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Abstract: We present a comparative study of the performance of various polar code constructions in an additive white Gaussian 
noise (AWGN) channel. A polar code construction is any algorithm that selects K best among N possible polar bit-channels at 
the design signal-to-noise-ratio (design-SNR) in terms of bit error rate (BER). Optimal polar code construction is hard and 
therefore many suboptimal polar code constructions have been proposed at different computational complexities. Polar codes are 
also non-universal meaning the code changes significantly with the design-SNR. However, it is not known which construction 
algorithm at what design-SNR constructs the best polar codes. We first present a comprehensive survey of all the well-known 
polar code constructions along with their full implementations. We then propose a heuristic algorithm to find the best design-
SNR for constructing best possible polar codes from a given construction algorithm. The proposed algorithm involves a search 
among several possible design-SNRs. We finally use our algorithm to perform a comparison of different construction algorithms 
using extensive simulations. We find that all polar code construction algorithms generate equally good polar codes in an AWGN 
channel, if the design-SNR is optimized. 
Index Terms:  Bhattacharyya bounds, bit-channels, polar codes, Encoding, Decoding 

I. INTRODUCTION1 
Polar codes have been the subject of active research in recent times, mainly due to the fact that they are the first ever provably 
capacity achieving codes, with explicit construction and very low complexity of encoding and decoding. The polar codes were 
introduced by Erdal    Arikan[1], using a novel concept called channel polarization. Soon after, both the concept of channel 
polarization as well as polar codes have been extended to a number of applications and generalizations. 
Let us consider a binary input discrete memoryless symmetric (BI-DMS) channel. Channel polarization is a technique by which one 
manufactures N polarized channels (called bit channels) out of N identical independent copies of BI-DMS channels. The channels 
are polarized without any loss of capacity, in the sense that they are either extremely noisy or noiseless as N → ∞. Then one can 
easily achieve a rate of transmission close to capacity, simply by choosing to transmit over only the good bit-channels. However, at 
any finite block length N and rate R , K/N, a ranking algorithm for the bit-channels according to their bit error rate (BER) becomes 
necessary to select K good channels out of N. Here, K is the number of information bits in each code word of length N. This 
selection of bit-channels completely defines a polar code and therefore is called the polar code construction[1]. 
The polar code construction is critical to obtain the best performance at finite block lengths. As we mentioned, the polar code 
construction has an explicit definition in theory.  
It is challenging in practice because precise estimation of the bit channels is intractable. Therefore ,a wide range of approximate 
construction methods are proposed.  
It is known that under certain conditions and decoding schemes, it outperforms Reed-Muller codes, however its performance 
advantage suggested that in its current state, it would not compete with state-of-the-art capacity achieving forward error correction 
(FEC) codes like convolution turbo codes (CTCs) since CTCs outperform Reed-Muller codes by a wide margin, while the 
performance difference between the polar codes and the Reed-Muller codes are not that high. In this thesis, we mainly investigate 
how apart the performance curves are for polar codes so that we get an idea on how much polar code should be improved from their 
current state to be useful in practical systems.  
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II. CHANNEL CODING PRELIMINARIES 
A. Channel Models 
A channel is defined mathematically as a set of possible inputs to the channel X, a set of possible outputs to the channel Y, and a 
conditional probability distribution on the set of the outputs conditioned on the set of the inputs W(y|x) [1]. The simplest class of 
channels are discrete memoryless channels (DMC). 

B. Parameters 
We define the important parameter of symmetric B-DMC’s: Bhattacharyya parameter. 

 

 
The Bhattacharyya parameter is a measure of the reliability of a channel since Z(W) is an upper bound on the probability of 
maximum-likelihood (ML) decision error for uncoded transmission over W. 

C. Channel Combining 
In this phase, copies of a B-DMC are combined in a recur-sive manner in n steps to form a vector channel WN , where N = 2n. The 
basic transformation used in channel combining is the following. 
 
 

 

 

 

 
 
 
 
 

 
Fig 1: Combining of two channels 

D. CHANNEL TRANSFORMATION 
We have defined a blockwise channel combining and split-ting operation by which transformed  independent copies of WN. The 
goal in this section is to show that this blockwise channel transformation can be broken recursively into single-step channel 
transformations. 

 
Fig 2: The channel transformation process with 8 channels. 
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III. POLAR CODES 
Given any subset of indices I of elements of a vector x, we denote the corresponding sub-vector as xI. Similarly, when I denotes the 
indices of columns of a matrix A, the corresponding sub-matrix is denoted AI. 
A polar code may be specified completely by (N; K; F), 
where N is the length of a code word in bits, K is the number of information bits encoded per codeword, and F is a set of N K 
integer indices called frozen bit locations 
Encoding — For an (N,K,F) polar code we describe below the encoding operation for a vector of information bits u of length K. The 
rate of the code is R = K/N. Let log2(N) and F⊗n = F⊗···⊗F (n copies) be the n-fold Kronecker product of Arikan’s standard 
polarizing kernel[1]. 

