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Abstract

Since public key cryptography is usually build using computationally expensive operation, it has
been out of reach for resource constrained and low power devices. Today there are a large number of
low power devices in use and they perform complex tasks. There is need for light weight cryptogra-
phy having high security and low communication overhead. Online/Offline schemes are well suited
for this purpose since they allow the use of public key cryptosystems in these low power devices.
Many cryptosystems that are efficient in terms of number of computational steps may be inefficient
if we consider the size of keys that must be used to achieve a acceptable level of security. Especially
cryptosystems that have a loose security proof may work with large keys, this increases the commu-
nication overhead. In this paper, we show a view of the how Certificateless schemes are constructed.
Then, we present a Certificateless Online/Offline Signature (CLOOS) Scheme and give a tight secu-
rity reduction to the Gap Diffie-Hellman problem in the random oracle model. Even though other
schemes exist that are are constructed using less number computational steps, if we take into account
the size of keys our scheme will be more efficient. Thus, our scheme is light weight and has a low
communication overhead.

Keywords: Certificateless Cryptography, Online/Offline Computation, Signature, Provable Security,
Random Oracle Model, Tight Reduction.

1 Introduction

Modern cryptography started with protocols designed in the Public Key Infrastructure(PKI) model. Ini-
tially Public Key Infrastructure(PKI) based cryptosystems were proposed. But all PKI based schemes
had the additional overhead of verifying certificates of the public keys. The certificates were issued by
a trusted third party called the Certification Authority(CA). Adi Shamir[20] proposed Identity Based
Cryptography(IBC) to solve the problem of certificate verification, but this brought with it the so called
Key Escrow Problem. In IBC, the trusted third party called the Public Key Generator(PKG), had great
power over the users. The PKG can decrypt all messages for any user and forge signatures of any user as
he has the secret keys of all the users of the system.
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Al Riyami and Patterson [1] proposed Certificateless Cryptography(CLC) as a solution to the Key
Escrow Problem. In CLC the trusted entity called the Key Generation Center(KGC) does not have full
knowledge of the secret keys of the user, since once the user receives the partial secret and public keys
from the KGC he extends/modifies them before using. Hence the KGC only knows a part of the secret
key. This solves the Key Escrow Problem but the public keys are no longer publicly computable. Either
they have to be sent along with every message and key validation algorithm may have to be executed by
the user to know the correctness of the keys.

It is often impossible to provide resource constrained or low power devices with a high security.
Even, Goldrich and Micali [6] explored the notion of Online/Offline Cryptography so as to allow the
use of public key cryptography on these devices. The idea behind online/offline schemes is simple.
The scheme is split into two parts the Offline and the Online part. In the Offline phase all the heavy
computations are carried our on a more powerful device and many such Offline tuples are stored in secure
storage on the low power device. In the online phase after the message and the recipient is known one
offline tuple is used to construct the signature or encryption using small computations like hashing and
simple modular arithmetic. Many schemes can operate as Online/Offline schemes, the schnorr signature
scheme[17] being one of them. Many low power devices are in use today and hence Online/Offline
schemes are very relevant.

Security proofs given for cryptosystems may be loose, close or tight as shown by Micali and Reyzin[14].
If a cryptosystem has a loose security proof then to attain an acceptable level of security it may have to
work with keys of large size. For example cryptosystems like the Schnorr Signature Scheme that are
proven secure using the forking lemma introduced by David Pointcheval and Jacques Stern[15] have a
loose security reduction as shown by Goh et al. [9]. Since loose security reduction forces us to use large
keys, even very efficient schemes become impractical. Hence there is a need for designing schemes that
have tight security reductions to hard problems.

Related Work: Many certificateless signatures have been proposed using bilinear pairings [25, 23,
26, 27, 11, 22, 13, 21, 23, 24]. Out of these schemes only [24] can be naturally used in online/offline
form but this scheme is insecure and a forgery can be produced easily as the randomness used in this
scheme can be exposed. The only concrete certificateless signature scheme without paring are [8, 18].
These schemes can also be naturally used in online/offline form and their security is proved using forking
lemma, i.e. they do not have a tight security reduction. These schemes will work with large keys to attain
an acceptable level of security.

In general, Certificateless Signature(CLS) schemes can be thought to be composed of two important
parts - the key construct used by the KGC to form valid keys and the signature scheme used by the
user to sign messages using the full secret key. Intuitively, for the CLS scheme to be tightly reduced to
the hard problem, both the parts - the key construct and the signature - must have a tight reduction to an
underlying hard problem.

For designing the key construct there are two strategies - to use the key construct used in some
identity based signature or the KGC should use a PKI based signature to sign the identity of the user. The
most important identity based signature schemes are, schemes proposed by Cha-Cheon[4], Sakai[16],
Barreto[2], Galindo[7] and Javier[12]. Also there are four PKI based signature schemes in existence that
have a tight security reduction - the BLS signature scheme[3], schemes proposed by Goh and Jarecki[10],
Mames et. al.[5] and Sharmila et. al.[19]. All of these signatures cannot be directly adapted as a key
construct for CLS. They must first satisfy some conditions. Since we are looking to construct signatures
having a tight security reduction the key construct must also be tightly related to the underlying hard
problem. Another property that we are looking for is that the partial private key must be an element of
Zp. This is because most signature schemes use an element of Zp as the private key and so we have a
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Table 1: Overview of identity based signature schemes

Identity based signature schemes by Partial private key an element of Zp? Tight security reduction?
Cha-Cheon[4] No Yes

Sakai[16] No Yes
Barreto[2] No Yes
Galindo[7] Yes No
Javier[12] Yes No

Table 2: Overview of PKI based signature schemes

PKI based signature schemes by Partial private key an element of Zp? Tight security reduction?
Goh[10] Yes Yes

Mames[5] Yes Yes
BLS[3] No Yes

Sharmila[19] Yes Yes

large selection of schemes that we can use to generate the final signature using the full secret key. Table
1 describes the six identity based signature schemes and their suitability for conversion to a CLS scheme.
Table 2 gives an overview of the PKI based signatures and their suitability to be used as a key construct
for the CLS scheme. From these tables it is clear that only three schemes[19, 10, 5] are suitable for being
used as key constructs. These key constructs are shown and analysed in table 3.

The other part of a CLS scheme uses the full private key derived from the key construct along with
a signature scheme to compute the final certificateless signature. The PKI based signature used in this
part should also be tightly reduced to the underlying hard problem if the CLS scheme to be constructed is
to have a tight reduction. Another property that is required is that the signature needs to be online/offline.
We again choose from the three PKI based signatures having tight security reduction i.e. Goh and jareki,
BLS, Mames and Sharmila. The table 4 compares the properties of these signature schemes. This table
clearly shows that the suitable scheme is by Mames et al. Hence in this paper we demonstrate a CLOOS
scheme constructed using the scheme by Sharmila et. al.[19](our scheme) as the key construct and the
scheme by Mames et al. as the Signature Scheme.

