We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options

Shio-Shin Jean

Department of Emergency Medicine, Wan Fang Hospital, Taipei Medical University; and Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

,
Wen-Sen Lee

Division of infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan

,
Carlos Lam

Department of Emergency Medicine, Wan Fang Hospital, Taipei Medical University; and Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

,
Chin-Wang Hsu

Department of Emergency & Critical Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan

,
Ray-Jade Chen

Department of Emergency & Critical Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan

&
Po-Ren Hsueh

*Author for correspondence:

E-mail Address: hsporen@ntu.edu.tw

Departments of Laboratory Medicine & Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan

Published Online:https://doi.org/10.2217/fmb.14.135

ABSTRACT 

Carbapenemases, with versatile hydrolytic capacity against β-lactams, are now an important cause of resistance of Gram-negative bacteria. The genes encoding for the acquired carbapenemases are associated with a high potential for dissemination. In addition, infections due to Gram-negative bacteria with acquired carbapenemase production would lead to high clinical mortality rates. Of the acquired carbapenemases, Klebsiella pneumoniae carbapenemase (Ambler class A), Verona integron-encoded metallo-β-lactamase (Ambler class B), New Delhi metallo-β-lactamase (Ambler class B) and many OXA enzymes (OXA-23-like, OXA-24-like, OXA-48-like, OXA-58-like, class D) are considered to be responsible for the worldwide resistance epidemics. As compared with monotherapy with colistin or tigecycline, combination therapy has been shown to effectively lower case-fatality rates. However, development of new antibiotics is crucial in the present pandrug-resistant era.

