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Abstract

In this paper we propose an algorithm for computing large primes p and q such that q divides
p4 + p3 + p2 + p+ 1 or p4 − p3 + p2 − p+ 1. Such primes are key parameters for the Giuliani-
Gong Public Key System.
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1 Introduction

Let Φn be the nth cyclotomic polynomial; this is a unique monic polynomial whose roots are the primitive
nth roots of unity. Algorithms for computing roots of cyclotomic polynomials modulo a prime play an
important role in cryptography. They are utilized for computing key parameters (primes of special forms)
in cryptosystems which work in an extension of finite field Fp [2], [3], [4], [7]; In that cryptosystems
we need to generate primes p and q such that q divides Φn(p). From the security point of view it is
essential to find a prime p such that Φn(p) has a large prime factor q having at least 160 bits to make
DLP Problem in subgroup of order q of F∗

pn intractable. On the other hand, one should find a prime p
such that n log p ≈ 2048 to obtain security equivalent to factoring a positive integer having 2048 bits.

For instance, the XTR Public Key System [2] requires generating primes p and q such that q divides
Φ6(p). In the Gong-Harn Public Key System, it is essential to generate a prime q dividing Φ3(p2k),
where k is a fixed positive integer. In 2003, Giuliani and Gong [4] proposed a system analogous to
both the Gong-Harn and the XTR Public Key Systems using fifth-order characteristic sequences over Fp.
In order to generate key parameters to both cryptosystems one should find large primes p and q such
that q divides Φ5(p) = p4 + p3 + p2 + p+1 in the Gong-Harn case and Φ10(p) = p4 − p3 + p2 − p+1
in the XTR case. Giuliani and Gong suggested that the parameters p and q can be chosen using an
algorithm similar to that given in [2]. We briefly recall the idea of the algorithm. The algorithm consists
of two procedures. The first one randomly selects a prime q ≡ 1 (mod 5) and computes ri, the roots of
Φ5(x) (mod q), where i = 1, . . . ,4. The second procedure finds a prime p ≡ ri (mod q) (so q divides
Φ5(p)). However, a method for computing roots of Φ5(x) (mod q) was not given there, but we can
apply known algorithms to find roots of Φ5(x) (mod q). On the one hand, we can use the deterministic
method, analogous to Cardano’s formulas, for finding roots of Φ5(x) (mod q). But such an approach is
connected with computing both cubic and square roots modulo q, if the roots exist. On the other hand,
we can apply probabilistic algorithm, similar to that for finding a generator (mod q), to find roots of
Φ5(x) (mod q). But in order to estimate the computational complexity of such an approach we need
to have knowledge about prime factors of q− 1. For this reason estimation of running time of the such
procedure can be difficult.
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1.1 Main Result of This Paper

We propose a new method of finding primes p and q such that q divides Φ5(p) or Φ10(p). In particular,
we present a new, deterministic, polynomial time algorithm for finding roots of polynomials Φ5(x) or
Φ10(x) (mod q), where q = a2 −ab−b2 ≡ 11 (mod 20) and a,b ∈ Z. Our method of finding the roots
reduces to performing only one exponentiation and two inversion modulo q. Achieving the described
goals is made possible by generating the prime q, which is a value of a primitive quadratic polynomial
of two variables with integer coefficients. We prove that the procedure for finding a prime of such form
is random and executes in polynomial time.

The rest of this paper is organized as follows. In Section 3 we introduce the notation used throughout
the paper. Section 4 presents our algorithm. In Section 5 we proving correctness of the algorithm. The
running time is discussed in Section 6.

1.2 Notation

Throughout this paper, K = Q(ω) = {x+yω : x,y ∈ Q} denotes the quadratic number field with the ring
of integers OK = {a+bω : a,b ∈ Z}. The field K is obtained from Q by adjoining ω = (−1+

√
5)/2 the

root of irreducible over the rationals polynomial g(x) = x2 +x−1. We will denote by ω = (−1−
√

