
Improvement and Evaluation of a Function for Tracing the
Diffusion of Classified Information on KVM

Hideaki Moriyama1*, Toshihiro Yamauchi2∗, Masaya Sato3, and Hideo Taniguchi2
1Department of Creative Engineering,

National Institute of Technology, Ariake College, Omuta, Fukuoka 836-8585, Japan
2Graduate School of Natural Science and Technology

Okayama University, Okayama, Okayama 700-8530, Japan
3Faculty of Computer Science and Systems Engineering

Okayama Prefectural University, Soja, Okayama 719-1197, Japan

Received: October 21, 2021; Accepted: January 29, 2022; Published: February 28, 2022

Abstract

The leakage of computerized classified information can cause serious losses for companies and in-
dividuals. In a prior work, we addressed this by providing a function for tracing the diffusion of
classified information in a guest operating system (OS). However, that method was vulnerable to
attack and was tightly coupled to the OS. Hence, in another previous work, we applied the tracing
function using a virtual machine monitor that hooks into system calls that handle classified informa-
tion, allowing us to understand the diffusion path in a more robust and OS-agnostic fashion. How-
ever, as the overhead of the tracing function increases, so does the performance degradation of each
system call. Hence, in the current research, the processing performance of the tracing function is
further analyzed in depth by identifying the processes that cause the large overhead. We find that the
performance overhead generated by outputting the diffusion path log is too burdensome. Therefore,
improvements are implemented, and the effectiveness of the upgraded performance is described. Ul-
timately, the log-output overhead problem is improved.

Keywords: information leak prevention, performance improvement, virtual machine monitor

1 Introduction

As the corpus of computerized information continues to increase, so does the need to handle classified
information on information systems. Notably, the leakage of computerized classified information can
cause serious losses to companies and individuals. Such leakages often occur inadvertently and through
mismanagement. To prevent this, it is important for users and managers to understand the risks associated
with storing and handling classified information. Furthermore, cyberattacks tend to aim directly at the
theft of said information, and the related methods have become increasingly sophisticated. It is therefore
crucial to minimize the damage caused by leaks by immediately detecting the unauthorized transfer of
classified information.

To trace the status of classified information stored in an information system and to manage the cor-
responding resources, we previously proposed an operating system (OS)-based function for tracing the
diffusion of classified information across multiple computers [1, 2]. We also proposed a function that

Journal of Internet Services and Information Security (JISIS), volume: 12, number: 1 (February), pp. 26-43
DOI:10.22667/JISIS.2022.02.28.026

*Corresponding authors: 1National Institute of Technology, Ariake College, 150 Higashihagio-Machi, Omuta Fukuoka 836-
8585, Japan, Tel: +81-(0)944-53-8732, Email: hideaki@ariake-nct.ac.jp; 2Okayama University, 3-1-1 Tsushima-naka,
Kita-ku, Okayama 700-8530, Japan, Email: yamauchi@cs.okayama-u.ac.jp

26

hideaki@ariake-nct.ac.jp
yamauchi@cs.okayama-u.ac.jp

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

visualized this diffusion using a directed graph [3]. The developed functions efficiently identified the
manipulation of classified information to help prevent leakage.

Notably, the original OS-based tracing function could be disabled by an attack on the OS. When
disabled, the tracing function obviously fails to help the victim detect an information leak. Moreover,
any time the OS kernel version was updated, the original tracing function had to be patched. Furthermore,
the function could not be introduced to a closed-source OS (e.g., Windows) because doing so required
modification of the source code.

To resolve these problems, in a consecutive work, we ported the tracing function to a virtual machine
monitor (VMM) [4, 5], which allowed it to be implemented without modifying the OS. Furthermore,
because a VMM is more robust than an OS, it is unlikely that attacks can specifically target this function.
Later, we analyzed the processing performance of the VMM-based tracing function in detail and identi-
fied large-overhead processes, finding that it was difficult to immediately grasp the diffusion path because
the tracing function was required to output the path information to a log at every iteration. Therefore,
the objective of the current research is to improve the VMM-based tracing function and to report on its
evaluation.

The rest of this study is organized as follows. Section 2 presents an overview of the VMM-based
tracing function proposed in [4, 5]. We present the performance analysis results for the VMM-based trac-
ing function in Section 3 and the problem of grasping the potential diffusion of classified information is
presented in Section 4. We describe the improvement in Section 5, and Section 6 presents the evaluation
results. We discuss the related studies in Section 7 and conclude with Section 8.

2 Function for Tracing the Diffusion of Classified Information in a Guest
OS

2.1 Overview of the VMM-based Tracing Function

Here, we explain the VMM-based tracing function proposed in [4, 5], which manages any file or process
that has the potential to diffuse classified information, which involves opening a classified file, reading
its content, communicating with another process, or writing the content to another file. In short, the
diffusion of classified information is caused by the following operations:

1. File operation

2. Inter-process communication

3. Child process creation

A user can always obtain the location of classified information using the list stored in the proposed
VMM. Furthermore, when classified information diffusion is detected, the VMM-based tracing function
records the pathname of the destination file, the inode number, the command name that caused the
diffusion, and the process ID (PID). Therefore, a user can detect information leaks using the above
information and suppress damage, even if some classified information is compromised.

Figure 1 shows an overview of the VMM-based tracing function, which uses a kernel-based virtual
machine (KVM) and a 64-bit Linux OS with a 3.6.10 kernel as the VMM and the guest OS, respec-
tively [4, 5]. The VMM-based tracing function traces the diffusion of the classified information using
the following process.