Our Contribution: Above we discussed a view of a certificateless signature scheme as the Key Con-
struct and the Signature Scheme, and discussed how a Certificateless Online/Offline Signature(CLOOS)
scheme having a tight security reduction may be constructed. We first review our scheme[18]. We then
present a CLOOS scheme having a tight security proof constructed using a suitably chosen Key Construct
and Signature Scheme. We prove the security of this scheme is tightly related to the Gap Diffie-Hellman
Problem. This scheme is the only CLOOS scheme having a tight security reduction. We compare our
scheme with the schemes - [8, 18]. Even though our schemes seems to be computationally more expen-
sive than the schemes in [8, 18], our scheme will be more efficient, because the schemes in [8, 18] work
with large keys due to loose reductions.
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Table 3: Partial Key Construction using the chosen constructs having a tight security reduction and proper
partial private key

Key
Construction

with the
chosen

schemes

Goh and Jarecki[10] Mames et. al.[5] Sharmila et al.[19]

Setup
sk = s ∈R Zp

PPub = sP
sk = s ∈R Zp

PPub = sP
sk = s1,s2 ∈R Zp

PPub1 = s1P,PPub2 = s2P

Signature

r ∈R Z
H = H (M ,r)Z = sH
k ∈R Zp

K = kP,X = kH
c = H (P,H,PPub,Z,K,X)
v = k+ cs
σ = 〈Z,r,v,c〉

k ∈R Zp

K = kP,H = H (K)
Z = sH,X = kH
c = G (M ,P,H,PPub,Z,K,X)
v = k+ cs
σ = 〈Z,v,c〉

r ∈R Zp

U2 = rPPub2
U1 = rH1(M ,U2)
hm = H2(M ,U1)
v = hms1 + rs2
σ = 〈U1,v〉

Signature
Cost

2H +3PM+1ma+1mm 2H +3PM+1ma+1mm 2H +2PM+1ma+2mm

Verification
H = H (M ,r)
K = sP−cPPub,X = vH−cZ
c ?
= H (P,H,PPub,Z,K,X)

Compute K = vP− cPPub
H = H (u)
X = vH− cZ
c ?
= G (M ,P,H,PPub,Z,K,X)

hm = H2(M ,U1)
U2 = vP−hmPpub1,
ê(U1,PPub2)
?
= ê(H1(M ,U2),U2)

Verification
Cost

2H +4PM+2PA 2H +4PM+2PA 2H +2BP+2PM+1PA

Partial
private Key
Construct

QA = H (IDA,rA)
Z = sQA,KA = kAP
X = kAQA

c = H (P,QA,PPub,Z,KA,X)
dA = k+ cs
psk = dA, ppk = 〈Z,rA,c〉

kA = kAP,QA = H (KA)
Z = sQA,X = kQA

c = G (IDA,P,QA,PPub,Z,KA,X)
dA = k+ cs
psk = dA, ppk = 〈Z,c〉

U2 = rAPPub2
U1 = rAH1(IDA,U2)
qA = H2(IDA,U1)
dA = qAs1 + rAs2
psk = dA, ppk = 〈U1〉

Table 4: Overview of PKI based signature schemes

PKI based signature schemes by online/offline? Tight security reduction?
Goh[10] No Yes

Mames[5] Yes Yes
BLS[3] No Yes

Sharmila[19] No Yes
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2 Preliminaries

In this section, we describe all the basic definitions required for this paper and also describe the generic
certificateless online/offline signature scheme. We also describe the security model we have used to
prove our schemes.

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P, with prime order q, and G2 be a multiplicative cyclic
group of the same order q. A bilinear pairing is a map ê : G1×G1→G2 with the following properties.

• Bilinearity. For all P,Q,R ∈G1,

– ê(P+Q,R) = ê(P,R)ê(Q,R)
– ê(P,Q+R) = ê(P,Q)ê(P,R)
– ê(aP,bQ) = ê(P,Q)ab [Where a,b ∈ Z∗q]

• Non-Degeneracy. There exist P,Q ∈G1 such that ê(P,Q) 6= IG2 , where IG2 is the identity element
of G2.

• Computability. There exists an efficient algorithm to compute ê(P,Q) for all P,Q ∈G1.

2.2 Computational Assumptions

The security proof of a scheme against a well defined adversary is given by using the adversary as a
probabilistic polynomial time algorithm, and solving a known hard problem assuming that the adversary
exists. This shows that until the hard problem remains as such, the adversary cannot exist. In this section
we define the hard problems that the security of our proposed schemes rely on.

2.2.1 Discrete Logarithm Problem

Definition 1. Discrete Logarithm Problem (DLP): Given (g,ga) ∈G2
1 for unknown a ∈ Z∗q, the Discrete

Logarithm problem in G1 is to compute a.

The advantage of any probabilistic polynomial time algorithm A in solving the Discrete Logarithm
Problem in G1 is defined as

AdvDLP
A = Pr

[
A (g,ga) = a | a ∈ Z∗q

]
The Discrete Logarithm Problem is computationally hard, i.e. for any probabilistic polynomial time
algorithm A , the advantage AdvDLP

A is negligibly small.

2.2.2 Decision Diffie-Hellman Problem (DDHP)

Definition 2. Given (P,aP,bP,Q) ∈ G4
1 for unknown a,b ∈ Z∗q, the DDH problem in G1 is to check if

Q ?
= abP.

The advantage of any probabilistic polynomial time algorithm A in solving the DDH problem in G1 is
defined as

AdvDDH
A = |Pr [A (P,aP,bP,Q) = 1]|− |Pr [A (P,aP,bP,abP) = 1]|a,b ∈R Z∗q

The DDH Assumption is that, for any probabilistic polynomial time algorithm A , the advantage AdvDDH
A

is negligibly small. Here G1 is a additive group.
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2.2.3 Computation Diffie-Hellman Problem (CDHP)

Definition 3. Given (g,ga,gb) ∈G3
1 for unknown a,b ∈ Z∗q, the CDH problem in G1 is to compute gab.

The advantage of any probabilistic polynomial time algorithm A in solving the CDH problem in G1 is
defined as

AdvCDH
A = Pr

[
A (g,ga,gb) = gab | a,b ∈R Z∗q

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm A , the advantage AdvCDH

A
is negligibly small.

2.2.4 Gap Diffie-Hellman Problem (GDHP)

Definition 4. We call G a gap Diffie-Hellman group if the DDHP can be solved in polynomial time but
no probabilistic polynomial time algorithm can solve CDHP with non-negligible advantage. The CDHP
in gap diffie-hellman groups is called GDHP.

2.3 Certificateless Online/Offline Signature

Any certificateless signature scheme consists of seven algorithms namely Setup, PartialExtract, SetSe-
cretValue, PublicKeyGeneration, PrivateKeyGeneration, Sign and Verify. A certificateless online/offline
signature scheme will contain the following eight probabilistic polynomial time algorithms. Here a par-
ticular user is denoted as UA and his identity as IDA. Since there are many keys in a Certificateless
system we use the following conventions: UPK - User Public Key, FPK - Full Public Key, PPK - Partial
Public Key, USK - User Secret Key, FSK - Full Secret Key, PSK - Partial Secret Key.

Setup(κ): This algorithm is run by the KGC. The master private key and the public parameters are
generated by executing this algorithm. Given the security parameter κ the KGC first sets the master
private key (msk) then the public parameters (params). The KGC publishes params but keeps msk
secret.