5)/2
the second root of g(x) and ε = (1+

√
5)/2 denotes the fundamental unit of K. The symbol N(α) =

(x+ yω)(x+ yω) will denote the norm of any element α = x+ yω ∈ K with respect to Q. Here and
throughout, ρ(α) = (σ1(α),σ2(α)) denotes the geometric representation of the number α ∈ K, where
σ1(α) = x+ yω , σ2(α) = x+ yω are different embedding of K into R. That is ρ(α) = (x+ yω,x+ yω)
is the point of the space R2. By the norm N(ρ(α)) of any point ρ(α), we shall understand N(ρ(α)) =
σ1(α)σ2(α), so that N(ρ(α)) coincides with N(α), α ∈ K. We write α ≫ 0 to indicate that α ∈ K is a
totally positive number. We will denote by X the fundamental domain for the field K, and by L (OK)
the 2-dimensional lattice in R2 which consists of all images ρ(α), where α ∈ OK . The interested reader
is referred to [9], p. 315 for an illustration of X for arbitrary quadratic number field. The reader is
cautioned that our notation is in conflict with that of [9].

2 The Algorithm

We define the sets

R(x) = {α ∈ OK : x ≤ |N(α)| ≤ 2x, ρ(α) ∈ X }

and

S(x) = {β ∈ OK : β = ε iα, α ∈ R(x), i = 1, . . . ,60}.

Let us fix n = 5 or n = 10. We describe an algorithm which generate primes p and q such that q
divides Φn(p). The algorithm consist of the three following procedures.

Procedure FINDPRIMEQ(k, l,x). Let us fix k, l ∈ N, (k, l) = 1, k2 − kl − l2 ≡ 11 (mod 20), where k+
lω ≫ 0 and let x > 1. This procedure finds a+bω ∈ S(x), where a ≡ k (mod 20), b ≡ l (mod 20) and
a+bω ≫ 0, such that N(a+bω) = q is a prime. We assume that x ≤ q ≤ 2x.

1. Choose a+bω at random in S(x) such that a ≡ k (mod 20), b ≡ l (mod 20) and a+bω ≫ 0.

2. Compute q = a2 −ab−b2. If q is a prime, then terminate the procedure. Otherwise go to step 1.
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3. Return a,b and q.

Procedure FINDROOTMODULOQ(a,b,q). Let n = 5 or n = 10. Given a prime q and a,b such that
q = a2 −ab−b2 ≡ 11 (mod 20), this procedure computes r a root of Φn(x) modulo q.

1. Compute x0,y0 such that −(a+b)x0 −ay0 = 1

2. Compute s =−(ax0 +by0) (mod q).

3. Compute t = (s2 −4)(q+1)/4 (mod q)

4. Compute w = (s− t)2−1 (mod q)

5. If n = 5, then r = w. If n = 10, then r ≡−w (mod q).

6. Return r.

Procedure FINDPRIMEP(r,q). Given a prime q and r < q, this procedure finds a prime p ≡ r (mod q).

1. Choose randomly m ∈ N.

2. Compute p = qm+ r. If p is a prime, then terminate the procedure. Otherwise go to step 1.

3. Return p.

Algorithm 1 Generating primes p and q, such that q|Φn(p)

Input: k+ l ∈ N : (k, l) = 1, k2 − kl − l2 ≡ 11 (mod 20),k+ lω ≫ 0; n = 5 or n = 10; x > 1.
Output: Primes p and q such that q|Φn(p).

1: FINDPRIMEQ(k, l,x);
2: FINDROOTMODULOQ(a,b,q,n);
3: FINDPRIMEP(r,q);

4: Return p, q;

3 Correctness of the Algorithm

Theorem 3.1. Let us fix n = 5 or n = 10. Then Algorithm 1 generates primes p and q such that q divides
Φn(p).

Proof. We begin by proving three auxiliary lemmas.

Lemma 3.1. Let α = a+bω ∈OK , where |N(α)| is a prime. If there exists β ∈OK , β =−r+(r−1)ω ,
for some r ∈ Z such that N(α) divides N(β ), then r ≡ −(ax0 + by0) (mod |N(α)|), where (a+ b)x0 +
ay0 =−1 or r ≡ (b−a)x1 +(a−2b)y1 (mod |N(α)|), where (2b−a)x1 +(2a−3b)y1 = 1.

Proof. Suppose that there is β = −r +(r − 1)ω , r ∈ Z such that N(α) divides N(β ), so α|N(β ) and
α|N(β ). Since |N(α)| is a prime, hence α is a prime element of OK and we have two cases.
Case I: α|β . We shall prove that r ≡−(ax0 +by0) (mod |N(α)|), where (a−b)x0 +ay0 =−1. If α|β ,
then there exists γ ∈ OK , γ = x+ yω , x,y ∈ Z such that αγ = β . Hence

ax+by+(bx+(a−b)y)ω =−r+(r−1)ω

23



Algorithm for generating primes for the GG Public Key System M. Grześkowiak

and we have {
ax+by =−r
bx+(a−b)y = r−1.

