Fail-Safe Security Architecture to Prevent
Privacy Leaks from E-commerce Servers

Hiroshi Fujinoki*, Christopher A. Chelmecki, and David M. Henry
Southern Illinois University Edwardsville
Edwardsvill, Illinois, USA

Abstract

We propose new security architecture, called Fail-Safe Security Architecture (FSSA), which elimi-
nates, or at least minimizes, the chance of privacy leaks for e-commerce customers, protecting their
privacy even for the worst cases: the security administrators of the e-commerce servers convert to
attackers or the merchants servers are hijacked by external attackers, giving the attackers full access
to anything in the servers. FSSA is based on a security design that allows each party to access only
the information necessary to perform their business and it makes sure no party, except the customer
and the law enforcement authority, has access to the complete information of customers privacy.
We analyzed the types of the security threats FSSA covers. The results of our analyses indicated
that, FSSA protects customer privacy against the internal attackers (converted administrators and full
hijacks), as well as the known security threats by external attackers of eavesdropping, replay, mas-
querading, man-in-middle, and traffic analyses, except denial of service attacks. Our performance
studies suggested that the cost factor of running FSSA is 1.8 (1.8 times more computational power)
to achieve the same response time and transaction throughput compared to the existing architecture,
where there is no protection against the customer private information leaks.

Keywords: e-commerce security, security against insiders, prevention of privacy leaks, confirma-
tion of delivered products in e-commerce, network application security

1 Introduction

Privacy leaks from e-commerce servers are a serious problem today. Privacy information stolen by
attackers ranges from e-mail account password, credit card information, personal identification, such
as name, address, telephone numbers, and occupation information, as well as account information for
on-line shopping sites. Pavia reported that acquiring legal credit cards using the stolen personal identity
occupies 62 percent of all credit card frauds today, instead of stealing the information of the existing
credit cards [[15]].

E-commerce customers’ fear of their privacy leaks and their distrust of e-commerce merchants’ se-
curity due to frequent leaks of their privacy have escalated to the point that has impacted to acceptance of
e-commerce applications. Glover conducted an empirical study to find that the risk of information mis-
use is currently one of the three major factors that discourage customers from using online e-commerce
applications [8].

While privacy leaks can cause financial damages to e-commerce merchants and credit card compa-
nies, the US Federal Law (Section 901 of title IX of the Act of May 29, 1968 (Pub. L. No. 90-321))
protects customers from most of the financial losses due to credit card frauds. However, the damages
from privacy leaks are sometime outside of the Federal Law’s coverage. For example, illegally accessed

Journal of Internet Services and Information Security (JISIS), volume: 4, number: 2, pp. 38
*Correspondence author: Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, Illi-
nois 62026-1656, USA, Tel: +1-618-650-3727, Email: hfujino@siue.edu, Web: www.siue.edu/~hfujino

38

hfujino@siue.edu
www.siue.edu/~hfujino

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

privacy was often used for sales promotion in the past. Privacy leaks from adult web sites have been
recently used by attackers to extort money from their users by threatening their social statuses.

From a technical viewpoint, most of the privacy leaks stem from the way online e-commerce applica-
tions are designed. For example, many of the online shopping web sites are currently implemented based
on the client server model, in which servers hold customers’ privacy information. Most of the online
shopping web sites require their customers to provide their personal information to the servers owned by
merchants. Once customers upload their personal information to servers, there is nothing the customers
can do to protect their privacy, but trusting the merchants.

What make the situation worse are the crimes committed by malicious insiders. A trend of increasing
crimes by insiders is reported [5]], which seriously ruins trust by customers for using online e-commerce
applications. Malicious insiders are not the unique problem to online e-commerce, but also to any face-
to-face commerce. However, the impact of the crimes by insiders will be more significant for online
e-commerce applications since customers do not have a chance to see the merchants face-to-face, making
it quite difficult to measure the level of trust to their business.

Handling customers’ information in electronic commerce has another dimension. Disputes regard-
ing transactions, such as claims about delivery of a damaged product, may require involvements of all
the parties. All of the merchant, the shipping carrier, and the credit card company, have to share the
complete information to resolve the disputes, which contains all the details about the customers, as well
as the products and services purchased. Sharing customers’ information this way by all the three parties
increases the risk of privacy leaks.

Also from the viewpoint of the legal issues, the ability to reconstruct the complete information for
each transaction is mandatory, since the United States Money Laundering Act (U.S. Code 12, Section
1829) prohibits anonymous transactions valued over 100USD [1]]. The complete information about each
such online transaction must be reconstructed and disclosed to a legislative authority up on a court’s
disclosure order.

To solve the trade-off problem described above, we propose secure network architecture, called Fail-
Safe Security Architecture (FSSA) that protects customers’ privacy information not only from external
attackers, but also from internal attackers (insiders) at the same time it satisfies the legal requirements. As
a framework for the new security architecture, we assumed e-commerce systems that consist of the four
parties of customers, e-commerce merchants, credit card companies, and shipping carriers. E-commerce
merchants set up and maintain their online web sites to take orders from customers. Customers visit
online shopping web sites set up by merchants, where customers make orders to products offered by the
merchants. Credit card companies take payment requests from customers for the products ordered by the
customers and make the payments to the merchants. Shipping carriers accept packages from merchants
to transport them to customers.

The term, “internal attackers”, means malicious insiders in the rest of this paper. Internal attackers are
those who have access to customers’ information stored in a server while external attackers are anyone
who does not. Note that the attackers working in e-commerce merchants, credit card companies, and
shipping carriers are still external attackers as long as they are not given official access to customers’
information stored in their server.

The rest of this paper is organized as follow. Section 2 describes the existing related work. In Section
3, the proposed security architecture is described by applying the architecture to online transactions
typically performed in online shopping web sites today. The proposed security architecture is analyzed
for what security risks it covers and how. Section 4 describes performance evaluations of the proposed
architecture for response time and throughput of e-commerce transactions issued by customers. Section
5 summarizes the conclusions, followed by the references.

