We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Passive immune neutralization strategies for prevention and control of influenza A infections

    Jianqiang Ye

    Department of Veterinary Medicine, University of Maryland, College Park & Virginia – Maryland Regional College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA.

    ,
    Hongxia Shao

    Department of Veterinary Medicine, University of Maryland, College Park & Virginia – Maryland Regional College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA.

    Key Laboratory of Jiangsu Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, People’s Republic of China

    &
    Daniel R Perez

    * Author for correspondence

    Department of Veterinary Medicine, University of Maryland, College Park & Virginia – Maryland Regional College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA.

    Published Online:https://doi.org/10.2217/imt.11.167

    Although vaccination significantly reduces influenza severity, seasonal human influenza epidemics still cause more than 250,000 deaths annually. Vaccine efficacy is limited in high-risk populations such as infants, the elderly and immunosuppressed individuals. In the event of an influenza pandemic (such as the 2009 H1N1 pandemic), a significant delay in vaccine availability represents a significant public health concern, particularly in high-risk groups. The increasing emergence of strains resistant to the two major anti-influenza drugs, adamantanes and neuraminidase inhibitors, and the continuous circulation of avian influenza viruses with pandemic potential in poultry, strongly calls for alternative prophylactic and treatment options. In this review, we focus on passive virus neutralization strategies for the prevention and control of influenza type A viruses.