(1)

Substituting the first equation to the second one we get

(a+b)x+ay =−1. (2)

Since |N(α)| is a prime, so (a,b) = 1 and conseguently (a+ b,a) = 1. Hence there exists an integer
solution x0,y0 of (2). It can be found by applying the extended Euclid’s algorithm. Consequently, by (1)
r ≡−(ax0 +by0) (mod |N(α)|).
Case II: α|β . We shall prove that r ≡ (b− a)x1 +(a− 2b)y1 (mod |N(α)|), where (2b− a)x1 +(2a−
3b)y1 = 1 in this case. If α|β , then there exists γ ∈ OK , γ = x+ yω , x,y ∈ Z such that αγ = β . We have
ω +ω =−1, and so

(a−b)x+(2b−a)y− (bx+(a−b)y)ω =−r+(r−1)ω.

Hence {
(a−b)x+(2b−a)y =−r
bx+(a−b)y = 1− r.

(3)

Substituting the first equation to the second one we get

(2b−a)x+(2a−3b)y = 1. (4)

Since (a,b) = 1 then (2b−a,2a−3b) = 1. Hence there exists an integer solution x1,y1 of (4). It can be
found by applying the extended Euclid’s algorithm. Consequently, by (3) r ≡ ((b− a)x1 +(a− 2b)y1)
(mod |N(α)|). This finishes the proof.

Lemma 3.2. Let α = a+bω ∈OK , where |N(α)| ≡ 1 (mod 5) and assume that |N(α)| is a prime. Then
the congruence

g(r) = r2 + r−1 ≡ 0 (mod |N(α)|) (5)

is solvable and solutions r1, r2 satisfy r1 ≡ −(ax0 + by0) (mod |N(α)|), where (a+ b)x0 + ay0 = −1
and r2 ≡ (b−a)x1 +(a−2b)y1 (mod |N(α)|), where (2b−a)x1 +(2a−3b)y1 = 1.

Proof. Let α = a+ bω ∈ OK , N(α) = |a2 − ab− b2| ≡ 1 (mod 5), and let |N(α)| be a prime. First,
note that the solutions of (5) exists. Indeed |N(α)| ≡ 1 (mod 5), and so 5 is a quadratic residue modulo
|N(α)|. Hence ω , ω modulo |N(α)| exist, so the solutions of (5) exists. Finally, we shall compute the
values ri, i = 1,2 modulo |N(α)|. We have

0 ≡ r2
i + ri −1 (mod |N(α)|)

≡ (−ri +(ri −1)ω)(−ri +(ri −1)ω) (mod |N(α)|)
≡ N(β ) (mod |N(α)|),

where β = (−ri + (ri − 1)ω) (mod |N(α)|). Hence N(α)|N(β ). Since β can be considered as an
element of OK , then Lemma 3.1 shows that the assertion of the Lemma follows. This finishes the proof.
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Lemma 3.3. Let ξ5 be a primitive 5th root of unity and let g(x) = x2 + x− 1 ∈ Z[x]. Then g(x) is the
minimal polynomial of ηi = ξ i

5 +ξ−i
5 , i = 1,2.

Proof. We have

(x−η1)(x−η2) = x2 − (η1 +η2)x+η1η2.

We shall compute the coefficients of g(x). We have

Φ5(ξ5) = ξ 4
5 +ξ 3

5 +ξ 2
5 +ξ5 +1 = 0,

dividing by ξ 2
5 we obtain

ξ 2
5 +ξ5 +1+ξ−1

5 +ξ−2
5 = 0.

Thus
η1 +η2 =−1.

A short computation yields

η1η2 = (ξ5 +ξ−1
5 )(ξ 2

5 +ξ−2
5 ) = ξ 3

5 +ξ−1
5 +ξ5 +ξ−3

5 = ξ−2
5 +ξ−1

5 +ξ5 +ξ 2
5 =−1.

Note that η j = e2 jπi/5 + e−2 jπi/5 ∈ R, so g(x) is the minimal polynomial of ηi.