1. A user program in the guest OS requests a system call.

27

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

Host OS

H/W

VMM

Tracing

function

Guest OS

Update

Diffusion information

(2)(2-A)

(3)

(4)

User space

Kernel space

(2-B)

Judgment of

system call

(1)

System call

User process

User space

Kernel space

Tracing of classified

information diffusion

Figure 1: Overview of the tracing function

2. The VMM-based tracing function hooks the system call in the guest OS from the VMM. After
identifying the hooked system call, one of the following system-call processing steps is imple-
mented:

(a) If the hooked system call is unrelated to the diffusion of classified information, control is
returned to the guest OS, and the system-call process is continued.

(b) If the hooked system call is related to the diffusion of classified information, the VMM-based
tracing function collects the information needed to trace the diffusion.

3. If the classified information is diffused, the VMM-based tracing function updates the diffusion
information using the information collected in Step 2-(b).

4. Control is returned to the guest OS, and the system-call process is continued.

Considering the above steps, the VMM-based tracing function provides the guest OS with capabilities
that are equivalent to those of the OS-based tracing function without the need to modify the OS source
code.

2.2 Collecting System-call Information with VMM

When a user program in the guest OS requests a system call, the VMM-based tracing function hooks the
call using the hardware breakpoint and collects the relevant information. Figure 2 shows the construc-
tion of system-call hooking process using the hardware breakpoint on the KVM. When a user program
in the guest OS requests a system call, the VMM-based tracing function hooks the system-call entry via
the SYSCALL instruction so that the system-call request can be detected. To hook the SYSCALL in-
struction, the VMM-based tracing function sets the breakpoint address register to the SYSCALL address.
The register then specifies the breakpoint address, with a debug exception being generated when memory
access is implemented for the address. Thus, a debug exception occurs upon executing the SYSCALL

28

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

Guest OS Program

counter

Memory

Processing of

required system call

Debug register

0xc12c7fb5

Setting of DR0 enable flag

…

EFLAGS register

RF

DR0

DR7

…

compare

Debug exception

handler

VMM-based

tracing function

sets EFLAGS.RF

VMM

Figure 2: Construction of system-call hooking process using hardware breakpoint

instruction, and the VMM-based tracing function hooks the SYSCALL instruction with the VMM by
detecting the debug exceptions in the guest OS.

Considering each system call, information concerning the success or failure of the call is returned,
and the details of the file handled by the system call is the return value. It is necessary to collect these
file details to enable the VMM-based tracing function to trace the diffusion of classified information.
Thus, the VMM-based tracing function hooks the system-call exit via the SYSRET instruction making
it possible to obtain the return value corresponding to the system call. To hook the SYSRET instruction,
the VMM-based tracing function sets the breakpoint address register to the SYSRET address. Like the
SYSCALL case above, a debug exception occurs upon execution of the SYSRET instruction. Therefore,
the VMM-based tracing function hooks the SYSRET instruction with the VMM by detecting debug
exceptions in the guest OS.

3 Overhead Analysis

Figure 3 shows the process flow of the VMM-based tracing function, which consists of two sub-flows.
When a user program in the guest OS requests a system call, an exception occurs upon SYSCALL
or SYSRET execution. Thereafter, the VMM-based tracing function judges whether the exception is
a debug exception. If so, the VMM-based tracing function determines whether the instruction at the
breakpoint address register is a SYSCALL or a SYSRET instruction. To identify the hooked system
call and determine whether it is related to the diffusion of the classified information, the VMM-based
tracing function uses a system-call number. Thereafter, the VMM-based tracing function collects the
information (e.g., page table and file descriptor) required for tracing the diffusion for each system call.
Finally, the VMM-based tracing function updates the diffusion information, and control is returned to
the guest OS.

To clarify the process flow of the VMM-based tracing function with a large overhead, we performed a
brief evaluation. The VMM-based tracing function registers the potential leakage of classified processes
and files. Therefore, to evaluate a processing task including these registrations, we measured the execu-
tion time of a cp command, which targeted a classified file. The cp command process includes a read
system call, which involves registration of the potential leakage of a classified process and a write system

29

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

Exception occurrence

SYSRET

SYSCALLJudgment of

SYSCALL or SYSRET

Judgment system call

number

read write

Exception end

SYSCALL

processing

From SYSCALL

processing

Registration of the

process by the PID

Displaying all

registered processes

Obtaining the PID

that issued read

Displaying all

registered files

Obtaining the PID

that issued write

Obtaining the full path

name of the write file

Registration of the file

by the full path name

Other system call

processing

From other system

call processing

Figure 3: Process flow of the tracing function

call. This includes the registration of the potential leakage of a classified file. Considering this evalua-
tion, the VMM-based tracing function determined that classified information diffusion had occurred and
executed the tracing process. We inserted “get timestamp” processes into the VMM-based tracing func-
tion and compared the execution times of the hooking the SYSCALL and SYSRET instructions. Table
1 lists the specifics of the evaluation environment. We evaluated the VMM-based tracing function using
an Intel Xeon CPU E5-2609 (1.7 GHz, 8 CPUs) with a 64-GB memory. The guest OS was allocated one
virtual CPU and 1-GB memory.

We found that the processing times of the VMM-based tracing function when hooking the SYSCALL
and SYSRET instructions were 6.2 and 97.8 µs, respectively. The SYSRET hooking process was larger
because it included determining whether the hooked system call was related to the diffusion of classified
information. This process was implemented for every read and write system call, and it generated an
increasingly large overhead for system-call execution. Hence, it was judged to be necessary to reduce
this overhead as much as possible.