    Papers of special note have been highlighted as: ▪ of interest

    References

    • Lamb RA. Genes and proteins of the influenza viruses. In: The Influenza Viruses (1st Edition). Krug RM (Ed.). Plenum Press, NY, USA (1989).
    • Bouvier NM, Palese P. The biology of influenza viruses. Vaccine26(Suppl. 4),D49–D53 (2008).
    • Webster RG. Predictions for future human influenza pandemics. J. Infect. Dis.176(Suppl. 1),S14–S19 (1997).
    • Dawood FS, Jain S, Finelli L et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med.360(25),2605–2615 (2009).
    • Taubenberger JK, Morens DM. 1918 influenza: the mother of all pandemics. Emerg. Infect. Dis.12(1),15–22 (2006).
    • Libster R, Bugna J, Coviello S et al. Pediatric hospitalizations associated with 2009 pandemic influenza A (H1N1) in Argentina. N. Engl. J. Med.362(1),45–55 (2010).
    • Louie JK, Acosta M, Winter K et al. Factors associated with death or hospitalization due to pandemic 2009 influenza A(H1N1) infection in California. JAMA302(17),1896–1902 (2009).
    • Donaldson LJ, Rutter PD, Ellis BM et al. Mortality from pandemic A/H1N1 2009 influenza in England: public health surveillance study. BMJ339,B5213 (2009).
    • Girard MP, Cherian T, Pervikov Y, Kieny MP. A review of vaccine research and development: human acute respiratory infections. Vaccine23(50),5708–5724 (2005).
    • 10  Abdel-Ghafar AN, Chotpitayasunondh T, Gao ZC et al. Update on avian influenza A (H5N1) virus infection in humans. N. Engl. J. Med.358(3),261–273 (2008).
    • 11  Brown IH, Capua I, Cattoli G et al. Continuing progress towards a unified nomenclature for the highly pathogenic H5N1 avian influenza viruses: divergence of clade 2.2 viruses. Influenza Other Respi. Viruses3(2),59–62 (2009).
    • 12  Organization WH. Update: WHO-confirmed human cases of avian influenza A (H5N1) infection, November 2003–May 2008. Wkly Epidemiol. Rec.83,415–420 (2008).
    • 13  Ambrose CS, Luke C, Coelingh K. Current status of live attenuated influenza vaccine in the United States for seasonal and pandemic influenza. Influenza Other Respi. Viruses2(6),193–202 (2008).
    • 14  Simonsen L. The global impact of influenza on morbidity and mortality. Vaccine17,S3–S10 (1999).
    • 15  Davies WL, Hoffmann CE, Paulshock M et al. Antiviral activity of 1-adamantanamine (amantadine ). Science144(362),862–863 (1964).
    • 16  Moscona A. Oseltamivir resistance – disabling our influenza defenses. N. Engl. J. Med.353(25),2633–2636 (2005).
    • 17  Dharan NJ, Gubareva LV, Meyer JJ et al. Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States. JAMA301(10),1034–1041 (2009).
    • 18  Tamura D, Mitamura K, Yamazaki M et al. Oseltamivir-resistant influenza A viruses circulating in Japan. J. Clin. Microbiol.47(5),1424–1427 (2009).
    • 19  Chen H, Cheung CL, Tai H et al. Oseltamivir-resistant influenza A pandemic (H1N1) 2009 virus, Hong Kong, China. Emerg. Infect. Dis.15(12),1970–1972 (2009).
    • 20  Le QM, Wertheim HF, Tran ND, van Doorn HR, Nguyen TH, Horby P. A community cluster of oseltamivir-resistant cases of 2009 H1N1 influenza. N. Engl. J. Med.362(1),86–87 (2010).
    • 21  Baz M, Abed Y, Papenburg J, Bouhy X, Hamelin ME, Boivin G. Emergence of oseltamivir-resistant pandemic H1N1 virus during prophylaxis. N. Engl. J. Med.361(23),2296–2297 (2009).
    • 22  Gerhard W. The role of the antibody response in influenza virus infection. Curr. Top. Microbiol. Immunol.260,171–190 (2001).
    • 23  Gerhard W, Mozdzanowska K, Zharikova D. Prospects for universal influenza virus vaccine. Emerg. Infect. Dis.12(4),569–574 (2006).
    • 24  Palese P, Shaw ML. Orthomyxoviridae : the viruses and their replication. In: Fields Virology (5th Edition). Knipe DM, Howley PM (Eds). Lippincott-Raven Publishers, PA, USA (2007).
    • 25  Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Ann. Rev. Biochem.69,531–569 (2000).
    • 26  Wiley DC, Wilson IA, Skehel JJ. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature289(5796),373–378 (1981).
    • 27  Caton AJ, Brownlee GG, Yewdell JW, Gerhard W. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell31(2 Pt 1),417–427 (1982).
    • 28  Knossow M, Gaudier M, Douglas A et al. Mechanism of neutralization of influenza virus infectivity by antibodies. Virology302(2),294–298 (2002).