Proof of Theorem 3.1. Let us assume that numbers k, l ∈ N, (k, l) = 1, k2 − kl − l2 ≡ 11 (mod 20)
and n ∈ {5,10} are the input to the algorithm. The algorithm executes the procedure FINDPRIMEQ in
the first step. Let us assume that a, b, and q are the output of this procedure. Then q is a prime such
that q = a2 −ab−b2, a ≡ k (mod 20), b ≡ l (mod 20), a+bω ≫ 0. We shall show that the procedure
FINDROOTMODULOQ, with the input a, b, q and n, computes r such that Φn(r) ≡ 0 (mod q). Firstly,
suppose that n = 5. It is an elementary check that q ≡ 1 (mod 5). Lemma 3.2 shows that the solutions
of g(x) = x2 + x−1 ≡ 0 (mod q) exists and one of them is given by s ≡−(ax0 +by0) (mod q), where
(a− b)x0 + ay0 = −1. By Lemma 3.3, s ≡ ξ5 + ξ−1

5 (mod q) or s ≡ ξ 2
5 + ξ−2

5 (mod q). Hence ξ5, ξ 2
5

are the roots of g(x) = x2 − sx+ 1 (mod q) and one of them is equal to (s+
√

(s2 −4))/2 (mod q).
Note that s2 −4 is quadratic residue modulo q. Indeed, q ≡ 1 (mod 5), so ξ5 modulo q exist, and hence
ξ5 ∈ Fq. Suppose that s2 − 4 is quadratic nonresidue modulo q, then g(x) is irreducible modulo q, and
so ξ5 ∈ Fq2\Fq. This contradicts the fact that ξ5 ∈ Fq. Consequently (s+

√
(s2 −4))/2 (mod q) can

be computed. Now, since q ≡ 3 (mod 4), then computing a square root of s2 − 4 modulo q reduce to
performing exponentiation modulo q. Let t the square root of s2 − 4 (mod q), so t ≡ (s2 − 4)(q+1)/4

(mod q). Hence ξ5 or ξ 2
5 is equal to (s− t)/2 (mod q), and putting r ≡ (s− t)/2 (mod q) we obtain

Φ5(r)≡ 0 (mod q). Finally, suppose that n = 10. We have Φ5(x) = Φ10(−x), so Φ10(−r)≡ 0 (mod q).
We have shown that the procedure FINDROOTMODULOQ finds roots of Φn(x) modulo q. Now, let us
assume that the procedure FINDPRIMEP returns a prime p≡ r (mod q). Hence Φn(p)≡Φn(r) (mod q)
and so q|Φn(p). This finishes the proof.

4 Run-time analysis of the Algorithm

4.1 The Procedure FINDPRIMEQ

Let m be a positive integer. We will denote by PT number of bit operations necessary to carry out
the deterministic primality test [5]. For simplicity, assume that PT takes no less than O(log3 m) bit
operations.
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Theorem 4.1. Let us fix k, l ∈ N, (k, l) = 1, k2 − kl − l2 ≡ 11 (mod 20), k+ lω ≫ 0. Then there exist
constants c > 0 and x0 such that for every integer x ≥ x0 and an arbitrary real λ ≥ 1, the procedure
FINDPRIMEQ finds c+ dω ∈ S(x), c+ dω ≫ 0, where c ≡ k (mod 20), d ≡ l (mod 20), such that
q = N(c+dω) is a prime, with probability greater than or equal to 1− e−λ after repeating [cλ (logx)]
steps of the procedure. Every step of the procedure takes no more than PT bit operations.

Proof. We begin by proving three auxiliary lemmas. Let us define the number

ra,b(n) = ♯{α ∈ OK : |N(α)|= n, ρ(α) ∈ L (OK)∩X }.

Lemma 4.1. We have

∑
n≤x

ra,b(n)≤
2x logω√

5
+O(

√
x).

