar 

  • Rabalais, N. N., B. A. McKee, D. J. Reed, andJ. C. Means. 1991. Fate and Effects of Nearshore Discharges of OCS Produced Waters, Volume III. Appendices. OCS Study/MMS 91-0006. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico, OCS Regional Office, New Orleans, Louisiana.

    Google Scholar 

  • Rutherford, D. W., C. T. Chiou, andD. Kile. 1992. Influence of soil organic matter composition on the partitioning of organic compounds.Environmental Science and Technology 26:336–340.

    Article  CAS  Google Scholar 

  • Schaffner, L. C., R. M. Dickhut, S. Mitra, P. W. Lay, andC. Brouwer-Reil. 1997. Effects of physical chemistry and bioturbation by estuarine macrofauna on the transport of hydrophobic organic contaminants in the benthos.Environmental Science and Technology 31:3120–3125.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., P. M. Gschwend, andD. M. Imboden. 1993. Environmental Organic Chemistry. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Shiaris, M. P. 1989. Seasonal biotransformation of naphthalene, phenanthrene, and benzo[a]pyrene in surficial estuarine sediments.Applied and Environmental Microbiology 55:1391–1399.

    CAS  Google Scholar 

  • Standley, L. J. 1997. Effect of sedimentary organic matter composition on the partitioning and bioavailability of dieldrin to the oligochaeteLumbriculus variegatus.Environmental Science and Technology 31:2577–2583.

    Article  CAS  Google Scholar 

  • Thomann, R. V. andJ. Komlos. 1999. Model of biota-sediment accumulation factor, for polycyclic aromatic hydrocarbons.Environmental Toxicology and Chemistry 18:1060–1068.

    Article  CAS  Google Scholar 

  • Tracey, G. A. andD. J. Hansen. 1996. Use of biota-sediment accumulation factors to assess similarity of non-ionic organic chemical exposure to benthically-coupled organisms of differing trophic mode.Archives of Environmental Contamination and Toxicology 30:467–475.

    Article  Google Scholar 

  • Weber, Jr.W. J., P. M. McGinley, andL. E. Katz. 1992. A distributed reactivity model for sorption by soils and sediments. 1—Conceptual basis and equilibrium assessments.Environmental Science and Technology 26:1955–1962.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, S., Klerks, P.L., Bianchi, T.S. et al. Effects of estuarine organic matter biogeochemistry on the bioaccumulation of PAHs by two epibenthic species. Estuaries 23, 864–876 (2000). https://doi.org/10.2307/1353003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1353003

Keywords

Navigation