PartialExtract(params, IDA): This algorithm is executed by the KGC. Given an identity IDA as input,
the KGC generates the PPK (Partial Private Key) and PPK (Partial Public Key) and sends them to the user.

SetSecretValue(params,κ): This algorithm is run by each user in the system to generate his user secret
value. Let the user be UA and the corresponding user secret value of this user be tA. The value tA is kept
secret by the user.

PublicKeyGeneration(params, IDA,USK,PPK〉): This algorithm is executed by the user to generate the
full public key corresponding to his identity. The inputs to this algorithm are the identity IDA, the user
private key tA and the partial public key. The output of this algorithm is the user public key. Note that this
step is independent of the PrivateKeyGeneration. The user public key can be set even before knowing
the partial private key. The full public key is the partial public key together with the user public key.

PrivateKeyGeneration(params, IDA,PSK,USK): This algorithm is executed by the user to generate the
FPK. The user computes his FPK using the PPK and the UPK. The FPK is kept secret by the user. Note that
the KGC does not have complete knowledge about FPK.

OfflineSignature(params,FSK): To generate a certificateless signature, taking params as input the
signer generates the offline component φ . It should be noted that the signer does not know the mes-
sage during the offline computation. The offline signature is typically a collection of tuples. The signer
pre-computes and stores a large number of offline signature tuples in secure local storage for use in the
online phase.
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OnlineSignature(params, IDA,M ,FSK,φ ): This algorithm is run by the signer during the online phase.
Given a message M , the FPK and an offline tuple, the signer generates the certificateless signature σ .
Note that for each signature computation in the online phase, a fresh offline signature tuple must be
retrieved and used. If there is no look up directory for the public key values then the public key must be
sent along with the message and the signature.
Verification(IDA,M ,FPK,σ ): This algorithm is run by the verifier. The signature verification can be
done by anyone using params, the signer’s identity IDA, the message M and the signer’s public key
FPK. If the signature is valid output true else output false.

2.4 Security Model for Certificateless Online/Offline Signature

In the certificateless setting there are two types of adversaries denoted by, AI and AII . AI represents a
dishonest user who can replace other users’ public keys since there is no certificate bound with the public
keys. AII represents a malicious KGC who has knowledge of msk but is trusted not to replace public
keys. Here we describe the security model for Existential Unforgeability against chosen message attack
(EUF-CMA) against AI and AII . This model is the strongest security model discussed by Z. Zhang et
al.[13] for both the type-I and type-II adversaries.

Definition 5. A certificateless signature scheme is existentially unforgeable against chosen message
attack of type-I (EUF-CMA-I) if any type-I PPT adversary AI has negligible advantage in the following
game between AI and a challenger algorithm C :

Restrictions: AI may request hash queries, PartialExtract(IDA), PublicKeyGeneration( IDA,USK,PPK ),
PrivateKeyGeneration( IDA,PSK,USK ), PublicKeyReplace( IDA,New-FPK ) and Signature oracle queries.
AI must however stick to the following exception:

1. For any identity, AI cannot request the partial private key after replacing the public key.

Setup: C starts the game by setting the public parameters and gives params to AI . The msk is kept
secret.
Training Phase: AI is now allowed query the oracles as defined in the model. The queries are subject
to the restrictions stated above. The following oracle queries are allowed:

• PartialExtract(IDi) queries can be made by the AI for any identity except IDch.

• PrivateKeyGeneration(IDi) queries can be made by AI for all identities except IDch. Note that AI

need not send ti or ki for this query, if they are not yet set. C should set them before answering the
query.

• PublicKeyGeneration(IDi) queries can be made by AI for all identities. Note that AI is not required
to send ti to C for this query. If ti is not set it should be set by C .

• PublicKeyReplace(IDi,New-FPK) AI sends a new public key to replace the old public key. When
C receives this query, C replaces the old public key for IDi with the new one, only if the new
public key is valid. This means that all signing and verifications done after this will use the new
public key.

• Signature(IDi, M ) query can be made by AI for all identities. AI is not required to send the full
private key to C for the query. Here the Signature oracle is a combination of the online and offline
signatures. We do not separately give the offline and the online signatures as oracles since the
offline phase is assumed to be securely stored on the local storage of the device and hence it is not
revealed to the adversary.
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Note that in our security proof, we provide a strong Signature oracle. A strong oracle for signature
means that even if the public key has been replaced for the particular identity during the training phase,
the Signature oracle outputs valid signatures.

Forgery: Finally, after taking sufficient training, AI outputs a forgery 〈M ,σ∗, IDch,FPK〉. AI wins if

• veri f y(M ,σ∗, IDch,FPK) = True

• The signature σ∗ was not the output of a Signature oracle query during the training phase.

• The partial private key of IDch is not known to AI .

The advantage of AI is defined as the probability that AI wins the game.

Definition 6. A certificateless signature scheme is existentially unforgeable against chosen message
attack of type-II (EUF-CMA-II) if any type-II adversary AII has negligible advantage in the following
game between AII and a challenger algorithm C :

Restrictions: AII may request hash queries, PublicKeyGeneration( IDA,USK,PPK), PrivateKeyGenera-
tion( IDA,PSK,USK ) and Signature oracle queries. Let IDch be the identity for which AII submits the
final forgery.
Setup: C sets up the system by generating the public parameters params and gives it to AII . The msk is
also sent to AII .

Training Phase: AII is now allowed to make use of a number of oracles provided by C . With respect to
the restrictions stated above, C provides the following oracles.

• Note that the PartialExtract(IDi) oracle is not required to be provided to AII since AII already has
the master private key and can easily compute the partial private key and partial public key.

• PrivateKeyGeneration(IDi) queries can be made by AII for all identities except IDch. Note that
AII need not send ti or di for this query, if they are not yet set C should set them before answering
the query.

• PublicKeyGeneration(IDi) queries can be made by AII for any identity. Note that AII is not re-
quired to send ti to C for this query. If ti is not set then C sets it first and then sends the FPK to
AII .

• Signature(ID,M ) query can be made by AII for all identities. AII is not required to send the full
private key to C for the query. Here the Signature oracle is a combination of the online and offline
signatures. We do not separately give the offline and the online signatures as oracles since the
offline phase is assumed to be securely stored on the local storage of the device and hence it is not
revealed to the adversary.

Forgery: Finally, AII outputs a forgery 〈M ,σ∗, IDch,FPK〉 and AII wins if

1. veri f y(M ,σ , IDch,FPK) = True and

2. The Signature oracle was not queried with (M , IDch,FPK) as input during the training phase.

The advantage of AII is defined as the probability that AII wins the game.
Remark: Observe that while AI does not get the master private key(msk), AII gets msk from the chal-
lenger C . Also while AI may change the public key through the oracle PublicKeyReplace(IDi,New-FPK),
but AII cannot change the public keys and hence no such oracle is provided in Definition 6.
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2.5 Review of the Scheme Presented in [18]

This is paper is an expanded version of our work[18] that was presented at MIST-2012. We extend the
ideas from CLOOS-MIST here to construct a new Certificateless Online/Offline Signature (CLOOS)
having a tight security reduction. Note that CLOOS-MIST described below has two parts - a key con-
struct and a signature scheme. We have incorporated the schnorr signature scheme as main component
of both these parts. Note that the schnorr signature scheme does not have a tight security proof, due to
this our scheme also does not have a tight security proof.