Proof. Let v(T ) denote the volume of the set T which consists of all points ρ(α) of X for which
|N(ρ(α))| ≤ 1, and let ∆ be the volume of fundamental parallelepiped of L (OK). First, we shall prove
that

v(T )
∆

=
2logω√

5
. (6)

Consider the Dedekind zeta functions ζK(s), defined for s= σ + it, σ > 1 by absolutely convergent series

ζK(s) = ∑
a

1
(Na)s ,

where a runs through all integral ideals of K, and Na denotes the norm of the ideal a. Since in OK all
ideals are principal we obtain

ζK(s) = ∑
(α)
α ̸=0

1
|N(α)|s

, (7)

where the summation is taken over all principal ideals of K. Since two principal ideals (α1) and (α2) are
equal if and only if the numbers α1 and α2 are associate, the by (see [9, Theorem 1, p. 313]), we can
write (7) in the form

ζK(s) = ∑
ρ(α)∈L (OK)∩X

1
|N(ρ(α))|s

,

where the summation is taken over all points ρ(α) in the lattice L (OK) which are contained in X .
Moreover by (see [9, Theorem 3, p. 321]) we have

lim
s→1+0

(s−1) ∑
ρ(α)∈L (OK)∩X

1
|N(ρ(α))|s

=
v(T )

∆
. (8)

On the other hand, by (see [9, Theorem 2, p. 313]) we have

lim
s→1+0

(s−1)ζK(s) =
2logw√

5
,

and consequently by the above and (8) the equation (6) holds. Let ηT denotes the set of points ηt, for
η ∈ R and t ∈ T , and let λ (η) = λ (η ,T,L (OK)) be the number o point of L (OK)∩X in ηT . We
shall compute λ (

√
x), x ≥ 1. This follows immediately from (see [6, Theorem 2, p.128]). We have

λ (
√

x) =
v(T )

∆
x+O(

√
x).

26



Algorithm for generating primes for the GG Public Key System M. Grześkowiak

It is obvious that if ρ(α) ∈
√

xT then |N(ρ(α))| ≤ x. Hence by the above and (6) we obtain

∑
n≤x

ra,b(n)≤
2x logω√

5
+O(

√
x). (9)

This finishes the proof.

Lemma 4.2. Let us fix k, l ∈ N, (k, l) = 1, k2−kl− l2 ≡ 11 (mod 20) such that k+ lω ∈OK , k+ lω ≫ 0.
Denote by πa,b(x) number of primes q ≤ x which can be represented in the form q = a2 − ab− b2 with
integers a ≡ k (mod 20), b ≡ l (mod 20) and a+bω ≫ 0. Then

πa,b(x) =
1
8

x
logx

+O
(

x
log2 x

)
.

Proof. Let f= 20OK be the ideal of OK , and let

Af = {α ∈ K∗ : α = mn−1,m ≡ n (mod f), (mnOK , f) = 1, m,n ∈ OK},

where K∗ denote the multiplicative group of K. Let us denote by

H∗
f (K) = Gf(K)/P+

f (K)

the group of narrow ray classes mod f, where Gf(K) is the group of all fractional ideals of K which
are quotients of two ideals prime to f, and P+

f (K) be the subgroup of Gf(K) consisting of principal
fractional ideals generated by elements of Af having totally positive generators. Let us fix k and l,
(k, l) = 1, k2 − kl − l2 ≡ 11 (mod 20), k + lω ≫ 0. Let a = (k + lω)OK be the ideal in OK . Since
N(a) = k2 − kl − l2 ≡ 11 (mod 20), so (a, f) = 1. Assume that X is a class in H∗

f (K) such that a ∈ X .
Firstly, we shall show that for any prime ideal p ∈ X , Np the norm of the ideal p is equal to a2 −ab−b2,
for some a ≡ k (mod 20) and b ≡ l (mod 20) and a+ bω ≫ 0. To prove this, consider a prime ideal
p ∈ X . Then

pP+
f (K) = aP+

f (K)⇐⇒ pa−1 ∈ P+
f (K)⇐⇒ pa−1 = (α),

where α ∈ Af, and α ≫ 0. Set

α(k+ lω) = β (10)

Then β ≫ 0 and N(β ) =Np. Hence β ∈OK . On the other hand, since α ∈Af, then α =mn−1 where m≡
n (mod f), m,n ∈OK and there exist u,v ∈ Z such that m = 20(u+vω)+n. So α = (20(u+vω)+n)n−1

and consequently by (10)

β =
20(u+ vω)(k+ lω)

n
+(k+ lω),

where n|(u+ vω)(k+ lω). Thus there exist s, t ∈ Z such that

β = 20(s+ tω)+(k+ lω)

and hence

Np= (20s+ k)2 − (20s+ k)(20t + l)− (20t + l)2.