    • 29  Bizebard T, Gigant B, Rigolet P et al. Structure of influenza virus haemagglutinin complexed with a neutralizing antibody. Nature376(6535),92–94 (1995).
    • 30  Fleury D, Barrere B, Bizebard T, Daniels RS, Skehel JJ, Knossow M. A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site. Nat. Struct. Bio.l6(6),530–534 (1999).
    • 31  Wang TT, Palese P. Universal epitopes of influenza virus hemagglutinins? Nat. Struct. Mol. Biol.16(3),233–234 (2009).
    • 32  Lambert LC, Fauci AS. Current concepts influenza vaccines for the future. N. Engl. J. Med.363(21),2036–2044 (2010).
    • 33  Gething MJ, Doms RW, York D, White J. Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. J. Cell Biol.102(1),11–23 (1986).
    • 34  Vareckova E, Mucha V, Wharton SA, Kostolansky F. Inhibition of fusion activity of influenza A haemagglutinin mediated by HA2-specific monoclonal antibodies. Arch. Virol.148(3),469–486 (2003).
    • 35  Vareckova E, Mucha V, Kostolansky F, Gubareva LV, Klimov A. HA2-specific monoclonal antibodies as tools for differential recognition of influenza A virus antigenic subtypes. Virus Res.132(1–2),181–186 (2008).
    • 36  Wrammert J, Koutsonanos D, Li GM et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med.208(1),181–193 (2011).▪ Detailed analysis of plasmablast and monoclonal antibody responses induced by pandemic H1N1 infection in humans.
    • 37  Sui J, Hwang WC, Perez S et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol.16(3),265–273 (2009).
    • 38  Okuno Y, Isegawa Y, Sasao F, Ueda S. A common neutralizing epitope conserved between the hemagglutinins of influenza-A virus H1 and H2 strains. J. Virol.67(5),2552–2558 (1993).
    • 39  Throsby M, van Den Brink E, Jongeneelen M et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE3(12),E3942 (2008).
    • 40  Corti D, Suguitan AL Jr, Pinna D et al. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J. Clin. Invest.120(5),1663–1673 (2010).
    • 41  Ekiert DC, Bhabha G, Elsliger MA et al. Antibody recognition of a highly conserved influenza virus epitope. Science324(5924),246–251 (2009).
    • 42  Okuno Y, Matsumoto K, Isegawa Y, Ueda S. Protection against the mouse-adapted A/FM/1/47 strain of influenza A virus in mice by a monoclonal antibody with cross-neutralizing activity among H1 and H2 strains. J. Virol.68(1),517–520 (1994).
    • 43  Marasco WA, Sui J. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat. Biotechnol.25(12),1421–1434 (2007).
    • 44  Gocnik M, Fislova T, Sladkova T, Mucha V, Kostolansky F, Vareckova E. Antibodies specific to the HA2 glycopolypeptide of influenza A virus haemagglutinin with fusion-inhibition activity contribute to the protection of mice against lethal infection. J. Gen. Virol.88(Pt 3),951–955 (2007).
    • 45  Prabhu N, Prabakaran M, Ho HT et al. Monoclonal antibodies against the fusion peptide of hemagglutinin protect mice from lethal influenza A virus H5N1 infection. J. Virol.83(6),2553–2562 (2009).
    • 46  Gocnik M, Fislova T, Mucha V et al. Antibodies induced by the HA2 glycopolypeptide of influenza virus haemagglutinin improve recovery from influenza A virus infection. J. Gen. Virol.89(Pt 4),958–967 (2008).
    • 47  Stanekova Z, Kiraly J, Stropkovska A et al. Heterosubtypic protective immunity against influenza A virus induced by fusion peptide of the hemagglutinin in comparison to ectodomain of M2 protein. Acta Virol.55(1),61–67 (2011).
    • 48  Vareckova E, Cox N, Klimov A. Evaluation of the subtype specificity of monoclonal antibodies raised against H1 and H3 subtypes of human influenza A virus hemagglutinins. J. Clin. Microbiol.40(6),2220–2223 (2002).
    • 49  Barbey-Martin C, Gigant B, Bizebard T et al. An antibody that prevents the hemagglutinin low pH fusogenic transition. Virology294(1),70–74 (2002).
    • 50  Styk B, Russ G, Polakova K. Antigenic glycopolypeptides HA1 and HA2 of influenza virus haemagglutinin. III. Reactivity with human convalescent sera. Acta Virol.23(1),1–8 (1979).
    • 51  Kostolansky F, Mucha V, Slovakova R, Vareckova E. Natural influenza A virus infection of mice elicits strong antibody response to HA2 glycopolypeptide. Acta Virol.46(4),229–236 (2002).
    • 52  Ekiert DC, Friesen RH, Bhabha G et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science333(6044),843–850 (2011).
