We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Intracellular delivery of proteins by nanocarriers

    Moumita Ray

    Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA

    ,
    Yi-Wei Lee

    Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA

    ,
    Federica Scaletti

    Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA

    ,
    Ruijin Yu

    Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA

    College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China

    &
    Vincent M Rotello

    *Author for correspondence:

    E-mail Address: rotello@chem.umass.edu

    Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA

    Published Online:https://doi.org/10.2217/nnm-2016-0393

    Intracellular delivery of proteins is potentially a game-changing approach for therapeutics. However, for most applications, the protein needs to access the cytosol to be effective. A wide variety of strategies have been developed for protein delivery, however access of delivered protein to the cytosol without acute cytotoxicity remains a critical issue. In this review we discuss recent trends in protein delivery using nanocarriers, focusing on the ability of these strategies to deliver protein into the cytosol.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov. 7(1), 21–39 (2008).
    • 2 Walsh G. Biopharmaceutical benchmarks 2010. Nat. Biotech. 28(9), 917–924 (2010).
    • 3 Gu Z, Biswas A, Zhao M, Tang Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev. 40(7), 3638–3655 (2011). Comprehensive review on intracellular protein delivery. This is a tutorial review that talks about methodologies developed for intracellular delivery of proteins using nanocarriers.
    • 4 Amer MH. Gene therapy for cancer: present status and future perspective. Mol. Cell. Ther. 2(1), 27 (2014).
    • 5 Fu A, Tang R, Hardie J, Farkas ME, Rotello VM. Promises and pitfalls of intracellular delivery of proteins. Bioconjug. Chem. 25(9), 1602–1608 (2014).
    • 6 Erazo-Oliveras A, Najjar K, Dayani L, Wang TY, Johnson GA, Pellois JP. Protein delivery into live cells by incubation with an endosomolytic agent. Nat. Meth. 11(8), 861–867 (2014).
    • 7 Le Roy C, Wrana JL. Clathrin- and non-clathrin-mediated endocytic regulation of cell signaling. Nat. Rev. Mol. Cell Biol. 6(2), 112–126 (2005).
    • 8 Mellert K, Lamla M, Scheffzek K, Wittig R, Kaufmann D. Enhancing endosomal escape of transduced proteins by photochemical internalization. PLoS ONE 7(12), e52473 (2012).
    • 9 Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J. Control. Release 151(3), 220–228 (2011).
    • 10 Qian Z, Dougherty PG, Pei D. Monitoring the cytosolic entry of cell-penetrating peptides using a pH-sensitive fluorophore. Chem. Comm. 51(11), 2162–2165 (2015).
    • 11 Brock R. The uptake of arginine-rich cell-penetrating peptides: putting the puzzle together. Bioconjug. Chem. 25(5), 863–868 (2014).
    • 12 Johnson JR, Kocher B, Barnett EM, Marasa J, Piwnica-Worms D. Caspase-activated cell-penetrating peptides reveal temporal coupling between endosomal release and apoptosis in an RGC-5 cell model. Bioconjug. Chem. 23(9), 1783–1793 (2012).
    • 13 El-Sayed A, Futaki S, Harashima H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J. 11(1), 13–22 (2009).
    • 14 Varkouhia AK, Scholteb M, Storma G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J. Control. Release 151(3), 220–228 (2011).
    • 15 Lonn P, Kacsinta AD, Cui XS et al. Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci. Rep. 6, 32301 (2016).
    • 16 Kristensen M, Birch D, Nielsen HM. Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos. Int. J. Mol. Sci. 17(2), 185–202 (2016).
    • 17 Soomets U, Lindgren M, Gallet X et al. Deletion analogues of transportan. Biochim. Biophys. Acta 1467(1), 165–176 (2000).