Secondly, we compute the number prime ideals in X of degree one with norms not exceeding x ∈ R. To
do this, we denote by πX(x) the number of prime ideals in X with norms not exceeding n, and by π(x)
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the number of primes p ≤ x. Then by the rules of decompositions of primes in Q(ω) (see [9, Theorem
1, p. 236]) we have

πX(x) = ∑
p∈X

Np≤x

1 = ∑
p∈X

Np=p
p≤x

1+ ∑
p∈X

Np=p2

p≤
√

x

1 = ∑
p∈X

Np=p
p≤x

1+O(π(
√

x)). (11)

On the other hand, by the Prime Ideal Theorem for Ideal Classes (see [8, Corollary 11, p. 358]) with a
certain constant B > 0, B = B(f) we have

πX(x) =
li x

h∗f (K)
+O(exp(−B(

√
logx))),

where h∗f (K) denotes the number of elements in H∗
f (K), and li x =

∫ x
2

dt
log t for x > 2. Since

li x =
x

logx
+O

(
x

log2 x

)
,

then by (11) and by the Prime Number Theorem (see [1, Theorem 2, p. 67]),

∑
p∈X

Np=p
p≤x

1 =
1

h∗f (K)

x
logx

+O
(

x
log2 x

)
.

Finally, we shall prove that h∗f (K) = 8. Let h(K) denotes the number of elements the class group of
K, Φ(f) be the number of invertible elements of the factor-ring OK/f, and ψ(I) denotes the number of
residue classes mod f which can be represented by units of K. We have the equality (see [8, Theorem
3.35, p. 109]),

h∗f (K) = 2r1−th(K)
Φ(f)

ψ(f)
,

where r1 denotes the number of different embedding of K into the field of real numbers, and 2t is the
number of possible signatures of units congruent to unity mod f. It is a well-known fact that h(K) = 1
(see [9, Table 1, p. 422]), and is obvious that r1 = 2. Moreover, we have

Φ(f) = Nf∏
p|f

(
1− 1

Np

)
= 202

(
1− 1

4

)(
1− 1

5

)
= 240.

We will prove that ψ(f) = 120. Let ε = (1+
√

5)/2 be the fundamental unit of K. Then every units of
K can be uniquely written of the form ±εn, n ∈ Z. It is an elementary check that ε10 ≡−1 (mod 5) and
ε6 ≡ 1 (mod 4), hence ε120 ≡ 1 (mod 20), so the order of ε divides 120 modulo 20. It is an elementary
check using computer algebra system, that the order of ε modulo 20 is equal to 60. Hence

ε60 ≡ 1 (mod 20). (12)

Assume that εu ≡−εw (mod 20) for some integers u,w. Then εv ≡−1 (mod 20) for some 0 < v ≤ 60,
but this does not hold. Consequently elements ±εk, k = 1, . . . ,60 represent different residue classes
mod f, and hence ψ(f) = 120. Let σ1 = a+ bω , σ2 = a+ bω be different embeddings of K into R.
We have σ1(ω60l) = ω60l = ε−60l > 0, σ2(ω60l) = ω60l = (−ε)60l > 0 for l ∈ Z, and hence t = 0.
Consequently h∗f (K) = 8. This finishes the proof.
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We define the sets

P(x) = {p− prime : ∃ a+bω ∈ OK , N(a+bω) = p, x ≤ N(a+bω)≤ 2x,

a ≡ k (mod 20), b ≡ l (mod 20), a+bω ≫ 0}

and

T (x) = {c+dω ∈ S(x) : N(c+dω) = p− prime, c ≡ k (mod 20),

d ≡ l (mod 20), c+dω ≫ 0}

Lemma 4.3. Let us fix k, l ∈N, (k, l) = 1, k2−kl− l2 ≡ 11 (mod 20) such that k+ lω ∈OK , k+ lω ≫ 0.
There is an injective function Ψ : P(x)→ T (x).

Proof. Let p ∈ P(x), where p = N(γ) and γ = a+bω . By (see [9, Lemma 1,p. 313]) ρ(γ) has a unique
representation in the form ρ(γ) = ρ(α)ρ(δ ), where ρ(α) is a point of the fundamental domain X and
δ is a unit of K. Hence γ = αδ ∈ OK and N(γ) = |N(α)|, so α ∈ R(x). We shall show that there exists
v ∈ N, 1 ≤ v ≤ 60 such that αεv = c+dω ≫ 0 and c ≡ k (mod 20), d ≡ l (mod 20). Every units of K
can be uniquely written of the form ±ε t , where ε = (1+

√
5)/2, t ∈ Z. Hence γ =±ε tα , but γ > 0, so

γ = ε tα . Moreover γ > 0, so

γ =

{
αε2k, k ∈ Z for α > 0,

αε2k+1, k ∈ Z for α < 0.