• Setup(κ): Given κ the security parameter as input, the KGC chooses a multiplicative group G
with prime order p, chooses a generator of the group g. Chooses s ∈R Z∗p as the master private key.
The KGC then computes h = gs, Chooses four hash functions with the following definition:

– H1 : Z∗p×G→ Z∗p
– H2 : Z∗p×G×G→ Z∗p
– H3,Ĥ3 : {0,1}|M |×Z∗p×G3→ Z∗p

The KGC keeps msk secret and sets Params = 〈κ, p,g,h,H1,H2,H3,Ĥ3〉

Note: In all the algorithms described below, we consider the identity IDA corresponds to the user
UA and all values subscripted with A represent the value corresponding to the user UA.

• PartialExtract(IDA): Given an identity IDA the KGC does the following to generate the partial
private key:

– Choose yA ∈R Z∗p and compute the partial public key pA = gyA .

– Compute the partial private key kA = yA + sH1(IDA, pA).

Send pA and kA as the partial public key and partial private key respectively to the user UA. The
user may check true: gkA = pAhH1(IDA,pA) for the validity and correctness of the received values.

• SetSecretValue(κ, params): UA performs the following to generate the user secret value corre-
sponding to his identity:

– Choose tA ∈R Z∗p and sets tA as the user secret value.

• PublicKeyGeneration(IDA, tA,kA, pA): The user performs the following to generate the full public
key.

– Compute the user public key as qA = gtA .

– Set full public key as 〈pA,qA〉.

• PrivateKeyGeneration(IDA, tA,kA,〈pA,qA〉): The user sets his full private key as follows:

– Compute the value wA = tAH2(IDA, pA,qA).

– The full private key nA = 〈kA, tA,wA〉.

• Offline Signature(params): The signer performs the following to generate the offline components
which are stored as tuples:

– Choose r ∈R Z∗p.
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– Compute u = gr.

– The offline signature is φ = 〈u,r〉.

Note: It should be noted that these offline components are computed when the device is idle and
does not perform any operations with respect to signing. A large set of these pair of values are
stored in the local memory of the device. These values are independent of the messages.

• Online Signature(IDA,M ,nA,φ ):

– Obtain a fresh offline signature tuple φ = 〈u,r〉 note that nA = 〈kA, tA,wA〉.

– Compute h3 = H3(M , IDA,u, pA,qA) and ĥ3 = Ĥ3(M , IDA,u, pA,qA)

– Compute σ = r+ kAh3 +wAĥ3.

– The online signature is 〈σ ,u〉.

• Signature Verification(IDA,M ,〈pA,qA〉,〈σ ,u〉):

– Compute h1 = H1(IDA, pA), h2 = H2(IDA, pA,qA), h3 = H3(M , IDA,u, pA,qA) and ĥ3 =

Ĥ3(M , IDA,u, pA,qA).

– Check if gσ ?
= u(pAhh1)h3(qh2

A )ĥ3 . If the check returns true accept the signature else 〈σ ,u〉
is invalid.

3 Our Scheme

Note: We now present a new scheme using two signature schemes that have a tight security reduction.
We use the scheme given by Sharmila et al.[19] as the key construct and the scheme by Mames et. al.[5]
as the signature scheme.

• Setup(κ): Given κ the security parameter the KGC chooses a group G of order p and a generator
of this group P. s1 and s2 are then chosen randomly from Z?

p. The KGC then sets the master secret
key msk = 〈s1,s2〉, and then computes P1 = s1P and P2 = s2P
The KGC then chooses six hash functions with the following definition:

– H1 : {0,1}?×G→G

– Ĥ1 : {0,1}?×G→G
– H2 : {0,1}?×G→ Z?

p

– H3 : {0,1}?×G3→ Z?
p

– H4 : G→G
– H5 : M ×{0,1}?×G7→ Z?

p

The KGC keeps msk secret and makes params public where params= 〈κ,P,P1,P2,H1,H2,H3,H4,H5〉

• Partial Extract(params, IDA): Given an identity ID = IDA the KGC does the following to gen-
erate the PPK (partial public key) and the PSK (partial secret key):

– Randomly chooses rA ∈R Z?
p and then computes YA = rAP2.

– Computes HA = H1(IDA,YA) and then computes XA = rAHA

– Computes dA = s1qA + s2rA; where qA = H2(IDA,XA)

– Finally outputs 〈dA〉 as the PSK (partial secret key) and 〈XA,YA〉 as the PPK (partial public
key).
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Any valid partial extract output value will return true for the following check: Compute HA =

H1(IDA,YA) and qA =H2(IDA,XA), then check if (1) ê(XA,P2)
?
= ê(HA,YA) and (2) dAP ?

= qAP1+
YA.

• Set Secret Value( params, κ ) The user UA having identity IDA performs the following to generate
the USK (user secret key).

– Randomly choose tA ∈R Z?
p as the USK (user secret key).

• Public Key Generation( params, IDA,USK,PPK ): The user UA runs this algorithm to generate
the public key.

– Compute TA1 = tAP

– Compute ĤA = Ĥ1(IDA,TA1) and then set TA2 = tAĤA

– The FPK (Full Public Key) is 〈XA,YA,TA1,TA2〉

• Private Key Generation( params, IDA,USK,PSK ): The user UA runs this algorithm to generate
his full secret key. This value is kept secret.

– Compute nA = dA + tAH3(IDA,YA,TA1,TA2).

– The FSK (full secret key) is nA.

• Offline Signature( params, FSK ): The user UA runs this algorithm many times to obtain a large
number of offline signature tuples and stores them in a secure local storage. For every signature
generated in the online phase the user consumes one offline signature tuple. Note that the offline
signature tuples are not reused.

– Randomly choose k ∈R Z?
p.

– Then compute H = H4(kP)

– Compute Z1 = nAH, Z2 = kH and Z3 = kP

– The offline signature is φ = 〈k,H,Z1,Z2,Z3〉

• Online Signature( params, IDA,M ,FSK,φ ): To generate a signature the user UA takes a fresh
offline signature tuple φ and then:

– computes c = H5(M , IDA,XA,YA,TA1,TA2,Z1,Z2,Z3)

– then compute v = k+ cnA

– Output the final signature as σ = 〈Z1,Z2,v,c〉

• Signature Verification( params, IDA,M ,σ ,FPK ): The verifier runs this algorithm to verify if a
signature that he had received is indeed a valid signature.

– Compute NA = qAP1 +YA +H3(IDA,YA,TA1,TA2)TA1

– Compute Z3 = vP− cNA

– Compute H = H4(Z3)

– Compute HA = H1(IDA,YA) and ĤA = Ĥ1(IDA,TA1)

– Check c ?
= H5(M , IDA,XA,YA,TA1,TA2,Z1,Z2,Z3)
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– Check if vH ?
= Z2 + cZ1

– Accept the signature if both checks return true.