    • 18 Verdurmen WPR, Wallbrecher R, Schmidt S et al. Cell surface clustering of heparan sulfate proteoglycans by amphipathic cell-penetrating peptides does not contribute to uptake. J. Control. Release 170(1), 83–91 (2013).
    • 19 Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nano 2(12), 751–760 (2007).
    • 20 Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 10(9), 3223–3230 (2010).
    • 21 Ashley CE, Carnes EC, Phillips GK et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 10(5), 389–397 (2011).
    • 22 Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg. Med. Chem. 17(8), 2950–2962 (2009).
    • 23 Gao J, Xu B. Corrigendum to “Applications of nanomaterials inside cells”. Nano Today 4(3), 281 (2009).
    • 24 Sarker SR, Hokama R, Takeoka S. Intracellular delivery of universal proteins using a lysine headgroup containing cationic liposomes: deciphering the uptake mechanism. Mol. Pharmacol. 11(1), 164–174 (2014).
    • 25 Furuhata M, Kawakami H, Toma K, Hattori Y, Maitani Y. Intracellular delivery of proteins in complexes with oligoarginine-modified liposomes and the effect of oligoarginine length. Bioconjug. Chem. 17(4), 935–942 (2006).
    • 26 Chatin B, Mével M, Devallière J et al. Liposome-based formulation for intracellular delivery of functional proteins. Mol. Ther. Nucleic Acids 4, e244 (2015).
    • 27 Zuris JA, Thompson DB, Shu Y et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotech. 33(1), 73–80 (2015). •• Demonstration of intracellular delivery of clustered, regularly interspaced short palindromic repeats associated Cas9 using liposomes.
    • 28 Wang M, Zuris JA, Meng F et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl Acad. Sci. USA 113(11), 2868–2873 (2016).
    • 29 Wang M, Alberti K, Sun S, Arellano CL, Xu Q. Combinatorially designed lipid-like nanoparticles for intracellular delivery of cytotoxic protein for cancer therapy. Angew. Chem. Int. Ed. Engl. Engl. 126(11), 2937–2942 (2014).
    • 30 Kube S, Hersch N, Naumovska E et al. Fusogenic liposomes as nano carriers for delivery of intracellular proteins. Langmuir doi:10.1021/acs.langmuir.6b04304 (2017) (Epub ahead of print). • Demonstration of cytosolic delivery of proteins using fusogenic liposomes.
    • 31 Yuba E, Harada A, Sakanishi Y, Watarai S, Kono KA. Liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy. Biomaterials 34(12), 3042–3052 (2013).
    • 32 Abbing A, Blaschke UK, Grein S et al. Efficient intracellular delivery of a protein and a low molecular weight substance via recombinant polyomavirus-like particles. J. Biol. Chem. 279(26), 27410–27421 (2004).
    • 33 Kaczmarczyk SJ, Sitaraman K, Young HA, Hughes SH, Chatterjee DK. Protein delivery using engineered virus-like particles. Proc. Natl Acad. Sci. USA 108(41), 16998–17003 (2011).
    • 34 Abraham A, Natraj U, Karande AA et al. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles. Sci. Rep. 6, 21803 (2016).
    • 35 Fuchs SM, Raines RT. Arginine grafting to endow cell permeability. ACS Chem. Biol. 2(3), 167–170 (2007).
    • 36 McNaughton BR, Cronican JJ, Thompson DB, Liu DR. Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc. Natl Acad. Sci. USA 106(15), 6111–6116 (2009).
    • 37 Cronican JJ, Thompson DB, Beier KT, McNaughton BR, Cepko CL, Liu DR. Potent delivery of functional proteins into mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem. Biol. 5(8), 747–752 (2010).
    • 38 Sun W, Ji W, Hall JM et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Ed. Engl. Engl. 54(41), 12029–12033 (2015). • Demonstration of a new class of nanocarrier for protein delivery.
    • 39 Sun W, Ji W, Hu Q et al. Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine. Biomaterials 96, 1–10 (2016).