Writing 2k = 60i1 +u and 2k+1 = 60i2 + v, where i1, i2 ∈ Z, u,v ∈ N, 1 ≤ u,v ≤ 60, we see that there
exists and j ∈ Z such that

γε60 j =

{
αεu, u ≡ 0 (mod 2), for α > 0,
αεv, v ≡ 1 (mod 2), for α < 0,

where αεu and αεv are totally positive. By (12) ε60 ≡ 1 (mod 20), hence writing αεu = c1 +d1ω and
αεv = c2 +d2ω we obtain

γ = a+bω ≡ ci +diω (mod 20),

and consequently a ≡ ci (mod 20) and b ≡ di (mod 20) and the conclusion holds. Now, it is easy to
observe that, if Ψ(p) = Ψ(q), where p,q ∈ P(x), then p = q. This completes the proof.

Lemma 4.4. Let us fix k, l ∈N, (k, l) = 1, k2−kl− l2 ≡ 11 (mod 20) such that k+ lω ∈OK , k+ lω ≫ 0.
Then for every ε > 0 there exists x0 such that for every x ≥ x0 the number of elements of T (x) is no less
than (1− ε)x(logx)−1.

Proof. Lemmas 4.2 and 4.3 shows that for every ε > 0 the number of elements of T (x) is greater than

πa,b(2x)−πa,b(x)≥
(1− ε)x

logx
, (13)

for sufficiently large x. This completes the proof.

Proof of Theorem 4.1. Let us denote by Ac,d the event that randomly chosen c+ dω ∈ S(x), c ≡ k
(mod 20), d ≡ l (mod 20), c+dω ≫ 0, is such that N(c+dω) is a prime. Firstly, we shall compute the
probability that in v trials Ac,d will occur. By Lemma 4.1 there exist c1 > 0 such that for every ε > 0 the
number of element of S(x) is at most

∑
n≤2x

ra,b(n)≤ (c1 + ε)x,
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for sufficiently large x. Hence, by Lemma 4.4 there exists c2 > 0 such that for sufficiently large x the
probability that in v trials Ac,d does not occur is(

1− c2

logx

)v

= exp
(

v log
(

1− c2

logx

))
≤

≤ exp
(
−c2v
logx

)
≤ e−λ ,

for an arbitrary real λ ≥ 1 and v = c3λ logx, where c3 = c−1
2 . Consequently the probability that in v trials

Ac,d does occur is greater than or equal to 1− e−λ . So after repeating [c3λ logx)] steps, the procedure
finds c+dω ∈ S(x), c+dω ≫ 0, such that N(c+dω) is a prime with probability greater than or equal
to 1− e−λ . Finally, we shall estimate the number of bit operations required to carry out the steps of
the procedure. It takes a fixed numbers of time to generate a random bit, and O(logx) bit operations
to generate random integers c ≡ k (mod 20) and d ≡ l (mod 20), c+ dω ≫ 0. Computation q = c2 −
cd−d2 can be done with O(log2 x) bit operations. The most time-consuming step of the algorithm is the
deterministic primality test for number q which takes no more than PT operations. This finishes the
proof.

4.2 The Procedure FINDROOTMODULOQ

Theorem 4.2. Let n = 5 or n = 10, and let Φn(x) denote the n-th cyclotomic polynomial. Given a prime
q and a,b such that q = a2 −ab−b2 ≡ 11 (mod 20), then the procedure FINDROOTMODULOQ finds a
root of Φn(x) (mod q) using O(log3 q) bit operations.

Proof. The proof follows immediately from the construction of the procedure FINDROOTMODULOQ.
The complexity of the procedure is completely determined by the running time of the extended Euclidean
algorithm and modular exponentiation algorithm. This finishes the proof.
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iewicz University University, Poznań, Poland in 1999, and Ph.D degree in Mathemat-
ics from same institution in 2004. He is currently an assistant professor at the De-
partment of Algebra and Number Theory in Adam Mickiewicz University, Poznań,
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