    • 53  Corti D, Voss J, Gamblin SJ et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science333(6044),850–856 (2011).▪ Highlighted a single-cell culture method for screening human plasma cells to isolate a monoclonal antibody that neutralized both group 1 and group 2 influenza A viruses.
    • 54  Du LY, Zhou YS, Jiang SB. Research and development of universal influenza vaccines. Microbes Infect.12(4),280–286 (2010).
    • 55  Peltola VT, Murti KG, McCullers JA. Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J. Infect. Dis.192(2),249–257 (2005).
    • 56  Ja M. Insights into the interaction between influenza virus and pneumococcus. Clin. Microbiol. Rev.19,571–582 (2006).
    • 57  Powers DC, Kilbourne ED, Johansson BE. Neuraminidase-specific antibody responses to inactivated influenza virus vaccine in young and elderly adults. Clin. Diagn. Lab. Immunol.3(5),511–516 (1996).
    • 58  Kilbourne ED, Laver WG, Schulman JI, Webster RG. Antiviral activity of antiserum specific for an influenza virus neuraminidase. J. Virol.2(4),281–288 (1968).
    • 59  Murphy BR, Kasel JA, Chanock RM. Association of serum anti-neuraminidase antibody with resistance to influenza in man. N. Engl. J. Med.286(25),1329–1332 (1972).
    • 60  Couch RB, Kasel JA, Gerin JL, Schulman JL, Kilbourn ED. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J. Infect. Dis.129(4),411–420 (1974).
    • 61  Webster RG, Reay PA, Laver WG. Protection against lethal influenza with neuraminidase. Virology164(1),230–237 (1988).
    • 62  Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza A virus. Nature451(7178),591–595 (2008).
    • 63  Feng J, Zhang M, Mozdzanowska K et al. Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol. J.3,102 (2006).
    • 64  Jegerlehner A, Schmitz N, Storni T, Bachmann MF. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J. Immunol.172(9),5598–5605 (2004).
    • 65  Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med.5(10),1157–1163 (1999).
    • 66  Ernst WA, Kim HJ, Tumpey TM et al. Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines. Vaccine24(24),5158–5168 (2006).
    • 67  Fan J, Liang X, Horton MS et al. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets and rhesus monkeys. Vaccine22(23–24),2993–3003 (2004).
    • 68  Huleatt JW, Nakaar V, Desai P et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine26(2),201–214 (2008).
    • 69  Liu W, Peng Z, Liu Z, Lu Y, Ding J, Chen YH. High epitope density in a single recombinant protein molecule of the extracellular domain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine23(3),366–371 (2004).
    • 70  Grandea AG, Olsen OA, Cox TC et al. Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses. PNAS107(28),12658–12663 (2010).▪ Described the isolation of a panel of broadly cross-reactive monoclonal antibodies against influenza M2 extracellular N-terminal domain from human memory B cells.
    • 71  Zharikova D, Mozdzanowska K, Feng J, Zhang M, Gerhard W. Influenza type A virus escape mutants emerge in vivo in the presence of antibodies to the ectodomain of matrix protein 2. J. Virol.79(11),6644–6654 (2005).
    • 72  Huber VC, Lynch JM, Bucher DJ, Le J, Metzger DW. Fc receptor-mediated phagocytosis makes a significant contribution to clearance of influenza virus infections. J. Immunol.166(12),7381–7388 (2001).
    • 73  Stokes J Jr, Maris EP, Gellis SS. Chemical, clincical and immunological studies on the products of human plasma fractionation XI. The use of concentrated normal human serum γ globulin (human immune serum globulin) in the prophylaxis and treatment of measles. J. Clin. Invest.23,531–540 (1944).
    • 74  Reed EC, Bowden RA, Dandliker PS, Lilleby KE, Meyers JD. Treatment of cytomegalovirus pneumonia with ganciclovir and intravenous cytomegalovirus immunoglobulin in patients with bone marrow transplants. Ann. Intern. Med.109(10),783–788 (1988).
    • 75  Whimbey E, Champlin RE, Englund JA et al. Combination therapy with aerosolized ribavirin and intravenous immunoglobulin for respiratory syncytial virus disease in adult bone marrow transplant recipients. Bone Marrow Transplant.16(3),393–399 (1995).