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1 Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20(3), 440–458 (2007).•• A review also documenting the action mechanisms of carbapenemases on the molecular basis in addition to their epidemiologies and transmission routes.
  • 2 Ambler RP. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 289, 321–331 (1980).
  • 3 Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 9(4), 228–236 (2009).
  • 4 Psichogiou M, Tassios PT, Avlamis A et al. Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J. Antimicrob. Chemother. 61(1), 59–63 (2008).
  • 5 Naas T, Levy M, Hirschauer C, Marchandin H, Nordmann P. Outbreak of carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-23 in a tertiary care hospital of Papeete, French Polynesia. J. Clin. Microbiol. 43(9), 4826–4829 (2005).
  • 6 Corvec S, Poirel L, Naas T, Drugeon H, Nordmann P. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-23 in Acinetobacter baumannii. Antimicrob. Agents Chemother. 51(4), 1530–1533 (2007).• Proves the importance of upstream insertion sequence ISAba1 and ISAba4, promoters required for the expression of plasmidic resistance blaOXA-23 genes on Acinetobacter baumannii isolates.
  • 7 Turton JF, Ward ME, Woodford N et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol. Lett. 258(1), 72–77 (2006).
  • 8 Carrër A, Poirel L, Yilmaz M et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob. Agents Chemother. 54(3), 1369–1373 (2010).
  • 9 Jean SS, Lee WS, Hsueh PR. Nationwide spread of Klebsiella pneumoniae carbapenemase-2-producing K. pneumoniae sequence type 11 in Taiwan. J. Microbiol. Immunol. Infect. 46(5), 317–319 (2013).
  • 10 Toleman MA, Biedenbach D, Bennett DM, Jones RN, Walsh TR. Italian metallo-β-lactamases: a national problem? Report from the SENTRY Antimicrobial Surveillance Programme. J. Antimicrob. Chemother. 55(1), 61–70 (2005).
  • 11 Kumarasamy KK, Toleman MA, Walsh TR et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10(9), 597–602 (2010).•• Issue the different transferability and plasmidic sizes on the blaNDM-1-bearing enteric GNB collected from between northern and southern region of India, and the UK.
  • 12 Mugnier PD, Poirel L, Naas T, Nordmann P. Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg. Infect. Dis. 16(1), 35–40 (2010).
  • 13 Mendes RE, Bell JM, Turnidge JD, Castanheira M, Jones RN. Emergence and widespread dissemination of OXA-23, -24/40 and -58 carbapenemases among Acinetobacter spp. in Asia-Pacific nations: report from the SENTRY Surveillance Program. J. Antimicrob. Chemother. 63(1), 55–59 (2009).
  • 14 Lee YT, Fung CP, Wang FD, Chen CP, Chen TL, Cho WL. Outbreak of imipenem-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex harboring different carbapenemase gene-associated genetic structures in an intensive care unit. J. Microbiol. Immunol. Infect. 45(1), 43–51 (2012).
  • 15 Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17(10), 1791–1798 (2011).
  • 16 Perez F, Endimiani A, Ray AJ et al. Carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae across a hospital system: impact of post-acute care facilities on dissemination. J. Antimicrob. Chemother. 65(8), 1807–1818 (2010).
  • 17 Bratu S, Landman D, Haag R et al. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch. Intern. Med. 165(12), 1430–1435 (2005).• An important reference addressing an early outbreak of KPC-K. pneumoniae in northeastern part of the USA in details.
  • 18 Navon-Venezia S, Leavitt A, Schwaber MJ et al. First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob. Agents Chemother. 53(2), 818–820 (2009).
  • 19 Qi Y, Wei Z, Ji S, Du X, Shen P, Yu Y. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J. Antimicrob. Chemother. 66(2), 307–312 (2011).• A study performing molecular surveys on KPC-producing K. pneumoniae strains throughout China, compared with those from the USA.
  • 20 Woodford N, Tierno PM Jr, Young K et al. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York Medical Center. Antimicrob. Agents Chemother. 48(12), 4793–4799 (2004).
  • 21 Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob. Agents Chemother. 52(4), 1257–1263 (2008).
  • 22 Cuzon G, Naas T, Truong H et al. Worldwide diversity of Klebsiella pneumoniae that produce β-lactamase blaKPC-2 gene. Emerg. Infect. Dis. 16(9), 1349–1356 (2010).