Public Key Verification The FPK (Full Public Key) is 〈XA,YA,TA1,TA2〉, it can be verified as fol-
lows:

– Check if ê(YA,HA)
?
= ê(P2,XA)

– Check if ê(TA1, ĤA)
?
= ê(P,TA2) Only if both these checks return true we accept the FPK.

This check needs to be performed only once for each user, until the FPK remains the same.

Lemma 1. The above signature verification algorithm returns true for valid signatures.

Proof. Since, the value of nA is computed as nA = dA + tAH3(IDA,YA,TA1,TA2), this implies that the
value of nAP is dAP +H3(IDA,YA,TA1,TA2)(tAP). The value of dAP can be expanded as qAP1 +YA.
Hence, NA = qAP1 +YA +H3(IDA,YA,TA1,TA2)TA1 is the first step of the verification algorithm.
Now since v = k+ cnA, we have Z3 = kP = vP− cNA.
All other values inside the hash function used to compute c are computed in the usual way hence any
valid signature must return true for c ?

= H5(M , IDA,XA,YA,TA1,TA2,Z1,Z2,Z3)

The check vH ?
= Z2 + cZ1 returns true since, LHS = vH = kH + c(nAH) = z2 + cZ1 = RHS

This shows that a valid signature will return true for the verification algorithm.

Lemma 2. The above public key verification algorithm returns true for a valid FPK.

Proof. Since for any valid FPK,
the DiscretelogP2(YA) = DiscretelogHA(XA) = rA and DiscretelogP(TA1) = DiscretelogHA(TA2) = tA
⇒ ê(YA,HA)

?
= ê(P2,XA) and ê(TA1, ĤA)

?
= ê(P,TA2) return true.

3.1 Security Proof

3.1.1 EUF-CMA security against type-I adversary

Theorem 1. If there exists a EUF-CMA adversary AI that can forge the above signature with probability
ε then there exists a challenger C who can solve the GDH problem with probability atleast ε ′ where,

ε
′ ≥
[(

1
qid

)(
1− qPE

qid

)(
1− qFSE

qid

)
ε

]
Proof: Let C be given an instance of the GDH problem - 〈P,aP,bP〉. The aim of C is to find abP.
Consider a type-I adversary AI capable of breaking the security of the Certificateless Online/Offline
Signature scheme. We show that C can use AI to solve the GDH problem.

Setup: The challenger C must setup the system exactly as in the scheme. C first chooses s2 ∈R Zp and
then sets P1 = aP and P2 = s2P. Note that here the master secret key msk = 〈a,s2〉 where a is unknown to
C . C then chooses six hash functions Hi where i = 1,2...5 along with Ĥ1 and models them as random
oracles OHi . To maintain consistency of response C maintains lists Li for each hash function Hi. Another
list Lid is maintained for storing all the keys. If any value is unknown while updating the list, then those
values are left blank and filled when available. The list Lid is of the form 〈IDi,Yi,Ti1,Ti2,di, ti,ni,ki〉 it
contains the FPK, PSK, USK, FSK and an extra bit ki ∈ {0,1} which acts as a flag to display if the public
key has been replaced or not. ki is set as zero unless some oracle alters its value.
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Training Phase: In this phase the adversary AI makes use of all the oracles provided by C . Without
loss of generality we can assume that the public key queries made by the adversary are distinct. The
system is simulated in such a way that AI cannot differentiate between a real and a simulated system that
is provided by C .
Choosing the target identity: In the Oracle OH1(IDi,Yj) the adversary asks qH1 queries of the form
(ID,Y ) ∈ ({0,1}∗,G) and expects a response for H1(IDi,y j) from the challenger. The adversary can
choose to query the oracle using only one ID but using different values of Y . So the number of unique
identities queried is different from qH1 . Let the number of unique identities queried be qid . Then in Oracle
OH1(IDi,Yj) there are two indices i and j. Here the index i counts the number of unique identities queried
in H1 and the index j counts the total number of H1 queries. So 1 ≤ i ≤ qid ≤ qH1 and 1 ≤ j ≤ qH1 .
To set the target identity IDI the challenger chooses I randomly such that 1 ≤ I ≤ qid and sets the Ith

unique identity as the target identity IDI . We also assume that the target identity was decided when it
was involved in a query for the first time.

Oracle OH1(IDi,Yj) To respond to this oracle the list LH1 is maintained of the form 〈IDi,Yj,H j, x̂ j〉. C
responds as follows:

• If IDi,Yj already exists in the list then respond with value H j from the list.

• If IDi 6= IDI then choose x̂ j ∈R Zp then compute H j = x̂ jP. Return value of H j and add the tuple
〈IDi,Yj,H j, x̂ j〉 to the list.

• If IDi = IDI then choose x̂ j ∈R Zp then compute H j = x̂ j(bP). Return value of H j and add the
tuple 〈IDi,Yj,H j, x̂ j〉 to the list.

Oracle OĤ1
(IDi,Tj1) To respond to this oracle the list LĤ1

is maintained of the form 〈IDi,Tj1, Ĥ j, x̂ j〉. C
responds as follows:

• If IDi,Tj1 already exists in the list then respond with value Ĥ j from the list.

• If IDi 6= IDI then choose x̂ j ∈R Zp then compute Ĥ j = x̂ jP. Return value of Ĥ j and add the tuple
〈IDi,Tj1, Ĥ j, x̂ j〉 to the list.

• If IDi = IDI then choose x̂ j ∈R Zp then compute Ĥ j = x̂ j(bP). Return value of Ĥ j and add the
tuple 〈IDi,Tj1, Ĥ j, x̂ j〉 to the list.

Oracle OH2(IDi,X j) To respond to this oracle the list LH2 is maintained of the form 〈IDi,X j,qi〉. C
responds as follows:

• If IDi,X j already exists in the list then respond with value q j from the list.

• Else, choose q j ∈R Zp. Return value of q j and add the tuple 〈IDi,X j,q j〉 to the list.

Oracle OH3(IDi,Yj,Tj1,Tj2) To respond to this oracle the list LH3 is maintained of the form 〈IDi,Yj,Tj1,Tj2,h j〉.
C responds as follows:

• If IDi,Yj,Tj1,Tj2 already exists in the list then respond with value h j from the list.

• Else, choose h j ∈R Zp. Return value of h j and add the tuple 〈IDi,Yj,Tj1,Tj2,h j〉 to the list.

Oracle OH4(K j) To respond to this oracle the list LH4 is maintained of the form 〈K j,H j,y j〉. C responds
as follows:
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• If K j already exists in the list then respond with value H j from the list.

• Else choose y j ∈R Zp and respond as: H j = y j(bP) Return value of H j and add the tuple 〈K j,H j,y j〉
to the list.

Oracle OH5(M j, IDi,X j,Yj,Tj1,Tj2,Z1 j,Z2 j,Z3 j)To respond to this oracle the list LH5 is maintained of
the form 〈M j, IDi,X j,Yj,Tj1,Tj2,Z1 j,Z2 j,Z3 j,q j〉. C responds as follows:

• If 〈M j, IDi,X j,Yj,Tj1,Tj2,Z1 j,Z2 j,Z3 j〉 already exists in the list then respond with value q j from
the list.