39

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

2 Existing related work

Many of the existing information protection methods, such as encrypting a whole disk [9] and separa-
tion of stored data from code execution [14] will be effective to external attackers, but not to internal
attackers if the information is not protected in the application level since the information must be de-
crypted or available to the applications when the information is processed by the applications. At that
time, customers’ privacy is accessible also to the internal attackers. The problem is even more serious
for e-commerce applications running in a cloud environment.

To secure personal information from internal attackers, encrypting personal information using cus-
tomers’ biometric information without storing decryption keys in the server side has been proposed by
Uludag [[18]] and Zhang [20]. Although these solutions will be effective in hiding customers’ information
from anyone except the customers, none of the merchants, shipping carriers, or credit companies has
access to the customers’ information, which fails to satisfy the legal requirements.

Mazieres proposed a distributed file system, SUNDR, which prohibits any unauthorized users from
performing read access to the files stored in their storage devices [12]. SUNDR chops the contents in
each file and spread the chops to multiple segments, called ’data blocks” in such a way that the mapping
of the segments in a file is hidden by “virtual i-node”. This solution guarantees that only the authorized
users can access their files by reconstructing the files’ contents using the virtual i-node.

Mattsson proposed column-level database encryption to protect users’ information from both external
and internal attackers [11]. The column-level database encryption is performed by encrypting security
sensitive data, calculating the HMAC hash of the data, and attaching the hash to another column in the
same row of the table. The owner of the data uses the hash to find target data by matching the hash value.
The decryption key for the secure data is not stored in the database, but in the applications that use the
database. The encryption keys stored in the applications in the server are accessible to the insiders.

Although the above two solutions are effective for protecting customers’ information from external
attackers, the solutions will not be effective to internal attackers. It is because internal attackers can
access even the information held by applications. They can intercept the information before it is passed
from the applications to the system level [[19]. There should be a security mechanism that spans the
application layer and the OS layer, instead of two isolated security mechanisms, one in the application
layer and the other in the OS layer. Otherwise, the communication between the two mechanisms can be
the target of the internal attackers.

Secure Electronic Transaction (SET) protocol has been proposed to secure electronic payments using
credit cards for online transactions such as purchasing goods through merchants’ web sites [4]. Since its
introduction, several extensions to SET have been proposed, some of which were proposed for realizing
customers’ anonymity in SET. For example, Rennhard proposed new network application architecture
for online shopping using SET, which hides customers’ network address from the merchants and credit
card companies to protect customers’ privacy [16]. Rennhard’s solution consists of an overlay network
called "Pseudonymity Network (PN)”, which uses intermediate proxies and a security protocol (for key
exchanges and encryptions) called ”Pseudonymous Secure Electronic Transaction (PSET) protocol” for
the messages exchanged by the involved parties to hide customers’ network addresses and identities.

Although SET and its enhancements will be effective for hiding customers’ credit card information
from the merchants, none of them prevents customers’ privacy from leaking at the merchant’s servers, if
merchants’ servers store customers’ privacy, such as their full names and shipping addresses. This is a
problem, since most of the online customers do not pick up the products at the merchants’ facility, while
various services in online shopping, such as payments for the goods and shipping the goods to customers,
should be integrated to automate businesses for better transactional turnarounds and for reducing labor
cost [2] [I13].

Tygar introduced the concept of “certified delivery” [17]. The term “certified delivery” means that a

40

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

customer will receive the product if and only if the money for the product is transferred from the customer
to the merchant and that the delivered goods must be correct. The primary problem Tygar identified in
designing the certified delivery is in the trade-off between disclosures of customer’s information to all the
involved parties and achieving anonymity of customers. The more information about each transaction is
disclosed to each party, the easier it will be for them to handle any dispute for each transaction, but it
obviously sacrifices anonymity in each transaction.

Zhang proposed security enhancements to SET [20]. Zhang solution uses Active-X to protect cus-
tomers’ private keys stored in the customer’s host computer. When a user’s private key is referenced by
a local process, active-X prompts the user to enter the user’s secret code to approve the use of the private
key. A potential threat to this approach is that, if the active-X process is modified especially by internal
attackers, the active-X process can be used to collect the user’s secret code for the attackers.

Lekkas proposed a new approach for securing electronic payments, called “E-coin” [10]. E-coin
was proposed as an off-line electronic payment method without contacting a bank. E-coin is a new
approach in that it performs payments by securely transferring virtual currency (i.e., E-coins) issued by
an individual, instead of transferring payment information for actual currency as SET does. One of its
features is “untraceability”, meaning that it is not possible to identify who (as a real human) issued the
currency and for what product it was used for. Lekkas solution is based on the concept of ”on-line virtual
currency” proposed by Chaum [3]. An electronic payment system proposed by Eslami [6] is based on
the same concept.

3 Designs and implementation of FSSA

The proposed FSSA security architecture protects customers’ privacy information from both external
and internal attackers by making sure that none of the four parties, except the customers, has access
to the complete information for each e-commerce transaction, while FSSA allows the three parties of
a merchant, a credit company, and a shipping carrier, to reconstruct the complete information for each
transaction when necessary. By “complete information for each e-commerce transaction”, we mean a set
of data that collectively describes all the details about an e-commerce transaction, such as the real name
of a customer, the shipping address, phone number, the product(s) ordered, the dollar amount charged to
the transaction, the date and time of the order, and the credit card used.

The capability to reconstruct the complete information for each transaction is an essential require-
ment for not only satisfying the legal requirements, but also for handling any claim about transactions.
For example, if a customer has a question about the payment amount charged by the credit card company
for a particular order, the merchant and the credit card company need to collaborate on the investiga-
tion. If the products are lost during their shipping, the customer may request the merchant to provide its
shipping information to the carrier for an insurance claim. On a disclosure order from a court, the three
parties need to collaborate to reconstruct the complete information about the transactions. To handle
such situations, there must be a mechanism that logically integrates users’ information about a particular
transaction while no single party accesses to the complete information about each transaction.