To reduce the large overhead during processing, we analyzed the hook process in detail prior to
the SYSCALL instruction of the VMM-based tracing function and evaluated the execution times of all
processing tasks comprising the VMM-based tracing function. The evaluation environment is similar to
the one described in Table 1. Moreover, as in the previous evaluation, we measured the execution time

30

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

Table 1: Evaluation environment
Host machine
CPU Intel Xeon CPU E5-2609 (1.7 GHz)
Number of Cores 8
Memory 64 GB
OS Fedora 18 (Linux Kernel 3.6.10)
VMM KVM-kmod-3.6
Guest machine
Number of vCPUs 1
Memory 1 GB
OS Fedora 18 (Linux Kernel 3.6.10)

Inspection of read system call (90.1%)

Display of potential leakage of

classified process (89.9%)

(A) read system call

Inspection of write system (87.0%)

Display of potentially leaked

classified files (26.4%)

Construction of full path (37.0%)

Log creation (60.6%)

(B) write system call

Figure 4: Detailed processing time proportions for hooking the SYSRET instruction

of a cp command, which targeted a classified file.
Figure 4 shows the detailed processing time proportions for hooking the SYSRET instruction. Figure

4 (A) shows the processing time proportions for hooking a read system call. Here, 90.1% of the pro-
cessing time was consumed by processing the read system-call inspection, which includes hooking the
read system call until transitioning to the guest OS. It also includes determining whether the file treated
by the read system call is related to the diffusion of classified information. If so, the inspection process
for the read system call collects and registers the information about the user process that requested it
and outputs the results as log data. We analyzed the inspection process, and found that displaying the
potential leakage of a classified process occupied 89.9% of the inspection processing time, caused by the
list of processes being displayed whenever a new process registration occurs.

Figure 4 (B) shows the processing-time proportions for hooking a write system call. Here, 87.0%
of the processing time was consumed by processing the write system call inspection, which includes
hooking the write system call until transitioning to the guest OS. It also includes determining whether

31

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

the file treated by the write system call is related to the diffusion of classified information. If so, the
inspection process for the write system call collects and registers the information about this file and
outputs the results as log data. We analyzed the inspection process and found that log creation occupied
60.6% of the inspection processing time, caused by the file list being displayed whenever a new file
registration occurs. On the other hand, the process to display the list of potentially leaked classified
files occupied 26.4%, and that of full path construction occupied 37.0%, which occurs when a process
potentially involving leakage creates a new file or updates a file via a write system call. All of these types
of overhead all considered excessive.

Therefore, an improved VMM-based tracing function must satisfy the following requirement:

Requirement 1: The processing overhead of the tracing function must be reduced.

4 Grasping the Potential Diffusion of Classified Information

When the administrator of the guest OS or that of the computer confirms the diffusion of classified
information, the following two requirements are necessary:

Requirement 2: The administrator must grasp the list of the managed processes and files from the start
of the tracing function to the present.

Requirement 3: The administrator must grasp the list of the managed processes and files currently
registered.

Considering service execution, by satisfying Requirement 2, the administrator can grasp the classified
information that has been referenced, updated, or newly generated by the service. This will enable
the administrator to determine whether the service is handling the classified information as intended.
Moreover, by satisfying Requirement 3, the administrator can grasp the currently classified information.

The process tracing function output a list of all managed processes that may have potentially leaked
information from the start of tracing to the present for each newly registered process. Similarly, the file
tracing function output a list of all managed files that may have been leaked from the start of tracing to
the present for each newly registered file. Figure 5 illustrates this log. Figure 5 illustrates a log in which
/secret.txt (inode = 266297) is registered as a managed file with the potential to diffuse classified
information. The file was duplicated five times using the cp command. Considering its fifth execution,
the tracing function registered a newly managed process (PID = 777) when the read system call occurred,
and the tracing function output information about the five managed processes (PID = 773, 774, 775, 776,
and 777) as a system log from the start of tracing until the end. Moreover, the tracing function registered
a newly managed file, copy05-secret.txt (inode = 272342), when the write system call occurred, and
the tracing function output information about the six managed files (inode = 266297, 272338, 272339,
272340, 272341, and 272342) as a system log from the start of tracing until the end.

Notably, the tracing function required an editing process based on the log of all diffusions to satisfy
Requirement 2. However, the function could not satisfy Requirement 3 because it did not output the log
when a process or file was no longer being managed.

5 Improvement

To reduce the large overheads and satisfy Requirement 1, we decided to display information only when
necessary. Therefore, we implemented Improvements 1 and 2 as follows:

32

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

trace_file_list[0](Init): ino=266297, name=/secret.txt

trace process PID: 773

trace_process_list: 773

sensitive data is diffused to "root/copy01-secret.txt"

(inode number: 272338) by "cp" (pid: 773)

trace_file_list[0](Init): ino=266297, name=/secret.txt

trace_file_list[1]: ino= 272338, name=root/copy01-secret.txt

trace process PID: 777

trace_process_list: 773, 774, 775, 776, 777

sensitive data is diffused to "root/copy05-secret.txt"

(inode number: 272342) by "cp" (pid: 777)

trace_file_list[0](Init): ino=266297, name=/secret.txt

trace_file_list[1]: ino= 272338, name=root/copy01-secret.txt

trace_file_list[2]: ino= 272339, name=root/copy02-secret.txt

trace_file_list[3]: ino= 272340, name=root/copy03-secret.txt

trace_file_list[4]: ino= 272341, name=root/copy04-secret.txt

trace_file_list[5]: ino= 272342, name=root/copy05-secret.txt

…
…

…
…

cp command log

(1st time)

cp command log

(5th time)

…

Figure 5: Example of the classified information diffusion log

Improvement 1: Instead of the inspection process in a read system call displaying all potential leakages,
it was changed to display a newly registered process only when a new process registration occurs.

Improvement 2: Instead of the inspection process in a write system call displaying all potential leakages
of classified files, it was changed to display a newly registered file only when a new file registration
occurred.

For write system calls, the process of constructing a full pathname also involved a large overhead; how-
ever, we did not change this procedure, because it is needed for tracing diffusion whenever a new file
associated with a potential leakage is registered. Nonetheless, we believe that this information is not
necessary for inspecting diffusion. By introducing a process that obtains the full pathname only when
required by the user, it will be possible to reduce this type of overhead in the future.