    • 40 dos Santos MA, Grenha A. Chapter seven-polysaccharide nanoparticles for protein and peptide delivery: exploring less-known materials. Adv. Protein Chem. Struct. Boil. 98, 223–261 (2015).
    • 41 Mahlumb P, Choonara YE, Kumar P, du Toit LC, Pillay V. Stimuli-responsive polymeric systems for controlled protein and peptide delivery: future implications for ocular delivery. Molecules 21(8), 1002 (2016).
    • 42 Pagels RF, Prud'homme RK. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J. Control. Release 219, 519–535 (2015).
    • 43 Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem. Rev. 112(5), 2853–2888 (2012).
    • 44 Zhao M, Hu B, Gu Z, Joo KI, Wang P, Tang Y. Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex. Nano Today 8(1), 11–20 (2013).
    • 45 Ventura J, Eron SJ, González-Toro DC et al. Reactive self-assembly of polymers and proteins to reversibly silence a killer protein. Biomacromolecules 16(10), 3161–3171 (2015).
    • 46 Ryu JH, Bickerton S, Zhuang J, Thayumanavan S. Ligand-decorated nanogels: fast one-pot synthesis and cellular targeting. Biomacromolecules 13(5), 1515–1522 (2012).
    • 47 Shi Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126(22), 6850–6851 (2004).
    • 48 Holt BD, Dah KN, Islam MF. Cells take up and recover from protein-stabilized single-wall carbon nanotubes with two distinct rates. ACS Nano 6(4), 3481–3490 (2012).
    • 49 Boyer PD, Ganesh S, Qin Z et al. Delivering single-walled carbon nanotubes to the nucleus using engineered nuclear protein domains. ACS Appl. Mater. Interfaces 8(5), 3524–3534 (2016).
    • 50 Li H, Fan X, Chen X. Near-infrared light activation of proteins inside living cells enabled by carbon nanotube-mediated intracellular delivery. ACS Appl. Mater. Interfaces 8(7), 4500–4507 (2016).
    • 51 Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Comm. 1, 16–17 (2004).
    • 52 Lu Q, Moore JM, Huang G et al. RNA polymer translocation with single-walled carbon nanotubes. Nano Lett. 4(12), 2473–2477 (2004).
    • 53 De Paoli Lacerda SH, Semberova J, Holada K, Simakova O, Hudson SD, Simak J. Carbon nanotubes activate store-operated calcium entry in human blood platelets. ACS Nano 5(7), 5808–5813 (2011).
    • 54 FDA. CBER study provides data critical to developing effective techniques for evaluating carbon nanomaterial biocompatibility with blood. www.fda.gov/downloads/BiologicsBloodVaccines/ScienceResearch/UCM300289.pdf.
    • 55 Fang IJ, Trewyn BG. Application of mesoporous silica nanoparticles in intracellular delivery of molecules and proteins. Methods Enzymol. 508, 41–57 (2012).
    • 56 Slowing II, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J. Am. Chem. Soc. 129(28), 8845–8849 (2007).
    • 57 Prasetyanto EA, Bertucci A, Septiadi D, Corradini R, Castro-Hartmann P, De Cola L. Breakable hybrid organosilica nanocapsules for protein delivery. Angew. Chem. Int. Ed. Engl. 55(10), 3323–3327 (2016).
    • 58 Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv. Drug Del. Rev. 60(11), 1307–1315 (2008).
    • 59 Ghosh P, Yang X, Arvizo R et al. Intracellular delivery of a membrane-impermeable enzyme in active form using functionalized gold nanoparticles. J. Am. Chem. Soc. 132(8), 2642–2645 (2010).
    • 60 Tang R, Kim CS, Solfiell DJ et al. Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules. ACS Nano 7(8), 6667–6673 (2013).
    • 61 Tang R, Jiang Z, Ray M, Hou S, Rotello VM. Cytosolic delivery of large proteins using nanoparticle-stabilized nanocapsules. Nanoscale 8(42), 18038–18041 (2016).
    • 62 Ray M, Tang R, Jiang Z, Rotello VM. Quantitative tracking of protein trafficking to the nucleus using cytosolic protein delivery by nanoparticle-stabilized nanocapsules. Bioconjug. Chem. 26(6), 1004–1007 (2015).