  • 23 Chen YT, Lin JC, Fung CP et al. KPC-2-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. J. Antimicrob. Chemother. 69(3), 628–631 (2014).
  • 24 Chen L, Chavda KD, Melano RG et al. Molecular survey of the dissemination of two blaKPC-harboring IncFIA plasmids in New Jersey and New York hospitals. Antimicrob. Agents Chemother. 58(4), 2289–2294 (2014).
  • 25 Ke W, Bethel CR, Thomson JM, Bonomo RA, van den Akker F. Crystal structure of KPC-2: insights into carbapenemase activity in class A β-lactamases. Biochemistry 46(19), 5732–5740 (2007).
  • 26 Chiu SK, Wu TL, Chuang YC et al. National surveillance study on carbapenem non-susceptible Klebsiella pneumoniae in Taiwan: the emergence and rapid dissemination of KPC-2 carbapenemase. PLoS ONE 8(7), e69428 (2013).
  • 27 Cai JC, Zhou HW, Zhang R, Chen GX. Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli isolates possessing the plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob. Agents Chemother. 52(6), 2014–2018 (2008).
  • 28 Endimiani A, Hujer AM, Perez F et al. Characterization of blaKPC-containing Klebsiella pneumoniae isolates detected in different institutions in the Eastern USA. J. Antimicrob. Chemother. 63(3), 427–437 (2009).
  • 29 Giakkoupi P, Papagiannitsis CC, Miriagou V et al. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009–10). J. Antimicrob. Chemother. 66(7), 1510–1513 (2011).
  • 30 Endimiani A, Carias LL, Hujer AM et al. Presence of plasmid-mediated quinolone resistance in Klebsiella pneumoniae isolates possessing blaKPC in the United States. Antimicrob. Agents Chemother. 52(7), 2680–2682 (2008).
  • 31 Li JJ, Sheng ZK, Deng M et al. Epidemic of Klebsiella pneumoniae ST11 clone coproducing KPC-2 and 16S rRNA methylase RmtB in a Chinese University Hospital. BMC Infect. Dis. 12, 373–380 (2012).
  • 32 Landman D, Bratu S, Quale J. Contribution of OmpK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniae. J. Med. Microbiol. 58(Pt 10), 1303–1308 (2009).
  • 33 Villegas MV, Lolans K, Correa A, Kattan JN, Lopez JA, Quinn JP. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing β-lactamase. Antimicrob. Agents Chemother. 51(4), 1553–1555 (2007).
  • 34 Robledo IE, Aquino EE, Santé MI et al. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob. Agents Chemother. 54(3), 1354–1357 (2010).
  • 35 Yigit H, Queenan AM, Anderson GJ et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45(4), 1151–1161 (2001).
  • 36 Yang YJ, Wu PJ, Livermore DM. Biochemical characterization of a β-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrob. Agents Chemother. 34(5), 755–758 (1990).
  • 37 Nordmann P, Mariotte S, Naas T, Labia R, Nicolas MH. Biochemical properties of a carbapenem-hydrolyzing β-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob. Agents Chemother. 37(54), 939–946 (1993).
  • 38 Miriagou V, Tzouvelekis LS, Rossiter S, Tzelepi E, Angulo FJ, Whichard JM. Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob. Agents Chemother. 47(4), 1297–1300 (2003).
  • 39 Johnson JK, Wilson LE, Zhao L, Richards K, Thom KA, Harris AD. Point prevalence of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae in Maryland. Infect. Control Hosp. Epidemiol. 35(4), 443–445 (2014).
  • 40 Navon-Venezia S, Chmelnitsky I, Leavitt A, Schwaber MJ, Schwartz D, Carmeli Y. Plasmid-mediated imipenem-hydrolyzing enzyme KPC-2 among multiple carbapenem-resistant Escherichia coli clones in Israel. Antimicrob. Agents Chemother. 50(9), 3098–3101 (2006).
  • 41 Yoo JS, Kim HM, Yoo JI et al. Detection of clonal KPC-2-producing Klebsiella pneumoniae ST258 in Korea during nationwide surveillance in 2011. J. Med. Microbiol. 62(Pt 9), 1338–1342 (2013).
  • 42 Jean SS, Hsueh PR. Spread of Klebsiella pneumoniae carbapenemase-2-producing Klebsiella pneumoniae clones in Asia. Future Microbiol. 9(3), 273–275 (2014).• A review on prevalences and distribution of the ST11, KPC-2-producing K. pneumoniae in Asian countries before 2014, along with the therapy recommendation about combination schemes.
  • 43 Baraniak A, Izdebski R, Herda M et al. Emergence of Klebsiella pneumoniae ST258 with KPC-2 in Poland. Antimicrob. Agents Chemother. 53(10), 4565–4567 (2009).
  • 44 Carbonne A, Thiolet JM, Fournier S et al. Control of a multi-hospital outbreak of KPC-producing Klebsiella pneumoniae type 2 in France, September to October 2009. Euro. Surveill. 15(48), pii: 19734 (2010).
  • 45 Balm MN, Ngan G, Jureen R, Lin RT, Teo J. Molecular characterization of newly emerged blaKPC-2-producing Klebsiella pneumoniae in Singapore. J. Clin. Microbiol. 50(2), 475–476 (2012).