Additionally, to satisfy Requirements 2 to 3, we implemented Improvements 3 and 4, respectively,
as follows:

Improvement 3: The tracing function outputs log messages every time a process exits.

Improvement 4: The tracing function outputs log messages every time a file is removed.

In addition to the four improvements listed above, we implemented the following two:

Improvement 5: We introduced a processing function that integrates all classified information logs.

Improvement 6: We employ a processing function that edits all classified information logs.

33

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

…trace_file_list[0](Init): ino=266297, name=/secret.txt

trace process PID: 773

sensitive data is diffused to "root/copy01-secret.txt"

(inode number: 272338) by "cp" (pid: 773)

trace_file_list[1]: ino= 272338, name=root/copy01-secret.txt

exit trace process PID: 773

trace process PID: 777

sensitive data is diffused to "root/copy05-secret.txt"

(inode number: 272342) by "cp" (pid: 777)

trace_file_list[5]: ino= 272342, name=root/copy05-secret.txt

exit trace process PID: 777

…
…

…
…

…

cp command log

(1st time)

cp command log

(5th time)

…

Figure 6: Example of the classified information log of the improved tracing function

Consequently, Improvements 5 and 6 also satisfy Requirements 2 and 3, respectively.
Figure 6 illustrates the classified information log following the implementation of the two new and

existing improvements. Like Figure 5, Figure 6 illustrates a log in which /secret.txt (inode = 266297)
is registered as a managed file, and the file is duplicated five times using the cp command. Considering
the fifth execution of the cp command, the tracing function registers a newly managed process (PID =
777) and outputs only this process information as a system log. Moreover, the tracing function registers
the newly managed file, copy05-secret.txt (inode = 272342), and outputs only this file information
as a system log. When the fifth execution of the cp command is completed, the tracing function also
outputs the finished process (PID = 777) information as a system log leveraging Improvements 3 and 4.

The processing function of Improvement 5 integrates all classified information logs. The processing
function for editing all the logs shown in Improvement 6 is realized by excluding the finished process or
removing file information.

6 Evaluation

6.1 Overview

We implemented the improved method described in Section 3 and evaluated the improvements to the
VMM-based tracing function performance by measuring each of the following three processes:

1. Processing time of the VMM-based tracing function at a cp command:
To measure the processing time of the VMM-based tracing function in the read and write system
calls, we used a cp command, like in the evaluation described in Section 3. We targeted a classified
file in the execution of this program and compared each result. As explained in Section 3, we
inserted a “get timestamp” process in the VMM-based tracing function and compared the execution
times before and after implementing the improvements.

34

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

Original

Improvement

97.6% reduction of display

of potential leakage of

classified process

(A) read system call

(B) write system call

72.1% reduction of

display of potentially

leaked classified files

Original

Improvement

Figure 7: Acceleration effect of improvements: processing times of read and write system calls

2. Processing time of the read and write system calls (overall):
To measure the processing time of read and write system calls, we built a workload program that
obtains all data related to a file using the read system call and writes them to another file using
the write system call. We targeted a classified file and an unclassified file in the execution of this
program and compared each result.

3. Benchmark for accessing files:
To measure the processing time of a benchmark for file access, we used the Flexible I/O Tester
(Fio) benchmark, which measures the processing time using four types of file access patterns:
Random Read, Random Write, Sequential Read, and Sequential Write. We prepared 1,000 files
whose size is 4-kB each and accessed them using a block size of 4-kB. We measured each case in
which the tracing function registered the classified and unmanaged files. Moreover, we measured
each case using both unimproved and improved tracing functions.

6.2 Processing Time of the VMM-based Tracing Function with the cp Command

Figure 7 shows the performance acceleration achieved from the VMM-based tracing function. Consid-
ering Figure 7 (A) and regarding the inspection processing time, the time needed to display the potential
leakage of classified processes was reduced by 97.6% for a read system call. The proportion of process-
ing time needed to display the potential leakage from hooking the read system call to transitioning to the
guest OS dropped to 18.4% of the overall processing time.

Moreover, as shown in Figure 7 (B), considering the inspection processing time, the time needed to
display the potential leakage was reduced by 72.1% for a write system call. The proportion of processing
time needed to display the potential leakage from hooking the write system call to transitioning to the
guest OS dropped to 9.4% of the overall processing time.

From these results, we confirmed that reducing the processing overhead was significant to improved
VMM-based tracing function performance via Improvements 1 and 2, which targeted classified processes

35

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

473.8

160.6

546.6

183.6

460.6

149.0

463.6

182.0

0

100

200

300

400

500

600

read write read write

P
ro

ce
ss

in
g
 t

im
e
(μ
s)

Processing to target
the unmanaged file

Processing to target
the managed file

Original

Improvement

Figure 8: Processing time of the read/write system calls

or files, respectively.

6.3 Processing Time of the Read and Write System Calls (Overall)

We created a 100-kB text file with random alphanumeric characters and measured the execution times
of the read system calls. Figure 8 shows their processing-time improvements. For the evaluation, we
compared processing times before and after the improvements.

Considering the original VMM-based tracing function before improvement, the processing time of
the read system call that targeted a classified file was 546.6 µs. After improvement, it was 463.6 µs, and
the processing time was reduced by 83.0 µs. The processing time of the write system call, which targeted
a classified file, was 183.6 µs in the original VMM-based tracing function. It dropped to 182.0 µs after
improvement, and the processing time reduced by 1.60 µs. Regarding this evaluation, the processing
time in Figure 8 includes read and write system calls that treated 100-kB data and processed the hooking
system call. Although it was measurably improved in this case, the processing time outside the VMM-
based tracing function was exceedingly large, making it difficult to confirm the improvement effect on
the write system call.