3.1 FSSA Organization

A high-level view of the FSSA organization is shown in Figure 1. Each of the four parties has a host
computer. The four host computers are logically connected using the star topology with the merchant’s
server at the hub. To prevent masquerading, eavesdropping, replay, repudiation, and man-in-middle
attacks during their transmissions, the host computers are connected by a secure connection, such as
SSL. Denial of service attacks are not a scope of FSSA.

41

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

To facilitate the secure connections, each of the merchant, the shipping carrier, and the credit card
company is assumed to have their digital certificate that contains their digitally signed public key. Mer-
chants obtain the digital certificates of the shipping carriers and the credit card companies and make
the certificates available to their customers through their online shopping sites. FSSA does not require
customers to have their digital certificate. It is not reasonable to mandate customers to have their digi-
tal certificate, since requiring digital certificate, as many existing secure transaction protocols do, costs
customers and such solutions will not be widely adopted by customers because of the cost.

In FSSA, none of the three parties of the merchant, the credit card company, and the shipping carrier
has the complete information about each transaction. The premise of this design is that each party
can access only the information needed to perform their business. For example, only the information
merchants should know is about the ordered products, but not about the customers, such as their real
names, mailing address and phone numbers, as well as their credit card number. Likewise, the only
information shipping carriers should know is the information needed for delivering the packages, but not
about the products ordered by customers.

If none of the three parties (merchants, shipping carriers, and credit card companies) holds the com-
plete information about a transaction, there must be a mechanism that bundles the separate pieces of
information together, when the complete information is needed by all three. Since each merchant may
have multiple transactions that involve the same shipping carrier and the credit card company for the
same customer, there must be the information that uniquely identifies every single transaction. This
introduces the following two requirements: (1) transactions made by a merchant must be uniquely iden-
tified by unique transaction numbers assigned by the merchant and (2) each merchant must be uniquely
identified by the three parties of customers, shipping carriers and credit card companies.

Shipping Carrier’s Credit Card
Server Company’s Server

®: Preliminary Order Message (POM) Server

@: Order Confirmation Message (OCM)
@: Final Order Message (FOM)
@: Payment Request Message (PRM)

Customer’s Local
Host Computer

®: Payment Approval Message (PAM)
®: Shipping Request Message (SRM) ®: Delivery Confirmation Message (DCM)
@: ShippingRequest Acceptance Message (SRAM) @: Customer Claim Message (CCM)

Merchant Identification
Number Allocator

Figure 1: High-level view for FSSA organization

To meet the second requirement, we propose the merchant identification number allocator (MINA)
that assigns a unique identification number to each merchant. MINA should be owned and managed by
an organization, possibly by a consortium of e-commerce merchants. By combining a unique transaction
number assigned by a merchant and a unique merchant identification number assigned by MINA, every

42

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

single transaction should be uniquely identified. A combination of a unique transaction number and
a merchant number works as glue that puts pieces of information together to reconstruct the complete
information for a transaction when customers or law enforcement authorities need the information. Each
merchant needs to contact MINA only once when the new merchant starts her business.

None of the merchant, the credit card company or the shipping carrier can disclose the information
they have about a transaction to anyone else, if they are not requested by the customer or the law en-
forcement authority. Thus, the complete information of a transaction can be reconstructed only on the
customer’s or a court’s request, and if all the three parties collaborate.

3.2 Implementation

FSSA uses asymmetric cryptographic keys, some of which are “one-time”, meaning that a new key
will be created for each transaction and that it will be discarded when a transaction is completed. The
cryptographic keys used in FSSA are listed in Figure 2. The first letter in the key symbol indicates the
owner of the key (i.e., M: merchant, C: credit card company, S: shipping carrier, and U: customer).

Name of Key One Time | Symbol Purpose

Merchant Public NG Mp Encrypt messages to a merchant

Merchant Private NO M; Decrypt messages to a merchant

Credit Card Company Public NO Cp Encrypt messages to a credit card company

Credit Card Company Private NC Cs Decrypt messages to a credit card company

Shipping Carrier Public NO Sp Encrypt messages to a shipping carrier

Shipping Carrier Private NG Sg Decrypt messages to a shipping carrier

Customer Public for Merchant YES Ugrpar | Decrypt the message digest of the final order
message at the merchant

Customer Private for Merchant YES Ugrsa | Encrypt the message digest of the final order
message at the customer

Customer Public for CC Company YES Ugrec | Decrypt the message digest of the protected
payment info. at the credit card company

Customer Private for CC Company YES Uprs.c | Enerypt the message digest of the protected
payment info. at the customer

Customer Public for Carrier 1 YES Ugprp.s: | Decrypt the message digest of the protected
shipping info. at the shipping carrier

Customer Private for Carrier 1 YES Uprs.s: | Enerypt the message digest of the protected
shipping info. at the customer

Customer Public for Carrier 2 YES Ugpre.sz | Encryptthe trackingnumber at the shipping carrier

Customer Private for Carrier 2 YES Uprs.sz | Decrypt the tracking number at the customer

Figure 2: Construction of the protected SI (PSI) message

The procedure of FSSA starts when a customer visits the web site of a merchant. When a customer
visits the web site of a merchant, a secure connection (e.g., SSL) is established in the application level
between the customer’s web browser and the web server of the merchant. Then, the customer’s web
browser downloads the digital certificate (referred by “certificate” hereafter) of the merchant, confirms
the identity of the merchant, and extracts the merchant’s public key (Mp). The customer specifies the
products, the number of the products, and the name of the shipping carrier and the credit card company
the customer would like to use. These pieces of the information (but no other information is included)
are packed in a message, called ’the preliminary order information (POM)” and it is transmitted to the
merchant’s web server (message (1) in Figure 1) through the secure connection.

When the merchant’s web server receives a POM, it calculates the total payment amount. The mer-
chant web server issues a unique transaction number in the day. The merchant’s web server then issues
an order token for this transaction. The order token is the information that uniquely identifies each trans-
action by all the four parties of the customer, the merchant, the shipping carrier, and the credit card

43

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

company. Each order token consists of the merchant identification number, the date of the transaction in
year, month, and day, followed by the transaction number in the day, but no other information is included.