• Else, choose q j ∈R Zp. Return value of q j and add the tuple 〈M j, IDi,X j,Yj,Tj1,Tj2,Z1 j,Z2 j,Z3 j,q j〉
to the list.

Oracle OPartialExtract : C responds as follows:

• If values corresponding to IDi already exists on the list Lid then return 〈di〉 and PSK and 〈Xi,Yi〉 as
PPK from the list.

• If ID 6= IDI then:

– choose di,qi ∈R Zp. Compute Yi = diP−qi(aP).

– Query Oracle OH1(IDi,Yi) and retrieve value of x̂ j from the list.

– Compute Xi = x̂ js−1
2 Yi then set value of H2(IDi,Xi) = qi and add these values to LH2 .

– Output 〈di〉 and PSK and 〈Xi,Yi〉 as PPK.

– Add these values to list Lid in the entry corresponding to IDi without changing any of the
other values.

• If ID = IDI then Abort.

Lemma 3. The above Oracle OPartialExtract(IDi) outputs valid PSK and PPK.

Proof. The PSK and PPK should return true for the following: Compute HA = H1(IDA,YA) and qA =

H2(IDA,XA), then check if (1) ê(XA,P2)
?
= ê(HA,YA) and (2) dAP ?

= qAP1 +YA.
We set Hi = x̂ jP and qi ∈R Zp.
(1) LHS = ê(Xi,P2) = ê(x̂ js−1

2 Yi,s2P) = ê(x̂ jris2P,s−1
2 s2P) = ê(x̂ jP,ris2P) = ê(Hi,Yi) = RHS

(2) diP
?
= qiP2 +Yi here we had set, Yi = diP−qi(aP)⇒ diP = qiP2 +Yi

Hence both checks returns true.

Oracle OPublicKeyGen: C responds as follows:

• If values corresponding to IDi already exists on the list Lid then return 〈Xi,Yi,Ti1,Ti2〉 as the FPK

from the list.

• If ID 6= IDI then:

– Retrieve the values of Xi and Yi from the list Lid . If they are not on the list then first Oracle
OPartialExtract is queried an the above values are retrieved.

– Choose ti ∈R Zp then compute Ti1 = tiP. Now query the Oracle OĤ1
(IDi,Ti1) and retrieve

value of x̂ j from the list.
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– Compute Ti2 = x̂ jTi1. Now add 〈IDi,Xi,Yi,Ti1,Ti2〉 to the list.

– Output 〈Xi,Yi,Ti1,Ti2〉 as the FPK.

– Add these values to list Lid in the entry corresponding to IDi along with the value of ti without
changing any of the other values.

• If ID = IDI .

– Choose rI, x̂I1, ti, x̂I2 ∈R Zp.

– Compute YI = rIs2P then compute XI = rIHI .Here HI = x̂I1bP. Add 〈IDI,YI,HI, x̂I1〉 to list
LH1 .

– Compute TI1 = tIP and TI2 = tIĤI . Here ĤI = x̂I2bP. Add 〈IDI,TI1, ĤI, x̂I2〉 to list LĤ1
.

– Output 〈XI,YI,TI1,TI2〉 as the FPK.

– Add these values to list Lid in the entry corresponding to IDi along with the value of tI without
changing any of the other values.

Lemma 4. The above Oracle OPublicKeyGen(IDi) outputs valid FPK.

Proof. Any valid FPK returns true for the public key verification algorithm: (1) ê(YA,HA)
?
= ê(P2,XA)

(2) ê(TA1, ĤA)
?
= ê(P,TA2)

(1) If ID 6= IDI then proof same as Lemma 3
If ID = IDI , then YI = rIP2,XI = rIHI . So, LHS = RHS = ê(P2,HI)

rI . Verifies as true.
(2) In both cases ID 6= IDI and ID = IDI , Ti1 = tiP,Ti2 = tiĤI . So, LHS = RHS = ê(P, ĤI)

ti . Verifies as
true.

Oracle OFullPrivateKeyGen : C responds as follows:

• If values corresponding to IDi already exists on the list Lid then return 〈ni〉 as the FSK form the list.

• If ID 6= IDI then:

– Retrieve the values of 〈di, ti〉 from Lid . If they are absent run Oracle OPartialExtract and Oracle
OPublicKeyGen.

– Query Oracle OH3(IDi,Yi,Ti1,Ti2) and retrieve value of hi from the list.

– Compute ni = di +hiti. Output 〈ni〉 as the FSK.

– Add this value to list Lid in the entry corresponding to IDi without changing any of the other
values.

• If ID = IDI then Abort.

Oracle OPublicKeyReplace The adversary sends the values 〈IDi,Xi,Yi,Ti1,Ti2〉 to the challenger C .C replaces
the current public key for IDi with the above values in the list Lid . In addition the value of ki = 1 is set.
This acts as a flag to display that the public key has been replaced. From this point forward signature
verification algorithm will use these values as the public key.

Oracle OSignature The challenger answers this query as follows:

• Find value of qA = H2(IDi,Xi) and h3 = H3(IDi,Yi,Ti1,Ti2) from the corresponding hash oracles
.
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• Compute Ni = qiP1 +Yi +h3Ti1

• Choose α,v,c ∈R Zp then compute Z3 = vP− cNi

• Set αP = H4(Z3) and add 〈Z3,αP,α〉 to the list LH4 , then compute Z1 = αNi and Z2 = αZ3

• Send 〈Z1,Z2,v,c,M 〉

Note: This Signature oracle is a strong Signature oracle since even if the public key has been replaced
the signature produced will be a valid one.

Lemma 5 (Strong Signature Oracle). The above Strong Signature Oracle outputs valid signatures for
any valid FPK (Even if FPK has been replaced ).

Proof. Any valid signature should return true to (1) c ?
= H5(M , IDA,XA,YA,TA1,TA2,Z1,Z2,Z3) (2)

vH ?
= Z2 + cZ1 for valid public keys.

(1) Ni,Z3 is computed in the same way as in the actual verification algorithm. Hence the check c ?
=

H5(M , IDA,XA,YA,TA1,TA2,Z1,Z2,Z3) will return true (2) RHS = Z2 +cZ1 = α(Z3)+cαNi = α(vP−
cNi)+ cαNi = vαP = vH = LHS also returns true

Forgery: The adversary outputs a valid forgery: σ∗= 〈Z∗1 ,Z∗2 ,v∗,c∗〉. The challenger aborts if the forgery
is not given for the target identity IDI . All the relevant public keys are retrieved from Lid in the entry
corresponding to IDI

The challenger retrieves the value of yi from LH4 in the entry corresponding to Z∗3 = v∗P− c∗NI , qI from
LH2 corresponding to IDI,XI and h3 from LH3 corresponding to IDI,YI,TI1,TI2. Next he retrieves the
values of x̂ j1 from LH1 in the entry corresponding to IDI,YI and x̂ j2 from LĤ1

in the entry corresponding
to IDI,TI1.
Finally C returns ∆ = q−1

I [y−1
i Z∗1 − s2x̂−1

j1 XI−h3x̂−1
j2 TI2] as the solution to the hard problem.