The processing time of the read system call, which targeted an unclassified file, was 473.8 µs in
the original VMM-based tracing function. After improvement, it was 460.6 µs, and the processing time
reduced by 13.2µs. The processing time of the write system call, which targeted an unclassified file, was
160.6 µs in the original VMM-based tracing function It dropped to 149.0 µs after improvement, and the
processing time reduced by 11.6 µs. Considering the VMM-based tracing function, which targeted an
unclassified file, the effectiveness of reducing the processing time was insignificant both before and after
improvement. Therefore, we observed that these results do not adequately demonstrate improved effects.
Nevertheless, it showed an error of processing system calls and the hooking process.

Regarding the environment of the original VMM-based tracing function, the processing time of the
read system call, which targeted a classified file, was 546.60 µs, and that of the read system call, which
targeted an unclassified file, was 473.80 µs. The processing time for the classified file was 72.8 µs longer
than that of the unclassified file. On the other hand, regarding the environment of the improvement
VMM-based tracing function, the processing time of the read system call, which targeted a classified
file, was 463.6 µs, and that of the read system call, which targeted an unclassified file, was 460.6 µs.
Therefore, the difference of the processing time in the read system call between targeting a classified
file and targeting an unclassified file was 3.0 µs, which is modest. From these measurement results, we

36

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

0

10

20

30

40

50

60

70

80

90

100

Processing to target

the unmanaged file

Processing to target

the managed file

P
ro

ce
ss

in
g
 t

im
e(

m
s)

0

100

200

300

400

500

600

700

800

900

1000

Processing to target

the unmanaged file

Processing to target

the managed file

P
ro

ce
ss

in
g
 t

im
e(

m
s)

0

10

20

30

40

50

60

70

80

90

100

Processing to target

the unmanaged file

Processing to target

the managed file

P
ro

ce
ss

in
g
 t

im
e(

m
s)

0

100

200

300

400

500

600

700

800

900

1000

Processing to target

the unmanaged file

Processing to target

the managed file

P
ro

ce
ss

in
g
 t

im
e

(m
s)

(A) Results of Random Read (B) Results of Sequential Read

(C) Results of Random Write (D) Results of Sequential Write

Original

Improvement

Original

Improvement

Original

Improvement

Original

Improvement

Figure 9: Processing time using the fio benchmark

confirmed that the effectiveness of reducing the processing overheads was significant in the improved
VMM-based tracing function that targeted the classified file.

Regarding the environment of original VMM-based tracing function, the processing time of the write
system call, which targeted a classified file, was 183.6 µs, and that of an unclassified file was 160.6 µs.
The processing time for the classified file was 23.0 µs longer than that of the unclassified file. On the
other hand, regarding the environment of the improvement VMM-based tracing function, the processing
time of the write system call, which targeted a classified file, was 182.0 µs, and that of the read system
call, which targeted an unclassified file, was 149.0 µs. Therefore, regarding the write system call, the
processing time of the improved tracing function increased to 33.0 µs longer than that of the original
tracing function. From these results, it is difficult to confirm the effect of improvements on the write
system call because the processing time outside the VMM-based tracing function was exceedingly large.

6.4 Benchmark for File Access

The measurement results obtained using the fio benchmark are shown in Figure 9. The measurement
results of the random read are shown in Figure 9 (A). The effectiveness of reducing processing overhead
was not significant in either case. For example, the processing time of the targeted managed file was
approximately 100 ms in the original and approximately 92 ms after improvement. Therefore, after

37

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

improvement, the processing time was reduced by approximately 8 ms.
Additionally, the same characteristic in Figure 9 (A) was observed in Figure 9 (B). The processing

time of the target managed file was approximately 95 ms in the original and 87 ms after improvement.
Therefore, after improvement, the processing time was reduced by approximately 8 ms.

Therefore, considering the read access pattern, the reduction in processing time was less than 10%.
The effectiveness of the improvement was insignificant for both random and sequential access patterns
regardless of whether the trace target files were managed.

The measurement results of the random write are shown in Figure 9 (C). The effectiveness of re-
ducing processing overheads was significant when the tracing function targeted a managed file. For
example, the processing time of the target managed file was approximately 927 ms in the original and
104 ms after improvement. Thus, after improvement, the processing time was reduced by approximately
823 ms. However, the effectiveness of reducing the processing time was insignificant when the tracing
function targeted an unmanaged file. Subsequently, the processing time was approximately 95 ms in the
original and 87 ms after improvement. Therefore, after improvement, the processing time was reduced
by approximately 8 ms.

The same characteristic demonstrated in Figure 9 (C) was observed in the sequential write shown in
Figure 9 (D). The processing time of the target managed file was approximately 938 ms in the original
and 99 ms after improvement. This indicates that, after improvement, the processing time reduced by
approximately 839 ms. The processing time was approximately 97 ms in the original and 88 ms after
improvement. Hence, after improvement, the processing time was reduced by approximately 9 ms.

Considering the write access pattern, the reduction in processing time was approximately 89%, and
the effectiveness of the improvement in targeting the managed file was significant for both random and
sequential writes. Meanwhile, the reduction in processing time was approximately 8–9%, and the effec-
tiveness of the improvement targeting the unmanaged file was insignificant.

Considering these results, the effectiveness of the improvement in the read access pattern for the
managed file was insignificant, and that in the write access pattern was substantial. The effectiveness
of the improvement in the read access pattern appears insignificant, compared with the processing time
in the original and after improvement, because the registration of the managed process occurred once.
However, the effectiveness of the improvement in the write access pattern appears substantial, compared
with the processing time in the original and after improvement, because the registration of the managed
files occurred 1,000 times.

7 Related Work

Table 2 shows a comparison of the proposed method with those of existing works, focusing on the pur-
pose of each approach, the event monitoring technique, the monitoring system implementation location,
and the isolation method. Next, we provide a detailed narrative comparison.