Once the order token is constructed, the merchant’s server creates “order information (OI)” that
contains the details of the product(s) ordered by the customer, such as the product ID’s, the number of
the product(s) ordered, the name of the shipping carrier, the name of the credit card company, and the
total amount for the payment (but no other information). The merchant’s web server then bundles the OI,
the order token, the certificates of the shipping carrier and the credit card company in a message, called
“order confirmation message (OCM)”. The OCM is transmitted from the merchant’s web server to the
customer’s web browser using the secure connection between them (message 2)).

When the customer’s web browser receives the OCM from the merchant, the contents of the OI are
displayed by the web browser to the customer, asking for confirmation. If the customer approves the
contents in the OI, the web browser extracts the public keys of the shipping carrier (Sp) and the credit
card company (Cp) from their certificates in the OCM. The customer’s web browser generates the four
pairs of asymmetric one-time keys for this transaction.

After the four pairs of the one-time asymmetric keys are created, the customer’s web browser con-
structs the final order message (FOM). The FOM consists of the OI, the protected shipping information
(PSI), the protected payment information (PPI), and the one-time public key for the merchant (Uprp—_u).
The PSI contains the information the shipping carrier needs to deliver the products to the customer in
such a way that the merchant can not either see or tamper with. Similarly, the PPI contains the credit card
information the credit card company needs to process the payment request from the customer in such a
way that the merchant can not either see or tamper with the information.

The customer’s web browser constructs the PSI using the following procedure. The web browser
first constructs the shipping information (SI). SI contains the mailing address of the customer, types
of shipping (e.g., express, insured, etc.) and the other information needed for shipping the ordered
products. Then, the customer’s browser concatenates the SI, the order token from the merchant, and the
two one-time asymmetric public keys for the carrier (Uprp—s1 and Uprp—s2). The browser calculates
the message digest of the whole concatenated message, and encrypts the message digest using the first
one-time asymmetric private key (Uprs—s1). The concatenated information is then encrypted using the
public key of the carrier (Sp). Finally, the PSI is created by attaching the encrypted message digest to the
concatenated information encrypted by Sp (Figure 3).

The PPI for the credit card company is constructed in a similar way. The customer’s browser first
constructs the payment information (PI). PI contains the information needed to obtain the payment ap-
proval from the credit card company. It contains the card holder name, the credit card number, expiration
date, the requested amount and the card’s security code. The browser concatenates the PI, the order token
from the merchant, and the one-time asymmetric public key for the credit card company (Uprp—c). The
browser calculates the message digest of the whole concatenated information and encrypts the message
digest using the one-time asymmetric private key (Uoprs—c). The concatenated information is encrypted
using the public key of the credit card company (Cp). Finally, the PPI is created by attaching the en-
crypted message digest to the concatenated information encrypted by Cp (Figure 4).

After the PSI and PPI are constructed, the customer’s browser creates the FOM using the following
procedure. The browser concatenates the OI, the order token, the one-time asymmetric public key for
the merchant (Uprp—u), the PSI, and the PPI. The whole concatenated information is encrypted by
the merchant’s public key (Mp). Then, the message digest of the whole concatenated information is
calculated by the customer’s browser. The message digest is then encrypted by the one-time asymmetric
private key for the merchant (Uprs—ps) and it is attached to the whole concatenated information encrypted
by Mp to make it FOM (Figure 5). The FOM is transmitted from the customer’s browser to the merchant
web server (message (3)).

After the FOM is delivered to the merchant’s server, the procedure of FSSA consists of five phases.

44

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

. The public key
22 of the carrier
(Sp)
o y @
SI from SI
customer 3
> — |

-
-

Order token A A ﬁ; z
from merchant SI mj =g
w

\ -

asymmetrie key

for transferring
tracking # (Uotps2)

Message

One-time public
asymmetric key

One-time private
for this SI (Ugtp.si)

-] asymmetric key
for this SI (Ugrs.s1)

Figure 3: Construction of the protected SI (PSI) message

The public key
L7 -
222 of the credit card
company (Cp)
PI enc @
N
PIfrom
customer PI >‘ Y
Order token =7
from merchant PI m / ; E-
N =
One-time public Message
asymmetric key E A PI Digest
v v EoEsnsssA
for this PI (Uotp.c) 55555555

One-time private
asymmetric key
for this PI (Upts.c)

Figure 4: Construction of the protected PI (PPI) message

In the first phase, the merchant’s web server performs the tasks shown in Figure 6. When the credit card
company’s server receives the PRM, it executes the tasks shown in Figure 7. If the merchant receives the
PAM from the credit card company, the merchant performs the task shown in Figure 8. If the merchant
receives a denial of payment, the whole procedure is terminated and it is notified to the customer. When
the shipping carrier’s server receives the SRM, it performs the tasks in Phase 4 (Figure 9). When the

45

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

One-time public asymmetric
key for this merchant (Ugrp.ag
Protected SI (PSI) Protected PI(PPI)
A

The order token
A
p ' N 7 ~

Lpdadds ol dpdadplninindalnlals i iiaiplininin sl ity
Lty Lyt L B R Rt B b Ay T
oI) [
ik akebebebs e
Gata

gy e
Sttt L b S

J
\

TN

AR AT A
A,
P

L Y2y
R AN

oI

B
B o
"

Message
Digest o =
Public key of [3]
the merchant E§
%)

One-time private
asymmetric key
for this merchant
(Uorsad

\
(

Final Order Message
(FOM)

Figure 5: Construction of the final order message (FOM)

Phase 1: Processing FOM by the merchant

1. The merchant’s web server decrypts the body of FOM using the merchant’s private key (Ms). The
merchant’s server extracts the OI, the order token, the one-time customer public key for the merchant (Ugre.
a), PSI, PPI and the message digest of the FOM.

. The merchant’s server locally calculates the message digest of the concatenation of the OI, the order token,
the one-time customer public key for the merchant (Uprpay). PSI. and PPL

3. The server decrypts the encrypted message digest of FOM using the one-time customer public key for the

merchant (Ugrpy) and compares it to the locally calculated message digest. If they do not match, the

procedure terminates. Otherwise, it proceeds to task 4.