    • 76  Hopkins RJ, Lane JM. Clinical efficacy of intramuscular vaccinia immune globulin: a literature review. Clin. Infect. Dis.39,819–826 (2004).
    • 77  Victor JC, Monto AS, Surdina TY et al. Hepatitis avaccine versus immune globulin for postexposure prophylaxis. N. Engl. J. Med.357,1685–1694 (2007).
    • 78  Samuel D, Muller R, Alexander G et al. Liver-transplantation in European patients with the hepatitis-B surface-antigen. N. Engl. J. Med.329(25),1842–1847 (1993).
    • 79  Bahmanyar M, Fayaz A, Nour-Salehi S, Mohammadi M, Koprowski H. Successful protection of humans exposed to rabies infection: postexposure treatment with the new human diploid cell rabies vaccine and antirabies serum. JAMA236(24),2751–2754 (1976).
    • 80  Kudoyarova-Zubavichene NM, Sergeyev NN, Chepurnov AA, Netesov SV. Preparation and use of hyperimmune serum for prophylaxis and therapy of Ebola virus infections. J. Infect. Dis.179,S218–S223 (1999).
    • 81  Luke TC, Casadevall A, Watowich SJ, Hoffman SL, Beigel JH, Burgess TH. Hark back: passive immunotherapy for influenza and other serious infections. Crit. Care Med.38(Suppl. 4),E66–E73 (2010).
    • 82  Morris SK, Dzolganovski B, Beyene J, Sung L. A meta-analysis of the effect of antibody therapy for the prevention of severe respiratory syncytial virus infection. BMC Infect. Dis.9,106 (2009).
    • 83  CDC. A new product (VariZIG) for post exposure prophylaxis of varicella available under an investigational new drug application expanded access protocol. MMWR Morb. Mortal. Wkly Rep.55,209–210 (2006).
    • 84  Wittek R. Vaccinia immune globulin: current policies, preparedness and product safety and efficacy. Int. J. Infect. Dis.10(3),193–201 (2006).
    • 85  Shetty K, Lukose T, Brown RS Jr. Evaluation of blood glucose levels after hepatitis B immune globulin administration utilizing two different blood glucose monitoring systems. Transplant. Proc.42(10),4123–4126 (2010).
    • 86  Manning SE, Rupprecht CE, Fishbein D et al. Human rabies prevention – United States, 2008: recommendations of the Advisory committee on immunization practices (ACIP). MMWR Recomm. Rep.57,1–28 (2008).
    • 87  Adler SP, Nigro G. Findings and conclusions from CMV hyperimmune globulin treatment trials. J. Clin. Virol.46(Suppl. 4),S54–S57 (2009).
    • 88  Fiore AE, Wasley A, Bell BP. Prevention of hepatitis A through active or passive immunization: recommendations of the Advisory committee on immunization practices (ACIP). MMWR Recomm. Rep.55,1–23 (2006).
    • 89  Luke TC, Kilbane EM, Jackson JL, Hoffman SL. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann. Intern. Med.145(8),599–609 (2006).
    • 90  Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N. Engl. J. Med.357(14),1450–1451 (2007).
    • 91  Hung IF, To KK, Lee CK et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin. Infect. Dis.52(4),447–456 (2011).▪ Describes a prospective cohort study where patients with severe H1N1 2009 infection were treated with convalescent plasma from patients recovering from the same infection.
    • 92  Haurum JS. Recombinant polyclonal antibodies: the next generation of antibody therapeutics? Drug Discov. Today11(13–14),655–660 (2006).
    • 93  Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature256(5517),495–497 (1975).
    • 94  Johnson S, Oliver C, Prince GA et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J. Infect. Dis.176(5),1215–1224 (1997).
    • 95  Simmons CP, Bernasconi NL, Suguitan AL et al. Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza. PLoS Med.4(5),E178 (2007).
    • 96  Lim AP, Chan CE, Wong SK, Chan AH, Ooi EE, Hanson BJ. Neutralizing human monoclonal antibody against H5N1 influenza HA selected from a Fab-phage display library. Virol. J.5,130 (2008).
    • 97  Hanson BJ, Boon AC, Lim AP, Webb A, Ooi EE, Webby RJ. Passive immunoprophylaxis and therapy with humanized monoclonal antibody specific for influenza A H5 hemagglutinin in mice. Respir. Res.7,126 (2006).
    • 98  Sun L, Lu X, Li C et al. Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses. PLoS ONE4(5),E5476 (2009).
    • 99  Ye J, Shao H, Hickman D et al. Intranasal delivery of an IgA monoclonal antibody effective against sublethal H5N1 influenza virus infection in mice. Clin. Vacc. Immunol.17(9),1363–1370 (2010).▪ Describes intranasal administration of an IgA neutralizing monoclonal antibody that could provide protection against sublethal H5 challenge at both prior to and postchallenge in mouse models.