Virtualization technology is widely used for security monitoring [6, 7], and it mainly consists of
in-virtual machine (VM) [6, 8] and out-of-VM [9, 10, 7] approaches. Considering the in-VM approach,
monitoring codes are inserted inside a VM and protected from malicious processes and distrusted kernels
by the hypervisor. In-VM monitoring can quickly collect semantic information; hence, it is utilized for
malware analysis and other security capabilities. Sharif et al. proposed a secure in-VM monitoring
(SIM) method using hardware virtualization [6]. Secure in-VM code runs inside a distrusted VM to
monitor its interior; however, the code and private data are placed in separate hypervisor-protected guest
address spaces to provide an efficient monitoring method. Nonetheless, it requires monitor insertion into
a guest VM. SecPod uses a similar approach to protect monitor codes inside a VM [8]. Although SIM
uses shadow page tables for code protection, SecPod uses both shadow and nested page tables to reduce

38

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

Table 2: Comparison of the proposed method with those of existing works
Method Purpose Monitoring events Implementation place Isolation

Proposed method

Monitoring guest VM's system call and

tracing the diffusion of classified

information

System call
On KVM's VMM (outside of

the monitored VM)

Monitoring system is isolated

from target VM

Sharif et al. [12]
Secure VM monitoring by using memory

protection and virtualization
System call Inside of the monitored VM

Monitoring system is

implemented inside a target VM

Zhan et al. [18]
Monitoring by SecPod: a framework for

virtualization-based security systems
Paging operation Inside of the monitored VM

Monitoring system is

implemented inside a target VM

Pfoh et al. [11]
Monitoring by Nitro: for hardware-based

system call tracing and monitoring
System call

On KVM's hypervisor (outside

of the monitored VM)

Monitoring system is isolated

from target VM

Garfinkel et al. [5]
Monitoring by a system of a VMI-based

architecture for intrusion detection
The hardware state

On VMI IDS (outside of the

monitored VM)

Monitoring system is isolated

from target VM

Srinivasan et al. [14]

Monitoring by a process out-grafting:

out-of-VM and fine-grained process

execution monitoring system

Fine-grained process

execution

On Security VM (outside of

the monitored VM)

Monitoring system is isolated

from target VM

Hizver et al. [6]
Monitoring by a real-time kernel data

structure monitoring (RTKDSM) system
Process operation

On Monitoring VM and inside

hypervisor (outside of the

monitored VM)

Monitoring system is isolated

from target VM

Shi et al. [13]
Monitoring all hypercalls belongs to the

VMs of one hypervisor
Hypercall

On Dom0 and hypervisor of

Xen (outsid of the monitored

VM)

Monitoring system is isolated

from target VM

Zhan et al. [18]
Monitoring by a page-level dynamic

VMI-based kernel CFI checking system
Kernel function

On Privileged VM (outside of

the monitored VM)

Monitoring system is isolated

from target VM

Jia et al. [9]

Monitoring by T-VMI which eliminates

the risk of privacy leakage from VMM

by using TrustZone

Event-trigger
On trusted firmware (outside

of the monitored VM)

Monitoring system is isolated

from target VM

Enck et al. [1]
Monitoring by TaintDroid, dynamic taint

tracking and analysis system

Multiple information-flow of

sensitive data

Inside of the monitored OS

(Android)

Monitoring system is

implemented inside target kernel

Ji et al. [8]
Monitoring by a system to investigate

attacks using information flow tracking
System call Inside of the monitored OS

Monitoring system is

implemented inside target kernel

Huseynov et al. [7]

Checking virtual machines for the

presence of keyloggers using artificial

immune system (AIS) based technology

Events (interrupts, system

calls, memory writes, network

activities, etc.)

Outside of the monitored VM
Monitoring system is isolated

from target VM

Taubmann et al. [16]
VM monitoring using VMI method with

less performance degradation
System call

On Monitoring VM and inside

hypervisor (outside of the

monitored VM)

Monitoring system is isolated

from target VM

unnecessary world switches during virtualization, and nested page tables are used for protection. Both
methods employ similar concepts for VM interior monitoring and securing the monitor codes from a
distrusted kernel. In contrast, the VMM-based tracing function does not require monitor insertion; thus,
it can be adapted to various OSs in a non-intrusive manner.

Nitro [7] is a fast system-call tracing mechanism that addresses the latter problem of out-of-VM
monitoring. Monitoring information for which the location and format are undefined by hardware spec-
ifications necessitates a large overheads. Therefore, Nitro collects only guest register values for greater
efficiency. If a user requires more information, Nitro acquires it. The performance improvement method
for the VMM-based tracing function reported herein utilizes a similar approach. By acquiring infor-
mation only when necessary, our improvement technique can reduce the overhead caused by diffusion
tracing.

Hizver et al. proposed a method for improving VM monitoring performance [11, 12, 13]. To re-
duce the performance degradation on a VM introspection (VMI) method, Hizver et al. proposed another
method for monitoring at regular intervals instead of constantly. However, it has been shown that missed
detection can occur when monitoring at regular intervals. Similarly, Shi et al. achieved performance im-
provements by setting the extended page tables (EPT) protection for monitoring at regular intervals [12].

39

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

Considering our proposed method, missed detection does not occur because the monitoring of the dif-
fusion of classified information is constant. Additionally, we achieved performance improvements by
reducing the output log file. We did not compare performance evaluations in this case because these
methods differ from ours, considering the purpose of the system and the target environment.

Zhan et al. proposed a method for fine-grained control-flow integrity for VM verification, satisfying
the performance requirements of actual operations [13]. Their method recommends code execution
detection in page units compared with the correct processing flow, which detects a branch to prevent the
VMM from being called frequently and to suppress performance degradation. However, the detection
accuracy of this method is lower than that of branch detection. Considering our proposed method, we
avoided reducing the importance of classified information during the improvement.