4. The server compares the order token extracted from the FOM and its local order token. Ifthey do not match,
the rest of the procedure is terminated. Otherwise, it proceeds to task 5.

(¥

5. The server extracts the name of the credit card company from the OI and establishes a secure connection
with the credit card company. Then, it transmits the PPI to the credit company. requesting for an approval
for pavment (message @: PRM).

Figure 6: Tasks to process FOM at the merchant’s server

shipping carrier delivered the package to the customer, the shipping carrier performs the tasks in Phase
5 (Figure 10).

When the merchant receives the DCM from the shipping carrier, it forwards the DCM to the credit
card company, requesting for the payment. The credit card company holds the payment for short time
(e.g., three days) after the arrival of the DCM from the merchant. This time period allows the customer to
file a claim (message (9): CCM), if there is any problem about the delivered product, which will suspend
the transfer of the fund to the merchant’s account. If the customer does not submit any claim during the

46

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

Phase 2: Payment approval by the credit card company

1. The credit card company’s server decrypts the PPI using the credit company’s private key (Cs).

(]

The server locally calculates the message digest of the concatenation of the PI, the order token, and the one-
time customer public key for the credit card company (Uorp-¢)-

3. The server decrypts the encrypted message digest of the concatenation of the PI. the order token, and the
one-time customer public key for the credit card company (Uore.c) using Uprp.c extracted from PPI, and
compares it to the locally calculated message digest. If they do not match, it transmits an error message to
the merchant’s server and terminates the procedure. Otherwise, it proceeds to task 4.

4. The credit card company examines the account status of the customer for this payment request. If it is
approved, the credit card company charges the amount of the payment to customer’s account (but the
transfer of the fund to the merchant’s account does not happen at this point). Then, the server transmits an
approval message to the merchant’s server (message ®: PAM), which contains the amount of payment
approved. If it is not approved, the credit card company transmits a denial message to the merchant instead.

Figure 7: Tasks to process payment request the credit card company’s server

Phase 3: Request for package pickup by the merchant

1. The merchant’s server extracts the name of the shipping carrier from the OI and establishes a secure
connection with the shipping carrier’s server. Then, it transmits the PSI to the shipping carrier, requesting
the carrier to pick up the package for delivering it to the customer (message ®: SRM).

Figure 8: Task to request package pickup

Phase 4: Pre-delivery tasks by the shipping carvier

1. The shipping carrier’s server decrypts the PSI suing the carrier’s private key (Ss).

[

. The server locally calculates the message digest of the concatenation of the SI, the order token, and the
two one-time customer public keys for the shipping carrier (Uprp.siand Upre.s2).

3. The server decrypts the encrypted message digest of the concatenation of the SI, the order token, and the
two one-time customer public keys for the shipping carrier (Ugrp.siand Ugre.s2) using the first one-time
customer public key (Uorp.s1). If the two message digests do not match, the shipping carrier terminates
the procedure and transmits an error message to the merchant’s server. Otherwise, it proceeds to task 4.

4. The shipping carrier’s server stores the information of the customer (e.g., the shipping address and the
name of the customer) and the merchant (e.g., the merchant name, contacting information, and the
network address of the merchant’s server) in a table called “transaction table”. Each tuple in the table
consists of the order token, the information of the customer, and the merchant, followed by the network
address of the merchant’s server (the shipping carrier’s server extracts the merchant’s server’s network
address from the merchant’s certificate).

5. The server issues a tracking number for this package and encrypts it using the second one-time public
key for the shipping carrier (Ugrp-s2).

6. The server concatenates the order token and the encrypted trucking number in one message and sends the
message to the merchant’s server (message @: SRAM). The merchant’s server posts the SRAM to the
customer’s account, which can be downloaded by the customer anytime later.

7. The shipping carrier picks up the package at the merchant’s facility and attempts to deliver the package
to the customer.

Figure 9: Tasks performed by the shipping carrier before the delivery of the products

time period, the fund will be transferred to the merchant’s account.

47

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

Phase 5: Post-delivery tasks by the shipping carvier

1. The shipping carrier’s server extracts the order token and the network address of the merchant’s server
for the package delivered to the customer.

r2

Using the network address of the merchant’s server, the shipping carrier’s server establishes a secure
connection with the merchant’s server and transmits the delivery confirmation message that consists of
the order token and the date/time of the deliverv to the merchant (message ®: DCM).

Figure 10: Tasks performed by the shipping carrier after the delivery of the products

3.3 Analyses on the security requirements

The possible threats to e-commerce applications are classified as those from internal and external attack-
ers. Itis assumed that internal attackers can access anything in a server, including the information held by
application processes running in the server. The security threats external attackers possibly carry out are
eavesdropping, replay, man-in-middle, masquerading, traffic analysis, bug exploits, and non-repudiations
of transactions. Protections from internal attackers:

(a) At merchants: The attackers have access to any information stored in the server as long as it is
not encrypted by a key the attackers do not have access. Thus, the only information accessible to the
attackers is about the product(s) ordered by customers, the shipping carrier and the credit card company
of the transactions, the information that recognizes each customer (but not customer’s real identity) and
the network address of the customers. The attackers do not have access to the name, mailing address, or
the credit card number, which prohibits the attackers from reconstructing the complete information about
transactions. The attackers can modify the contents of the PPI and PSI by overwriting their contents, but
such modifications can not be performed in a way the attackers control the other two parties as the
attackers wish.

(b) At shipping carriers: The shipping carriers’ servers hold the name, shipping address of the cus-
tomers, and the merchant’s ID (from the order tokens), but they do not hold the information about the
products ordered by the customers or their credit card information. However, using the merchant’s ID,
the attackers may identify the name of the merchants. If the merchant’s name provides any clue about
the products they deal with, it is possible for the attackers to infer the products ordered by customers.