  • 46 Giani T, Pini B, Arena F et al. Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: results of the first countrywide survey, 15 May to 30 June 2011. Euro. Surveill. 18(22), pii: 20489 (2013).
  • 47 Giani T, D'Andrea MM, Pecile P et al. Emergence in Italy of Klebsiella pneumoniae sequence type 258 producing KPC-3 Carbapenemase. J. Clin. Microbiol. 47(11), 3793–3794 (2009).
  • 48 Nordmann P. Carbapenemase-producing Enterobacteriaceae: overview of a major public health challenge. Med. Mal. Infect. 44(2), 51–56 (2014).• A concise review on GNB, which produce the KPC, MβL (especially NDM) and OXA-48 carbapenemases.
  • 49 Cantón R, Akóva M, Carmeli Y et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 18(5), 413–431 (2012).•• A review on the important kinds of carbapenemases, and major distribution countries of enteric GNB carrying these resistance genes in Europe before 2013.
  • 50 Castanheira M, Sader HS, Deshpande LM, Fritsche TR, Jones RN. Antimicrobial activities of tigecycline and other broad-spectrum antimicrobials tested against serine carbapenemase- and metallo-β-lactamase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 52(2), 570–573 (2008).
  • 51 Prabaker K, Lin MY, McNally M et al. Transfer from high-acuity long-term care facilities is associated with carriage of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae: a multihospital study. Infect. Control Hosp. Epidemiol. 33(12), 1193–1199 (2012).
  • 52 Guh AY, Limbago BM, Kallen AJ. Epidemiology and prevention of carbapenem-resistant Enterobacteriaceae in the United States. Expert Rev. Anti. Infect. Ther. 12(5), 565–580 (2014).•• A review issuing the epidemiology, resistance prevalences for the important carbapenemase(s)-producing Enterobacteriaceae spp. in the USA, with infection control recommendations.
  • 53 Rasmussen BA, Bush K, Keeney D et al. Characterization of IMI-1 β-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrob. Agents Chemother. 40(9), 2080–2086 (1996).
  • 54 Naas T, Vandel L, Sougakoff W, Livermore DM, Nordmann P. Cloning and sequence analysis of the gene for a carbapenem-hydrolyzing class A β-lactamase, Sme-1, from Serratia marcescens S6. Antimicrob. Agents Chemother. 38(6), 1262–1270 (1994).
  • 55 Naas T, Nordmann P. Analysis of a carbapenem-hydrolyzing class A β-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc. Natl. Acad. Sci. USA 91(16), 7693–7697 (1994).
  • 56 Troillet N, Carmeli Y, Venkataraman L, DeGirolami P, Samore MH. Epidemiological analysis of imipenem-resistant Serratia marcescens in hospitalized patients. J. Hosp. Infect. 42(1), 37–43 (1999).
  • 57 Pottumarthy S, Moland ES, Juretschko S, Swanzy SR, Thomson KS, Fritsche TR. NmcA carbapenem-hydrolyzing enzyme in Enterobacter cloacae in North America. Emerg. Infect. Dis. 9(8), 999–1002 (2003).
  • 58 Poirel L, Weldhagen GF, Naas T, De Champs C, Dove MG, Nordmann P. GES-2, a class A β-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob. Agents Chemother. 45(9), 2598–2603 (2001).
  • 59 Poirel L, Weldhagen GF, De Champs C, Nordmann P. A nosocomial outbreak of Pseudomonas aeruginosa isolates expressing the extended-spectrum β-lactamase GES-2 in South Africa. J. Antimicrob. Chemother. 49(3), 561–565 (2002).
  • 60 Wachino J, Doi Y, Yamane K et al. Nosocomial spread of ceftazidime-resistant Klebsiella pneumoniae strains producing a novel class a β-lactamase, GES-3, in a neonatal intensive care unit in Japan. Antimicrob. Agents Chemother. 48(6), 1960–1967 (2004).
  • 61 Pasteran F, Faccone D, Petroni A et al. Novel variant (blaVIM-11) of the metallo-β-lactamase blaVIM family in a GES-1 extended-spectrum-β-lactamase-producing Pseudomonas aeruginosa clinical isolate in Argentina. Antimicrob. Agents Chemother. 49(1), 474–475 (2005).
  • 62 Duarte A, Boavida F, Grosso F et al. Outbreak of GES-1 β-lactamase-producing multidrug-resistant Klebsiella pneumoniae in a university hospital in Lisbon, Portugal. Antimicrob. Agents Chemother. 47(4), 1481–1482 (2003).
  • 63 Lim HM, Pène JJ, Shaw RW. Cloning, nucleotide sequence, and expression of the Bacillus cereus 5/B/6 β-lactamase II structural gene. J. Bacteriol. 170(6), 2873–2878 (1988).
  • 64 Iaconis JP, Sanders CC. Purification and characterization of inducible β-lactamases in Aeromonas spp. Antimicrob. Agents Chemother. 34(1), 44–51 (1990).