Jia et al. proposed a method to guarantee the integrity of VMM program code and the validity of
data because the VMM used by the VMI and host OS can be damaged by an attack in a cloud environ-
ment [14]. Their proposed method was based on the premise of VMM safety.

Enck et al. proposed a system for information-flow tracking on Android [15] that tracks information
flows via taint analysis using modified libraries. Our proposed method does not require the modification
of programs running on VMs.

Ji et al. proposed a system that investigates attacks using information flow tracking [16], achiev-
ing low overhead by recording system-call events and accurately monitoring using on-demand process
replay. Although the proposed method collects all the information required for tracing the diffusion of
classified information, suppressing the log output reduces unnecessary performance degradations. More-
over, owing to the on-demand log display function, the system manager can analyze diffusion using log
information.

Huseynov et al. mentioned that, to detect attacks on a kernel layer, such as a keylogger, it is nec-
essary to inspect the kernel integrity [17]. They proposed a secure environment by constantly checking
VMs using artificial immune-system-based technology. Our proposed method cannot detect keylogger
processing because it aims to trace the diffusion of classified information from registered files.

Owing to the VMI VM monitoring method that causes large performance degradation, Taubmann
et al. proposed a VMI monitoring method that reduces performance overhead [18], which was caused
by monitoring various events. Therefore, it is possible to reduce performance overheads by filtering out
unnecessary events. On the other hand, the proposed method of this work hooks all system calls of the
target VM, but the VMM-based tracing function eliminates the monitoring of unnecessary system calls
by filtering the system-call number. Therefore, the proposed method reduces performance overhead.

8 Conclusion

In this paper, we proposed an improved VMM-based tracing function and reported its performance eval-
uation. First, we analyzed the process flow of the VMM-based tracing function, and conducted a brief
evaluation based on the use of the cp command. Hence, we found a large processing time for hooking the
SYSRET instruction, indicating large overhead processing. Subsequently, we evaluated the processing
of the VMM-based tracing function in detail and determined that the processing time for the display of
a potential leakage of a classified process occupied 89.9% of the processing time from hooking a read
system call until transitioning to the guest OS. A classified file occupies 26.4% of the processing time
for hooking a write system call until transitioning to the guest OS. We clarified the problems regarding
the processing and outputting of a log. To resolve the problem of performance overhead, we decided to
acquire or display information only when necessary.

On the contrary, to enable the administrator of the guest OS or the computer to determine whether
the service is handling the classified information as intended, the administrator must grasp the list of

40

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

managed processes and files from the start of the tracing function to the present and those that are
currently registered.

Thus, we implemented and evaluated an improvement method. We measured the performance of
each of the three processing methods. First, we evaluated the processing time of the VMM-based tracing
function by applying the cp command. We found that the proportion of processing time used to display
the potential leakage of classified processes was 18.4% of the processing time by hooking a read system
call until transitioning to the guest OS. Moreover, the classified files became 9.4% of the processing time,
from hooking a write system call until transitioning to the guest OS. Second, we evaluated the processing
time of read and write system calls. The processing time of the read system call, which targeted a 100-
kB classified file, was 546.6 µs in the original VMM-based tracing function and 463.6 µs after the
improvement. Hence, the processing time was reduced by 83.0 µs. Similar to the evaluation of the read
system call, the processing time of the write system call was reduced by 1.60 µs after the improvement.
Nonetheless, there was almost no difference between the original and improved performance, considering
the scale of overhead processing. Therefore, we found that the effect of the improvement on the read
system call, which targeted a classified file, was especially high. Third, we evaluated the processing
time of benchmark file access. The reduction in processing time was approximately 89%, considering
the write access pattern. Furthermore, the effectiveness of the improvement in targeting the managed
file was significant. Considering these results, we achieved bona fide performance improvements for the
VMM-based tracing function.

Acknowledgments

This work was partially supported by JSPS KAKENHI Grant Numbers 19H04109 and 19K20246.

References
[1] T. Tabata, S. Hakomori, K. Ohashi, S. Uemura, K. Yokoyama, and H. Taniguchi. Tracing classified informa-

tion diffusion for protecting information leakage. IPSJ Journal, 50(9):2088–2102, September 2009.
[2] N. Otsubo, S. Uemura, T. Yamauchi, and H. Taniguchi. Design and evaluation of a diffusion tracing function

for classified information among multiple computers. In Proc. of the 7th FTRA International Conference on
Multimedia and Ubiquitous Engineering (MUE’13), Seoul, Korea, volume 240 of Lecture Notes in Electrical
Engineering, pages 235–242. Springer Netherlands, May 2013.

[3] K. Fukushima, T. Yamauchi, and H. Taniguchi. Implementation of mechanism to support tracing diffusion
of classified information by visualization and filtering function. IPSJ Journal, 53(9):2171–2181, September
2012.

[4] S. Fujii, M. Sato, T. Yamauchi, and H. Taniguchi. Evaluation and design of function for tracing diffusion of
classified information for file operations with kvm. The Journal of Supercomputing, 72:1841–1861, February
2016.

[5] S. Fujii, M. Sato, T. Yamauchi, and H. Taniguchi. Design of function for tracing diffusion of classified
information for ipc on kvm. Journal of Information Processing, 24(5):781–792, September 2016.

[6] M.I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-vm monitoring using hardware virtualization. In Proc.
of the 16th ACM Conference on Computer and Communications Security (ACM CCS’09), Chicago, IL, USA,
pages 477–487. ACM, November 2009.

[7] J. Pfoh, C. Schneider, and C. Eckert. Nitro: Hardware-based system call tracing for virtual machines. In
Proc. of the 2011 International Workshop on Security (IWSEC’11), Tokyo, Japan, volume 7038 of Lecture
Notes in Computer Science, pages 96–112. Springer, Berlin, Heidelberg, November 2011.