(c) At credit card companies: The credit card company’s servers hold the information that identifies
each customer, such as the customer’s full name, mailing address, telephone number, credit card number,
and the amount of the payment for each transaction, but not the information about the products. The only
possible risk is that, similar to the attackers at shipping carriers, the order tokens may allow the attackers
to identify the merchants, which lets the attackers infer what products were purchased by the customers.
Protections from external attackers:

Eavesdropping: Protection against eavesdropping on the message contents during their transmis-
sions is provided by encryption possibly in multiple layers. For example, SSL, IPSec, STS, WPA, and
encryptions performed in the application processes prevents the message contents from being released
to external attackers, assuming the following two conditions:(1)the encryption keys are securely stored,
and(2)the keys for a secure connection are exchanged properly (man-in-middle attacks are theoretically
possible for Diffie-Hellman key-exchange algorithm, which is the basis for IPSec). Regarding the first
condition (1), since most of the important keys at a customer host computer are “one-time”, eavesdrop-
ping will not happen unless an attacker can access the one-time keys while a transaction is in progress.
The second problem (2) is dealt with in the section of "man-in-middle attacks” later.

Replay: The external attackers may have physical access to network equipment, allowing them “wire-
tap” to the messages on the fly. Although this allows the attackers to perform replays, they will not cause
any effect to a transaction since each of the eight messages in FSSA is unique. The uniqueness of each

48

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

message is guaranteed by the unique order token issued by a merchant. If two identical messages arrive
at any party, whichever arrives later will be automatically dropped without any effect to the transaction.

Masquerading: Masquerading merchants, shipping carriers, or credit card companies is not possible,
since the correctness of their public keys is guaranteed by their certificates. If an attacker tries to mas-
querade a customer using a fake shipping address, such masquerading can be detected by comparing the
fake address and the customer’s correct address registered to the customer’s credit card account.

Man-in-middle: It is known that man-in-middle attacks can be performed by intercepting Diffie-
Hellman key exchanges when a new secure connection is established. Since the contents of message
B3), @, ©, and (7) are protected by customer’s one-time keys, and since attackers can not masquerade
customers, the contents of the message can not be accessed to attackers or the attackers can not modify
a portion of the messages in any controlled way (the message digest will detect such modifications).
Attackers can not meaningfully synthesize the messages either, since they do not know the customer
name, address, and the credit card number. Messages (5) and (8) are also protected from the main-in-
middle attacks since they are encrypted by a public key endorsed by a certificate and are digitally signed.
The only messages attackers can access by man-in-middle arracks are message (1) (POM) and (2) (OCM).
POM contains only the information about the products ordered by a customer, the name of the shipping
carrier and the credit card company, but nothing else. OCM contains the order token and OI, but neither
of them contains the customer’s name, shipping address or the credit card number. Reconstructing the
complete information about a transaction requires the attackers to obtain the information from the three
parties, such as the full name of the customer, which the attackers can not obtain. Thus, man-in-middle
attacks, even to the known weakness in Diffie-Hellman key exchange algorithm, will not cause any threat
to FSSA.

Traffic analysis: Traffic analysis can take place between any two parties.

(a) Between a customer and a merchant: It was assumed that external attackers have access only to
the packet headers, but not to their payload field when transport-layer secure connections are used. Since
the merchant’s network address may identify the merchant (and possibly what business the merchant
does), it is important to make sure that customer’s network address does not identify the customer. If the
above conditions are met, the traffic analyses will not cause a risk of privacy leak.

(b) Between a merchant and a carrier: From the network addresses of a merchant and a shipping car-
rier, they can be identified easily from their network addresses. However, determining the merchant and
the shipping carrier will not reveal who is the customer. Thus, anonymity of the customer is preserved.

(c) Between a merchant and a credit card company: In the same way as (b) above, anonymity of the
customer will be preserved as long as the transport-layer connections are properly performed.

Bug exploits: We defined “bug exploits” as any security breach at a host computer due to software
bugs, which, in the worst case, can give the full control of a host computer to attackers, just like the
ones an administrator of a host computer would have. Therefore, the security risks by bug exploits are
essentially the same as the ones from the internal attackers. As described before, since none of the three
servers holds the complete information about each transaction, an external attacker who manages to gain
the full access to a server still can not obtain the complete information about a transaction by the same
reasons for the internal attackers.

Non-repudiation: Repudiations of e-commerce transactions by customers (customers deny that they
had ordered some products at a merchant’s online site even though they had done so) are not possible
because none of replay, man-in-middle, and masquerading can happen. Repudiations of transactions by
a merchant, a shipping carrier, or a credit card company is impossible, since (1) each message issued by
a party is digitally signed by their private key, (2) each public key has been endorsed by a certificate from
a legitimate certificate authority, and (3) each message in FSSA is uniquely identified by the order token.

Confirmation of the delivered products: Most of the shipping services available today provide “de-
livery confirmation”. However, they do not provide “confirmation of delivered products”. When delivery

49

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

staff ask customers’ signature on the delivery of a package, customers usually do not have a chance to
confirm the products in the packages nor the condition of the products. It is usually after customers sign
for delivery confirmation that they can see the products or the conditions of the products in the packages.
FSSA logically provides “’confirmation of delivered products” by holding the transfer of the customers’
payment to the merchants for a specific time period, called “confirmation period”. Dishonest merchants
can fake “confirmations of delivered products” to credit card companies. However, such misbehaviors
are easily detected and prevented by termination of the contract with the credit card companies. Figure
11 describes the procedure for “confirmation of delivered products”.

1. When a customer confirms the delivery of package to a delivery staff, the customer’s confirmation is
electronically transmitted from the delivery stuff’s terminal device to the shipping carrier’s server.

%]

‘When the shipping carrier receives a confirmation from a terminal device, it transmits a confirmation
(message ®: DCM) to the merchant, which is forwarded to the credit card company by the merchant.

3. The credit card company identifies the transaction by the order token in the message and starts the timer for
“confirmation period”.

4. If the credit card company does not receive any claim about the product from the customer before the
confirmation period expires, the credit card company transfers the fund for the payment to the merchant’s
account. Otherwise, it proceeds to task 5.