Lemma 6. The value of ∆ computed in the above way the the solution to the GDHP Problem instance
i.e. ∆ = abP

Proof. Since the forgery σ∗ is a valid forgery - the element Z∗1 will be of the form: Z∗1 = nIH = (aqI +
s2rI + tIh3)H and H is of the form yi(bP). So finally:

y−1
i Z∗1 = aqIbP+ s2rIbP+ tIh3bP

The solution of our hard problem i.e. abP, is to be extracted from y−1
i Z∗1 . The value of s2rIbP can be

computed as s2x̂−1
j1 XI = s2x̂−1

j1 x̂ j1rIbP = s2rIbP.
The value of tIh3bP can be computed as, h3x̂−1

j2 TI2 = h3x̂−1
j2 x̂ j2tIbP = tIh3bP

Hence, we can compute y−1
i Z∗1 − s2x̂−1

j1 XI−h3x̂−1
j2 TI2 = qI(abP)

⇒ abP = ∆ = q−1
I [y−1

i Z∗1 − s2x̂−1
j1 XI−h3x̂−1

j2 TI2]

Probability Analysis: C fails to give a perfect simulation only if the following events occur.
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• E1 : AI returns the final forgery for an ID other than the chosen ID = IDI .

• E2 : AI makes a partial key extraction query on IDI .

• E3 : AI makes a full private key extraction query on IDI .

So we have Pr[E1] = 1−1/qid , Pr[E2] = qPE(1/qid) and Pr[E3] = qFSE(1/qid). Hence the overall proba-

bility of not aborting during the simulation phase is: Pr[¬E1∧¬E2∧¬E3] =

(
1

qid

)(
1− qPE

qid

)(
1− qFSE

qid

)
and finally the advantage of the adversary is ε .
Hence the total probability

ε
′ ≥
[(

1
qid

)(
1− qPE

qid

)(
1− qFSE

qid

)
ε

]

3.1.2 EUF-CMA security against type-II adversary

Theorem 2. If there exists a EUF-CMA adversary AII that can forge the above signature with probability
ε then there exists a challenger C who can solve the GDH problem with probability atleast ε ′ where,

ε
′ ≥
[
(

1
qid

)(1− qFSE

qid
)ε

]
Proof: Let C be given an instance of the GDH problem - 〈P,aP,bP〉. The aim of C is to find abP.
Consider a type-II adversary AII capable of breaking the security of the Certificateless Online/Offline
Signature scheme. We show that C can use AII to solve the GDH problem.

Setup: The challenger C must setup the system exactly as in the scheme. C first chooses s1,s2 ∈R Zp

and then sets P1 = s1P and P2 = s2P. Note that here the master secret key msk = 〈s1,s2〉. The challenger
gives this value (msk) to AII , since AII represents a malicious KGC and hence has knowledge of the
master secret key. C then chooses six hash functions Hi where i = 1,2...5 along with Ĥ1 and models
them as random oracles OHi . To maintain consistency of response C maintains lists Li for each hash
function Hi. Another list Lid is maintained to store the public keys and private keys. The list Lid is of the
form 〈IDi,Yi,Ti1,Ti2,di, ti,ni〉 it contains the FPK, PSK, USK,FSK.

Training Phase: In this phase the adversary AII makes use of all the oracles provided by C . Without
loss of generality we can assume that the public key queries made by the adversary are distinct. The
system is simulated in such a way that AII cannot differentiate between a real and a simulated system
that is provided by C .
Choosing the target identity: In the Oracle OH1(IDi,Yj) the adversary asks qH1 queries of the form
(ID,Y ) ∈ ({0,1}∗,G) and expects a response for H1(IDi,y j) from the challenger. The adversary can
choose to query the oracle using only one ID but using different values of Y . So the number of unique
identities queried is different from qH1 . Let the number of unique identities queried be qid . Then in
Oracle OH1(IDi,Yj) there are two indices i and j. Here the index i counts the number of unique identities
queried in H1and the index j counts the total number of H1 queries. So 1≤ i≤ qid ≤ qH1 and 1≤ j≤ qH1 .
To set the target identity IDI the challenger chooses I randomly such that 1 ≤ I ≤ qid and sets the Ith

unique identity as the target identity IDI .

Oracle OH1(IDi,Yj) To respond to this oracle the list LH1 is maintained of the form 〈IDi,Yj,H j, x̂ j〉. C
responds as follows:

• If IDi,Yj already exists in the list then respond with value H j from the list.
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• If IDi 6= IDI then choose x̂ j ∈R Zp then compute H j = x̂ jP. Return value of H j and add the tuple
〈IDi,Yj,H j, x̂ j〉 to the list.

• If IDi = IDI then choose x̂ j ∈R Zp then compute H j = x̂ j(bP). Return value of H j and add the
tuple 〈IDi,Yj,H j, x̂ j〉 to the list.

Oracle OĤ1
(IDi,Tj1) To respond to this oracle the list LĤ1

is maintained of the form 〈IDi,Tj1, Ĥ j, x̂ j〉. C
responds as follows:

• If IDi,Tj1 already exists in the list then respond with value Ĥ j from the list.

• Else choose x̂ j ∈R Zp then compute Ĥ j = x̂ jP. Return value of Ĥ j and add the tuple 〈IDi,Tj1, Ĥ j, x̂ j〉
to the list.

Oracle OH2(IDi,X j) To respond to this oracle the list LH2 is maintained of the form 〈IDi,X j,q j〉. C
responds as follows:

• If IDi,X j already exists in the list then respond with value q j from the list.

• Else, choose q j ∈R Zp. Return value of q j and add the tuple 〈IDi,X j,q j〉 to the list.

Oracle OH3(IDi,Yj,Tj1,Tj2) To respond to this oracle the list LH3 is maintained of the form 〈IDi,Yj,Tj1,Tj2,h j〉.
C responds as follows:

• If IDi,Yj,Tj1,Tj2 already exists in the list then respond with value h j from the list.

• Else, choose h j ∈R Zp. Return value of h j and add the tuple 〈IDi,Yj,Tj1,Tj2,h j〉 to the list.

Oracle OH4(K j) To respond to this oracle the list LH4 is maintained of the form 〈K j,H j,y j〉. C responds
as follows:

• If K j already exists in the list then respond with value H j from the list.

• Else choose y j ∈R Zp and respond as: H j = y j(bP) Return value of H j and add the tuple 〈K j,H j,y j〉
to the list.

Oracle OH5(M j, IDi,X j,Yj,Tj1,Tj2,Z1 j,Z2 j,Z3 j)To respond to this oracle the list LH5 is maintained of
the form 〈M j, IDi,X j,Yj,Tj1,Tj2,Z1 j,Z2 j,Z3 j,q j〉. C responds as follows:

• If 〈M j, IDi,X j,Yj,Tj1,Tj2,Z1 j,Z2 j,Z3 j〉 already exists in the list then respond with value q j from
the list.

• Else, choose q j ∈R Zp. Return value of q j and add the tuple 〈M j, IDi,X j,Yj,Tj1,Tj2,Z1 j,Z2 j,Z3 j,q j〉
to the list.