[8] X. Wang, Y. Chen, Z. Wang, Y. Qi, and Y. Zhou. Secpod: a framework for virtualization-based security
systems. In Proc. of the 2015 USENIX Annual Technical Conference (USENIX ATC’15), Santa Clara, CA,
USA, pages 347–360. USENIX, July 2015.

41

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

[9] T. Garfinkel and M. Rosenblum. A virtual machine introspection based architecture for intrusion detection.
In Proc. of the 2003 Network and Distributed System Security Symposium (NDSS’03), San Diego, CA, USA,
pages 191–206. The Internet Society, February 2003.

[10] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu. Process out-grafting: An efficient “out-of-vm” approach
for fine-grained process execution monitoring. In Proc. of the 18th ACM Conference on Computer and
Communications Security (ACM CCS’11), Chicago, IL, USA, pages 363–374. ACM, October 2011.

[11] J. Hizver and T.-C. Chiueh. Real-time deep virtual machine introspection and its applications. In Proc. of the
10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE’14), New
York, NY, USA, volume 49, pages 3–14. ACM, July 2014.

[12] J. Shi, Y. Yang, and C. Tang. Hardware assisted hypervisor introspection. SpringerPlus, 5:647:1–647:23,
May 2016.

[13] D. Zhan, L. Ye, B. Fang, H. Zhang, and X. Du. Checking virtual machine kernel control-flow integrity using
a page-level dynamic tracing approach. Soft Computing, 22:7977–7987, 2018.

[14] L. Jia, M. Zhu, and B. Tu. T-vmi: Trusted virtual machine introspection in cloud environments. In Proc. of
the 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID’17),
Madrid, Spain, pages 478–487. IEEE/ACM, May 2017.

[15] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L.P. Cox, J. Jung, P. McDaniel, and A.N. Sheth.
Taintdroid: An information-flow tracking system for realtime privacy monitoring on smartphones. ACM
Transactions on Computer Systems, 32(2):1–29, June 2014.

[16] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, and W. Lee. Rain: Refinable attack inves-
tigation with on-demand inter-process information flow tracking. In Proc. of the 2017 ACM Conference on
Computer and Communications Security (ACM CCS’17), Dallas, TX, USA, pages 377–390. ACM, October
2017.

[17] H. Huseynov, K. Kourai, T. Saadawi, and O. Igbe. Virtual machine introspection for anomaly-based key-
logger detection. In Proc. of the 21st IEEE International Conference on High Performance Switching and
Routing (HPSR’20), Newark, NJ, USA, pages 1–6. IEEE, May 2020.

[18] B. Taubmann and H.P. Reiser. Towards hypervisor support for enhancing the performance of virtual machine
introspection. In Proc. of 20th International Conference on Distributed Applications and Interoperable Sys-
tems (DAIS’20), Valletta, Malta, volume 12135 of Lecture Notes in Computer Science, pages 41–54. Springer,
Cham, June 2020.

——————————————————————————

Author Biography

Hideaki Moriyama received his B.E., M.E., and Ph.D. degrees from Okayama Uni-
versity, Japan in 2007, 2009, and 2012, respectively. He has been an Assistant Profes-
sor at the Department of Electronics and Information Engineering at the National
Institute of Technology, Ariake College, since 2012; in 2014, he became a Lec-
turer. Since 2020, he has been serving as an Associate Professor. His research in-
terests include operating systems and virtualization technology. He is a member of
IPSJ.

42

Improvement of a Function for Tracing Diffusion Moriyama, Yamauchi, Sato, and Taniguchi

Toshihiro Yamauchi received the B.E., M.E., and Ph.D. degrees in computer science
from Kyushu University, Japan, in 1998, 2000, and 2002, respectively. In 2001, he
was a Research Fellow with the Japan Society for the Promotion of Science. In 2002,
he became a Research Associate with the Faculty of Information Science and Elec-
trical Engineering, Kyushu University. In 2005, he became an Associate Professor
with the Graduate School of Natural Science and Technology, Okayama University.
Since 2021, he has been serving as a Professor at Okayama University. His research

interests include operating systems and computer security. He is a member of ACM, IEEE, USENIX,
IPSJ, and IEICE.

Masaya Sato received his B.E., M.E., and Ph.D. degrees from Okayama University,
Japan in 2010, 2012, and 2014 respectively. In 2013 and 2014 he was a Research Fel-
low of the Japan Society for the Promotion of Science. He had served as an Assistant
Professor of Graduate School of Natural Science and Technology at Okayama Uni-
versity from 2014 to 2021. Since 2021, he has been serving as an associate professor
at Okayama Prefectural University. His research interests include computer security
and virtualization technology. He is a member of IPSJ, IEICE, and ACM.

Hideo Taniguchi received a B.E. degree in 1978, a M.E. degree in 1980 and a Ph.D.
degree in 1991, all from Kyushu University, Fukuoka, Japan. In 1980, he joined
NTT Electrical Communication Laboratories. In 1988, he moved to Research and
Development Headquarters, NTT DATA Communications Systems Corporation. He
has been an associate professor of computer science at Kyushu University since 1993,
a professor of the Faculty of Engineering at Okayama University since 2003. He
has been a dean of Faculty of Engineering from April 2010 to March 2014 and a

vice president from April 2014 to March 2017 at Okayama University. His research interests include
operating system, real-time processing and distributed processing.

43

	Introduction
	Function for Tracing the Diffusion of Classified Information in a Guest OS
	Overview of the VMM-based Tracing Function
	Collecting System-call Information with VMM

	Overhead Analysis
	Grasping the Potential Diffusion of Classified Information
	Improvement
	Evaluation
	Overview
	Processing Time of the VMM-based Tracing Function with the cp Command
	Processing Time of the Read and Write System Calls (Overall)
	Benchmark for File Access

	Related Work
	Conclusion