5. The credit card’s server automatically suspends the transfer of the payment to the merchant’s account. The
credit card company starts processing the claim to resolve the issue, just like one without using FSSA.

6. If the credit card company receives a claim after the confirmation period expires, then the claim will be
processed using the procedure for the transactions without using FSSA.

Figure 11: the FSSA procedure that realizes confirmation of delivered products

4 Performance evaluation

The feasibility of FSSA was evaluated from the viewpoint of its runtime overhead. The overhead of
FSSA was quantified and compared to that of an existing system that did not perform any specific security
feature except encrypting the messages exchanged between two host computers. The two performance
metrics of our interest were the response time and the throughput of online shopping transactions issued
by customers. The response time and the throughput of the transactions were studied using experiments
implemented on a test bed.

4.1 Experiment test bed

The test bed was developed in an isolated local area network where four host computers were connected.
Each of the merchant’s, credit card company’s and shipping carrier’s server processes was executed in
a host computer, while multiple customers were simulated at a host computer (called ”customer simula-
tor”). The merchant server was executed by a PC with an Intel Core 2 Quad CPU running at 2.4 GHz.
Each of the shipping carrier, the credit card company, and the customer simulator was executed by a PC
with an Intel Pentium 4 CPU running at 3.2 GHz. Cable length between two hosts was less than 10 feet
to minimize the impact from the signal propagation delay.

4.2 Experiment designs

The response time and the throughput of online shopping transactions were measured when the workload
was increased. The amount of the workload was controlled by adjusting the number of the transactions
issued from customers to the merchant server. The response time was defined to be the elapsed time (7)

50

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

since the arrival time (75) of FOM (message (3) in Figure 1) at the merchant’s server to the completion
time (7g) of processing SRAM (message (7)) at the merchant’s server (Tx = Tg - Ts).

In generating customers’ requests, Poisson distribution was used to control the interval time between
two consecutive requests. The tested intervals were 0.1, 1, 10, 50, 100, 150, 175, 200, 225, 235, 250,
300, and 500ms. Each experiment simulated 1,000 transactions (n = 1,000) for one of the 14 workload
levels and the same experiment was repeated for 20 times (m = 20). The average response time was
defined as:

m n

Y Y (Tasin))

j=0i=0

mxn
where a tuple (7a, i, j) indicates the response time for the i-th transaction in the j-th run of the

experiment. We reset all the hosts at the end of each run of the experiment. For the throughput, we ran
an experiment that generated 100,000 transactions to observe how many transactions were completed
at the merchant server (completion of processing SRAM message at the merchant’s server) per second.
The same experiment was repeated 20 times and the average transaction throughput of the 20 runs was
calculated.

4.3 Observations of the outcomes from the experiments

Transaction Response Time: Figure 12 shows the observed average response time for the 14 different
levels of the workload offered to the merchant’s server. We observed “takeoff” at 8 transactions per
second (125ms interval - at (a) in Figure 12) and 4.19 transactions per second (225ms interval - at (b))
for the existing system (without using FSSA) and the proposed system (with FSSA) respectively. Its
ratio was 125:225 = 1.0:1.8. At the highest workload we tested in the experiments (transaction interval
of 0.1ms or 10,000 transactions per second), the response time for the existing system and the proposed
system was 15.8 and 29.4ms respectively. The ratio of the response time of using FSSA to that of without
using FSSA was 15.8:29.4 (approximately 1.00:1.86).

Transaction Throughput: Figure 13 shows the observed transaction throughput for the 14 different
levels of workload offered to the merchant’s server. The peak throughput was 7.8 transactions for the
existing system (without using FSSA) and 4.2 transactions for the proposed system (using FSSA). It
was demonstrated that the transaction throughput and the number of transactions issued by customers
approximately matched for both of the existing and the proposed systems up to the peak throughout.

5 Conclusion

New security architecture, called Fail-Safe Security Architecture (FSSA), is proposed to prevent privacy
leaks from e-commerce servers. FSSA is designed to protect customers’ privacy even if the e-commerce
merchants’ servers are hijacked by attackers or even if the administrators of the servers involve in the
leaks. As a result, FSSA protects customer’s privacy information from leaking not only to external
attackers, but to internal attackers, including the administrators of the e-commerce servers.

The technical challenge we faced was in meeting the legal requirements at the same time the proposed
solution must protect the customers’ privacy in the worst cases: the involvements of the insiders and
hijacks of the server host computers by external attackers. In many countries, their law requires the
complete information about each e-commerce transaction to be presented on a court order. In addition
to the legal requirements, the three parties of e-commerce merchants, shipping carriers, and credit card
companies may have to collaborate in processing claims submitted by customers. The proposed security

51

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

35 2..15 1?5
proposed method

~ 30 - (FSSA)
g
=
2 25 T
E 20
N
o 15
= existing method
3 (without FSSA)
2 10 +

5

500 400 300 (I;j 200 (a) 100 0

transaction arrival interval time (in millisecond)

Figure 12: Transaction response time for a system using FSSA and a system without using FSSA

500 450 400 350 300 250 i 20 150 i 100 50 0
(b) (a)

transaction arrival interval time (in millisecond)

o 9 225 125
2 g/ :

;'E amme b & i i - = - . Fs
2 7 »

E existing method

= (without FSSA)

E 6.

3

—_ =

3 s,

-;3' illl-I.

=

-ED 3

z i

= 2 proposed method

g (FSSA) :

S

g

5

Figure 13: Transaction throughput of a system using FSSA and a system without using FSSA

52

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

architecture solves the problems, by making sure that each of the three parties holds only the information
needed for their business.

To study the feasibility of FSSA from the viewpoint of its runtime overhead, we evaluated the over-
head of FSSA from an existing system that does not perform any security means except secure con-
nections. Our performance studies suggested that the cost factor of running FSSA is 1.8 (1.8 times
more computational power) to achieve the same response time and throughput compared to the existing
architecture.