    • 100  Kashyap AK, Steel J, Rubrum A et al. Protection from the 2009 H1N1 pandemic influenza by an antibody from combinatorial survivor-based libraries. PLoS Pathog.6(7),E1000990 (2010).
    • 101  Uprichard SL. Hepatitis C virus experimental model systems and antiviral drug research. Virol. Sin.25(4),227–245 (2010).
    • 102  Rajamanonmani R, Nkenfou C, Clancy P et al. On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. J. Gen. Virol.90,799–809 (2009).
    • 103  Shrestha B, Brien JD, Sukupolvi-Petty S et al. The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog.6(4),E1000823 (2010).
    • 104  Carlander D, Kollberg H, Wejaker PE, Larsson A. Peroral immunotherapy with yolk antibodies for the prevention and treatment of enteric infections. Immunol. Res.21(1),1–6 (2000).
    • 105  Hatta H, Tsuda K, Ozeki M et al. Passive immunization against dental plaque formation in humans: effect of a mouth rinse containing egg yolk antibodies (IgY) specific to Streptococcus mutans. Caries Res.31(4),268–274 (1997).
    • 106  Suzuki H, Nomura S, Masaoka T et al. Effect of dietary anti-Helicobacter pylori-urease immunoglobulin Y on Helicobacter pylori infection. Aliment Pharmacol. Ther.20(Suppl. 1),S185–S192 (2004).
    • 107  Horie K, Horie N, Abdou AM et al. Suppressive effect of functional drinking yogurt containing specific egg yolk immunoglobulin on Helicobacter pylori in humans. J. Dairy Sci.87(12),4073–4079 (2004).
    • 108  Kollberg H, Carlander D, Olesen H, Wejaker PE, Johannesson M, Larsson A. Oral administration of specific yolk antibodies (IgY) may prevent pseudomonas aeruginosa infections in patients with cystic fibrosis: a Phase 1 feasibility study. Pediatr. Pulmonol.35(6),433–440 (2003).
    • 109  Adachi K, Handharyani E, Sari DK et al. Development of neutralization antibodies against highly pathogenic H5N1 avian influenza virus using ostrich (Struthio camelus) yolk. Mol. Med. Report1(2),203–209 (2008).
    • 110  Nguyen HH, Tumpey TM, Park HJ et al. Prophylactic and therapeutic efficacy of avian antibodies against influenza virus H5N1 and H1N1 in mice. PLoS ONE5(4),E10152 (2010).▪ Describes intranasal administration of influenza-specific chicken IgY that could efficiently prevent infection and significantly reduce viral replication in mouse models.
    • 111  Larsson A, Balow RM, Lindahl TL, Forsberg PO. Chicken antibodies: taking advantage of evolution – a review. Poult. Sci.72(10),1807–1812 (1993).
    • 112  Tamura S, Kurata T. Defense mechanisms against influenza virus infection in the respiratory tract mucosa. Jpn J. Infect. Dis.57(6),236–247 (2004).
    • 113  Weltzin R, Monath TP. Intranasal antibody prophylaxis for protection against viral disease. Clin. Microbiol. Rev.12(3),383–393 (1999).
    • 114  Shao H, Ye J, Vincent AL et al. A novel monoclonal antibody effective against lethal challenge with swine-lineage and 2009 pandemic H1N1 influenza viruses in mice. Virology417,379–384 (2011).
    • 115  Adams O, Bonzel L, Kovacevic A, Mayatepek E, Hoehn T, Vogel M. Palivizumab-resistant human respiratory syncytial virus infection in infancy. Clin. Infect. Dis.51(2),185–188 (2010).
    • 116  Bakker AB, Python C, Kissling CJ et al. First administration to humans of a monoclonal antibody cocktail against rabies virus: safety, tolerability and neutralizing activity. Vaccine26(47),5922–5927 (2008).
    • 117  Kamiyama Y, Adachi K, Handharyani E et al. Protection from avian influenza H5N1 virus infection with antibody-impregnated filters. Virol. J.8,54 (2011).▪ Describes specific influenza-neutralizing antibodies that could be applied to facial masks or air-conditioning filters to prevent the population from influenza infections.
    • 118  Yoshida M, Claypool SM, Wagner JS et al. Human neonatal Fc receptor mediates transport of IgG to luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity20,769–783 (2004).
    • 119  Apodaca G, Katz LA, Mostov KE. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J. Cell Biol.125,67–86 (1994).
    • 201  Theraclone sciences initiates Phase 1 trial of TCN-032 for influenza A. www.bioportfolio.com/news/article/809490