Oracle OPartialExtract is not provided since the adversary knows the master secret key and can set any
partial extract value that he wants. The adversary should then send the PSK and PPK to the challenger
who will accept it and add it to the list Lid if the partial extract values sent by the adversary were valid.

Oracle OPublicKeyGen : C responds as follows:

• If values corresponding to IDi already exists on the list then return 〈Xi,Yi,Ti1,Ti2〉 as the FPK from
the list Lid .
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• If ID 6= IDI then:

– If the values of Xi,Yi are absent then request AII to set partial extract for IDi.

– Run the usual public key generation algorithm and return values 〈Xi,Yi,Ti1,Ti2〉 as the FPK

then add these values to the list Lid along with the value of ti without changing other values.

• If ID = IDI .

– Choose rI, x̂I1 ∈R Zp.

– Compute YI = rIs2P then compute XI = rI x̂I1P. Here HI = x̂I1P. Add 〈IDI,YI,HI, x̂I1〉 to list
LH1 .

– Set TI1 = aP and query Oracle OĤ1
(IDI,TI1) and retrieve x̂I from the list.

– Set TI2 = x̂I(aP). Output 〈XI,YI,TI1,TI2〉 as the FPK and add these values to the list Lid .

– Note:- The hard problem instance is injected here in the value of the user private key. In this
case we cannot update the value of tI in Lid since in this case we have set tI = a which is the
discrete logarithm of the hard problem instance.

Lemma 7. The above Oracle OPublicKeyGen(IDi) outputs valid FPK.

Proof. Any valid FPK returns true for the public key verification algorithm: (1) ê(YA,HA)
?
= ê(P2,XA)

(2) ê(TA1, ĤA)
?
= ê(P,TA2)

(1) If ID 6= IDI we run the usual algorithm hence the FPK is valid
If ID = IDI , then YI = rIP2,XI = rIHI . So, LHS = RHS = ê(P2,HI)

rI . Verifies as true.
(2) In both cases ID 6= IDI and ID = IDI , Ti1 = tiP,Ti2 = tiĤI . So, LHS = RHS = ê(P, ĤI)

ti . Verifies as
true.

Oracle OFullPrivateKeyGen C responds as follows:

• If values corresponding to IDi already exists on the list Lid then return ni from the list.

• If ID 6= IDI then:

– Retrieve the values of 〈di, ti〉 from the list Lid . If these values are absent then run Oracle
OPartialExtract and Oracle OPublicKeyGen.

– Query Oracle OH3(IDi,Yi,Ti1,Ti2) and retrieve value of h j from the list.

– Compute ni = di +h jti. Output ni and add the value to Lid .

• If ID = IDI then Abort.

Oracle OSignature This oracle is the same as the one given for the type-I Adversary.

Forgery: The adversary outputs a valid forgery: 〈Z∗1 ,Z∗2 ,v∗,c∗〉. The challenger aborts if the forgery is
not given for the target identity IDI . Then C gets the public key values for IDI from Lid .
The challenger retrieves the value of yi from LH4 in the entry corresponding to Z∗3 = v∗P− c∗NI , qI from
LH2 corresponding to IDI,XI and h3 from LH3 corresponding to IDI,YI,TI1,TI2. Next he retrieves the
values of x̂ j1 from LH1 in the entry corresponding to IDI,YI and qA from LH2 in the entry corresponding
to IDI,XI .
Finally C returns ∆ = h−1

3 [y−1
i Z∗1 − s2x̂−1

j1 XI− s1qI(bP)] as the solution to the hard problem.
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Lemma 8. The value of ∆ computed in the above way the the solution to the GDHP Problem instance
i.e. ∆ = abP

Proof. Since the forgery σ∗ is a valid forgery - the element Z∗1 will be of the form: Z∗1 = nIH = (s1qI +
s2rI +ah3)H and H is of the form yi(bP). So finally:

y−1
i Z∗1 = s1qIbP+ s2rIbP+ah3bP = term− I + term− II + term− III

Here, term-III contains the solution of our hard problem i.e. abP, hence term-II and term-I needs
to be removed from y−1

i Z∗1 . Term-II can be removed by subtracting s2x̂−1
j1 XI = s2x̂−1

j1 x̂ j1rIbP = s2rIbP =
term-II. Term-I can be removed by subtracting s1qI(bP)
⇒ y−1

i Z∗1 − s2x̂−1
j1 XI− s1qI(bP) = term-III = h3(abP)

⇒ abP = ∆ = h−1
3 [y−1

i Z∗1 − s2x̂−1
j1 XI− s1qI(bP)]

Probability Analysis:C fails to give a perfect simulation only if the following events occur.

• E1 : AII returns the final forgery for an ID other than the chosen ID = IDch.

• E2 : AII makes a full private key extraction query on IDch.

So we have Pr[E1] = 1−1/qid and Pr[E2] = qFSE(1/qid). Hence the overall probability of not aborting

during the simulation phase is: Pr[¬E1∧¬E2] = (
1

qid
)(1− qFSE

qid
) and the advantage of the adversary is

ε .
Hence the total probability

ε
′ ≥
[
(

1
qid

)(1− qFSE

qid
)ε

]

4 Efficiency Comparison

Many certificateless schemes have been proposed but to the best of our knowledge the only scheme to be
online/offline is by Ge et. al.[8] and our scheme - CLOOS-MIST[18]. These schemes do not have a tight
security reduction to the underlying hard problem. We have constructed a Certificateless Online/Offline
Signature schemes which have a tight security reduction to the underlying hard problem. This is the
only CLOOS scheme in existence having a tight security reduction to the underlying hard problem. We
compare our scheme with the scheme by Ge et al. and CLOOS-MIST[18] in the table 5. Even though
our scheme is built using more number of computational steps, note that our scheme works with much
smaller keys since it has a tight security reduction. This makes it more efficient than than the other
schemes and also lowers the communication overhead of our scheme.

5 Conclusions

In this paper, we have shown a view of how certificateless schemes are constructed. Then, we have
presented a CLOOS scheme and proved its security in the random oracle model. This scheme is the
only CLOOS scheme to have a tight security reduction. We have also compared our scheme to the only
other CLOOS schemes in existence. We show that even though our scheme is performs more minimal
operations, than the other schemes, since our scheme has a tight security it works with much smaller
keys and hence will be practically more efficient than the existing schemes. Also since the key size is
lowered the communication overhead will also be lesser. Our scheme will allow low power devices to
achieve high security requirements.
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Table 5: Efficiency Comparison
Scheme Signature Cost Verification Cost Remarks

Our Scheme
1H + 1FDH +
3PM+1mm+1ma

3H + 3FDH + 6PM +
4PA+4BP

Scheme with tight re-
duction (pairings)

CLOOS-MIST[18]
2H +1GE +2mm+
2ma

4H + 3GE + 3GM +
1mm

Most efficient Scheme.
Additionally Online/Of-
fline

Ge et. al.[8]
1H +2GE +2mm+
2ma

3H +7GE +4GM
Only online/offline
Scheme without pair-
ings

H - Hash Computation, FDH - Full Domain Hash Computation, PM - Point Multiplications, PA -
Point Additions, mm - Modular multiplication, ma - Modular Addition, BP - Bilinear Pairing
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