 
Fig 3: Illustration of Arikan’s O(N log2 N) complexity encoder implementation of (2) with (N,K,F) = (8,5,{0,2,4}) 

Without loss of generality, we normalize the noise variace to be unity for the AWGN in all our future discussions. Successive 
Cancellation Decoder (SCD) — The SCD algorithm [1] essentially follows the same encoder diagram in Fig.3 using decoding 
operations that resemble one iteration of the classic belief propagation algorithm. The likelihoods evolve in the reverse direction 
from right-to-left, using a pair of likelihood transformation equations, as illustrated with an example .Then the bit decisions are 
made at the left end of the circuit and broadcasted to the rest of the circuit. A complete pseudocode for implementing an SCD is 
available . The overall complexity is only O(N log2 N). The Polar Code Construction — The choice of the set F is a critical step in 
polar coding (i.e. the polar code construction). This corresponds to the selection of best K bit-channels among N, in terms of the bit 
error rate (BER) at a given value of (REb/N0) defined as the design-SNR[2]. 
At first it was proposed to find the bit channels by evaluating of their full finite alphabet distributions. The algorithm becomes 
intractable due to the explosion of the alphabet size to a power of N by the end of n channel transformations. This problem is 
specifically addressed in [3] by employing a novel low complexity close-to-optimal quantizer. In addition, they provide theoretical 
guarantees for the loss of performance due to the quantization. Note that, some channels are better estimated by simple bounds on 
Bhattacharyya parameters. 
The algorithm is extendable to infinite output channels by using a quantization algorithm. The initialization of the algorithm 
involves the AWGN channel quantization to µ symbols, which takes an additional O(µ) complexity. Overall, this algorithm has the 
second largest complexity. For AWGN channels, the estimation of bit-channels based on Gaussian approximation is proposed. This 
enables to use the Gaussian distribution approximations on the intermediate likelihoods. This was found to well-approximate the 
actual bit-channels of polar codes[2]. 
The Gaussian approximation algorithm takes a complexity of O(N) function computations (excluding the selection of K best among 
N metrics obtained) similar to the Bhattacharyya bounds based algorithm, but involves relatively higher complexity function 
computations. Overall, this construction algorithm enjoys the second least complexity. 
The construction algorithms are not optimizing the performance exactly at the design-SNR. That is, better performance at a given 
SNR may be obtained by constructing the code at a slightly different design-SNR[10]. This means even if we update the code 
dynamically with SNR, the performance may not be optimal. 
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IV. THE CODING ALGORITHM 
The coding algorithm for the Bhattacharyya parameters is being stated where when the rate is high enough, the construction works 
well, since the good channels are always chosen for the information transmission. This avoids the need of any comparison among 
the good channels. On the other hand, when the rate is very low, the choice will only be among channels that tend to be very good. 
In that case, any choice would result in approximately the same performance. 

 

V. CHANNEL ENCODING 
Polar codes are linear codes, i.e., any linear combination of codewords is another codeword of the code. The polar transform is to 
apply the transform G2⊗

n  the nth Kronecker power of G2 to the block of  N = 2n bits U[4]. 
The encoder chooses a set of NR rows of the matrix Gn to form a NR×N matrix which is used as the generator matrix in the encoding 
procedure[5]. The way this set is chosen is dependent on the channel W and uses a phenomenon called channel polarization which is 
described later. Using the fast transform methods in signal processing, it is easy to show that the complexity of the polar encoder is 
O(N logN). 

 
Fig 4: Output waveform for channel encoder 

VI. CHANNEL DECODING 
The decoder generates an estimate uN by observing the channel output yN. The decoder  takes  N decisions for each ui. If ui is a 
frozen bit, the decoder will fix ui to its known value[6][8]. If ui is an information bit, the decoder waits to estimate all the previous bits, 
and then computes it.The decoder has an complexity  of O(N logN) [7][9]. 
 The factor graph associated with polar code decoding algorithm is shown in the figure 5,6. From this we see that the decoding is 
quite natural for a recursive successive decoding algorithm[5]. 
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Figure 5: Factor graph for polar transform 
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Figure 6: Factor graph for polar decoding 

As there exists a considerable gap between the error probability of the SC decoder and the MAP decoder. Unfortunately, the 
complexity of a MAP decoder in general (except for the BEC) is exponential in block-length. Therefore, an important question is 
that whether one can modify the SC decoder such that this gap decreases while we still have a low-complexity decoder[11]. 
The waveform obtained for the channel decoder for various inputs is depicted in figure 7. 

 
Fig 7: Output waveform for channel encoder 

VII. CONCLUSION 
A fascinating aspect of Shannon’s proof of the noisy channel coding theorem is the random-coding method that he used to show the 
existence of capacity-achieving code sequences without exhibiting any specific such sequence. Explicit construction of provably 
capacity-achieving code sequences with low encoding and decoding complexities has since then been an elusive goal. 
It has been seen that polar codes help in achieving capacity of the channel. The preliminary conclusion of this is that polar codes can 
outperform the FEC currently used in communications systems. Polar codes may also be able to outperform other codes that could 
be used to replace the current codes. Polar codes are more likely to be useful at higher data rates. Further research is needed to test 
polar codes, using more realistic models of systems and their RF environments. 
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