  • 65 Saino Y, Kobayashi F, Inoue M, Mitsuhashi S. Purification and properties of inducible penicillin β-lactamase isolated from Pseudomonas maltophilia. Antimicrob. Agents Chemother. 22(4), 564–570 (1982).
  • 66 Nishio H, Komatsu M, Shibata N et al. Metallo-β-lactamase-producing gram-negative bacilli: laboratory-based surveillance in cooperation with 13 clinical laboratories in the Kinki region of Japan. J. Clin. Microbiol. 42(11), 5256–5263 (2004).
  • 67 Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 35(1), 147–151 (1991).
  • 68 Ito H, Arakawa Y, Ohsuka S, Wacharotayankun R, Kato N, Ohta M. Plasmid-mediated dissemination of the metallo-β-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens. Antimicrob. Agents Chemother. 39(4), 824–829 (1995).
  • 69 Riccio ML, Franceschini N, Boschi L et al. Characterization of the metallo-β-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of blaIMP allelic variants carried by gene cassettes of different phylogeny. Antimicrob. Agents Chemother. 44(5), 1229–1235 (2000).
  • 70 Peleg AY, Franklin C, Bell JM, Spelman DW. Dissemination of the metallo-β-lactamase gene blaIMP-4 among gram-negative pathogens in a clinical setting in Australia. Clin. Infect. Dis. 41(11), 1549–1556 (2005).
  • 71 Hanson ND, Hossain A, Buck L, Moland ES, Thomson KS. First occurrence of a Pseudomonas aeruginosa isolate in the United States producing an IMP metallo-β-lactamase, IMP-18. Antimicrob. Agents Chemother. 50(6), 2272–2273 (2006).
  • 72 Lincopan N, McCulloch JA, Reinert C, Cassettari VC, Gales AC, Mamizuka EM. First isolation of metallo-β-lactamase-producing multiresistant Klebsiella pneumoniae from a patient in Brazil. J. Clin. Microbiol. 43(1), 516–519 (2005).
  • 73 Hung KH, Yan JJ, Lu JJ, Chen HM, Wu JJ. Characterization of the modified Hodge test-positive isolates of Enterobacteriaceae in Taiwan. J. Microbiol. Immunol. Infect. 46(1), 35–40 (2013).
  • 74 Koyano S, Saito R, Nagai R et al. Molecular characterization of carbapenemase-producing clinical isolates of Enterobacteriaceae in a teaching hospital, Japan. J. Med. Microbiol. 62(Pt 3), 446–450 (2013).
  • 75 Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18(2), 306–325 (2005).•• A detailed review comparing many important characteristics of worldwide MβL enzymes before 2005.
  • 76 Koratzanis E, Souli M, Galani I, Chryssouli Z, Armaganidis A, Giamarellou H. Epidemiology and molecular characterisation of metallo-β-lactamase-producing Enterobacteriaceae in a university hospital Intensive Care Unit in Greece. Int. J. Antimicrob. Agents 38(5), 390–397 (2011).•• Demonstrate the significant polyclonalities on a wide variety of enteric GNB isolates harboring the MβL traits, especially the blaVIM genes, in the ICU of Greece.
  • 77 Steinmann J, Kaase M, Gatermann S et al. Outbreak due to a Klebsiella pneumoniae strain harbouring KPC-2 and VIM-1 in a German university hospital, July 2010 to January 2011. Euro. Surveill. 16(33), pii: 19944 (2011).
  • 78 Vatopoulos A. High rates of metallo-β-lactamase-producing Klebsiella pneumoniae in Greece‐‐a review of the current evidence. Euro. Surveill. 13(4), pii: 8023 (2008).• A detailed review revealing how severely the MβL traits distributed among the clinical K. pneumoniae isolates in Greece before 2008.
  • 79 Poirel L, Naas T, Nicolas D et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44(4), 891–897 (2000).
  • 80 Lauretti L, Riccio ML, Mazzariol A et al. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 43(7), 1584–1590 (1999).
  • 81 Marcano D, Pasterán F, Rapoport M et al. First isolation of a VIM-producing Klebsiella pneumoniae from a seven-year-old child in Venezuela. J. Infect. Dev. Ctries. 2(3), 241–244 (2008).
  • 82 Ktari S, Arlet G, Mnif B et al. Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-β-lactamase, CTX-M-15 extended-spectrum β-lactamase, and CMY-4 AmpC β-lactamase in a Tunisian university hospital. Antimicrob. Agents Chemother. 50(12), 4198–4201 (2006).
  • 83 Wang C, Wang J, Mi Z. Pseudomonas aeruginosa producing VIM-2 metallo-β-lactamases and carrying two aminoglycoside-modifying enzymes in China. J. Hosp. Infect. 62(4), 522–524 (2006).
  • 84 Toleman MA, Rolston K, Jones RN, Walsh TR. blaVIM-7, an evolutionarily distinct metallo-β-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob. Agents Chemother. 48(1), 329–332 (2004).