From our analyses on the types of the security threats FSSA covers and its overhead factor, the pro-
posed security architecture will contribute to the promotion of wide adoption of e-commerce transactions
by eliminating the fear of privacy leaks from potential e-commerce customers. Because of the evidences,
we are sure that the main objectives in the proposed security architecture are met and it contributes to
safety in e-commerce.

The future work of FSSA includes the following issues. FSSA is not currently designed to handle
shipping to foreign countries, which necessitates declaration of the package contents to customs. An-
other missing feature is the capability for the shipping carrier and the credit card company to confirm if
the shipping address for product delivery match the one registered to credit card company without the
merchants’ seeing them. This is another important missing feature since most of e-commerce merchants
rely on this method to prevent credit card frauds.

References

[1] T.12-BANKS and C. .-F. D. 1. C. BANKING. Retention of records by insured depository institutions, January
2007. pages: 1084-1087.

[2] B. Benatallah, H. R., and M. Nezhad. Service oriented architecture: Overview and directions. Advances in
Software Engineering, 5316:116—-130, 2008.

[3] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Proc. of Advance in Cryptography
(CRYPTO'’88), Santa Barbara, California, USA, LNCS, volume 403, pages 319-327. Springer-Verlag, 1990.

[4] I. Corporation. An overview of the ibm set and the ibm commerce point products. Technical report, IBM
Corporation, 1998.

[5] A.Cummings, T. Lewellen, D. Mcintire, A. P. Moore, R. Trzeciak, and C. Officer. Insider threat study: Illicit
cyber activity involving fraud. Technical report, Institute, Carnegie Mellon University, 2012.

[6] Z. Eslami and M. Talebi. A new untraceable off-line cache system. Electronic Commerce Research and
Applications, 10(1):59-66, 2011.

[7] Z. Ge and Z. Chao. A biometric-based framework for digital rights protection. In Proc. of the 7th Interna-
tional Conference on Signal Processing (ICSP’04), Troia, Turkey, volume 3, pages 2314-2317, September
2004.

[8] S. Glover and I. Benbasat. A comprehensive model of perceived risk of e-commerce transactions. Interna-
tional Journal of Electronic Commerce, 15(2):47-48, 2011.

[9] L. Hars. Discryption: Internal hard-disk encryption for secure storage. Computer, 40(6):103-105, 2007.

[10] D. Lekkas and D. Spinellis. Implementing regular cash with blind fixed-value electronic coins. Computer
Standards and Interfaces, 29(3):277-288, 2007.

[11] U. T. Mattsson. A practical implementation of transparent encryption and separation of duties in enterprise
databases: Protection against external and internal attacks on databases. In Proc. of the the 7th IEEE Inter-
national Conference on E-Commerce Technology (CEC’05), Munich, Germany, pages 559-565. IEEE, July
2005.

[12] D. Mazieres and D. Shasha. Don’t trust your file server. In Proc. of the 8th Workshop on Hot Topics in
Operating Systems (HOTOS’01), Elmau, Germany, pages 113—118. IEEE, May 2001.

[13] M. P. Papazoglou and W.-J. van den Heuvel. Service oriented architectures: Approaches, technologies and
research issues. International Journal on Very Large Data Bases, 16:389-415, 2007.

53

Fail-Safe Architecture to Prevent Privacy Leaks Fujinoki, Chelmecki, and Henry

[14]

[15]

[16]

[17]

[18]

[19]

[20]

B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and A. Perrig. CLAMP: Practical prevention of
large-scale data leaks. In Proc. of the 30th IEEE Symposium on Security and Privacy (SP’09), Berkeley,
California, USA, pages 154-169. IEEE, May 2009.

J. M. Pavia, E. J., Veres-Ferrer, and G. Foix-Escura. Credit card incidents and control systems. International
Journal of Information Management, 32(6):501-503, 2012.

M. Rennhard, S. Rafaeli, L. Mathy, B. Plattner, and D. Hutchison. Towards pseudonymous e-commerce.
Electronic Commerce Research, 4:83—-111, 2004.

D. Tygar. Atomicity versus anonymity: Distributed transaction electronic commerce. In Proc. of the 24th
International Conference on Very Large Data Bases (VLDB’98), New York City, New York, USA, pages 1-12,
August 1998.

U. Uludag, S. Member, S. Pankanti, A. K. Jain, S. Member, S. Prabhakar, Anil, and K. Jain. Biometric
cryptosystems: Issues and challenges. Proceedings of the IEEE, 92(6):948-960, June 2004.

M. E. Whitman. Enemy at the gate: Threats to information security. Communications of the ACM, 46(8):91—
95, 2003.

X. Zhang, Q. Huang, and P. Peng. Implementation of a suggested E-commerce model based on SET protocol.

In Proc. of the 8th ACIS International Conference on Software Engineering Research, Management and
Applications (SERA’10), Montreal, Quebec, Canada, pages 67-73, May 2010.

Author Biography

Hiroshi Fujinoki is currently an associate professor at Department of Computer Sci-
ence at Southern Illinois University Edwardsville (SIUE). He received a Ph.D. de-
gree from the Department of Computer Science and Engineering at the University
of South Florida in August 2001. His research areas include routing in large-scale
networks, traffic engineering, server performance optimization, and network/cyber
security. Dr. Fujinoki has been working especially on security threats by the insiders
for e-commerce network applications and private/community clouds.

Christopher A. Chelmeckﬂ is a former graduate student at the Department of Com-
puter Science of SIUE. Chris’ primary interest is in network/cyber security, espe-
cially in developing new technologies, such as honeypots, to cope with recent secu-
rity threats. Mr. Chelmecki has a couple of publications in the area, some of which
have been cited by researchers in the world. Mr. Chelmecki graduated from SIUE in
December 2011.

David M. Henry is a former graduate student at the Department of Computer Science
of SIUE. David’s primary interest is cryptography. David Henry graduated from SIUE
in May 2012.

'No Photo is available.

54

	Introduction
	Existing related work
	Designs and implementation of FSSA
	FSSA Organization
	Implementation
	Analyses on the security requirements

	Performance evaluation
	Experiment test bed
	Experiment designs
	Observations of the outcomes from the experiments

	Conclusion