  • 85 Grundmann H, Livermore DM, Giske CG et al. Carbapenem-non-susceptible Enterobacteriaceae in Europe: conclusions from a meeting of national experts. Euro. Surveill. 15(46), pii: 19711 (2010).
  • 86 Glasner C, Albiger B, Buist G et al. Carbapenemase-producing Enterobacteriaceae in Europe: a survey among national experts from 39 countries, February 2013. Euro. Surveill. 18(28), pii: 20525 (2013).
  • 87 Huang YT, Chang SC, Lauderdale TL, Yang AJ, Wang JT. Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa carrying metallo-β-lactamase genes in Taiwan. Diagn. Microbiol. Infect. Dis. 59(2), 211–216 (2007).
  • 88 Lin KY, Lauderdale TL, Wang JT, Chang SC. Carbapenem-resistant Pseudomonas aeruginosa in Taiwan: Prevalence, risk factors, and impact on outcome of infections. J. Microbiol. Immunol. Infect. doi: 10.1016/j.jmii.2014.01.005 (Epub ahead of print) (2014).
  • 89 Fournier D, Richardot C, Müller E et al. Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 68(8), 1772–1780 (2013).• A molecular survey issuing that the OprD deficiency, carriage of Verone integron-encoded metallo-β-lactamasealleles and presence of efflux pumps, are major mechanisms conferring P. aeruginosa nonsusceptible to imipenem.
  • 90 Loli A, Tzouvelekis LS, Tzelepi E et al. Sources of diversity of carbapenem resistance levels in Klebsiella pneumoniae carrying blaVIM-1. J. Antimicrob. Chemother. 58(3), 669–672 (2006).
  • 91 Sánchez-Romero I, Asensio A, Oteo J et al. Nosocomial outbreak of VIM-1-producing Klebsiella pneumoniae isolates of multilocus sequence type 15: molecular basis, clinical risk factors, and outcome. Antimicrob. Agents Chemother. 56(1), 420–427 (2012).
  • 92 Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34(5), 634–640 (2002).• Review of the resistance mechanisms, antibiotic nonsusceptibility of P. aeruginosa during last decade.
  • 93 Karlowsky JA, Draghi DC, Jones ME, Thornsberry C, Friedland IR, Sahm DF. Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001. Antimicrob. Agents Chemother. 47(5), 1681–1688 (2003).
  • 94 Tsakris A, Pournaras S, Woodford N et al. Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J. Clin. Microbiol. 38(3), 1290–1292 (2000).
  • 95 Jones RN, Deshpande LM, Bell JM et al. Evaluation of the contemporary occurrence rates of metallo-β-lactamases in multidrug-resistant Gram-negative bacilli in Japan: report from the SENTRY Antimicrobial Surveillance Program (1998–2002). Diagn. Microbiol. Infect. Dis. 49(4), 289–294 (2004).
  • 96 Toleman MA, Biedenbach D, Bennett D, Jones RN, Walsh TR. Genetic characterization of a novel metallo-β-lactamase gene, blaIMP-13, harboured by a novel Tn5051-type transposon disseminating carbapenemase genes in Europe: report from the SENTRY worldwide antimicrobial surveillance programme. J. Antimicrob. Chemother. 52(4), 583–590 (2003).
  • 97 Van der Bij AK, Van Mansfeld R, Peirano G et al. First outbreak of VIM-2 metallo-β-lactamase-producing Pseudomonas aeruginosa in The Netherlands: microbiology, epidemiology and clinical outcomes. Int. J. Antimicrob. Agents 37(6), 513–518 (2011).
  • 98 Zowawi HM, Balkhy HH, Walsh TR, Paterson DL. β-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula. Clin. Microbiol. Rev. 26(3), 361–380 (2013).• A review focusing on the prevalences of ESBL and carbapenemases among clinical GNB isolates in the Arabian countries.
  • 99 Daikos GL, Karabinis A, Paramythiotou E et al. VIM-1-producing Klebsiella pneumoniae bloodstream infections: analysis of 28 cases. Int. J. Antimicrob. Agents 29(4), 471–473 (2007).
  • 100 Daikos GL, Petrikkos P, Psichogiou M et al. Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob. Agents Chemother. 53(5), 1868–1873 (2009).• A prospective survey revealing the clinical impact of blaVIM-1-harboring BSI K. pneumoniae isolates with carbapenem MICs >4 mg/l, on case fatality.
  • 101 Yong D, Toleman MA, Giske CG et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 53(12), 5046–5054 (2009).
  • 102 Liu Z, Li W, Wang J et al. Identification and characterization of the first Escherichia coli strain carrying NDM-1 gene in China. PLoS One 8(6), e66666 (2013).
  • 103 Blyth CC, Pereira L, Goire N. New Delhi metallo-β-lactamase-producing enterobacteriaceae in an Australian child who had not travelled overseas. Med. J. Aust. 200(7), 386 (2014).• Discusses all cases infected with NDM-carrying Enterobacteriaceae spp. in Australia till now.
  • 104 Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis. 11(5), 355–362 (2011).
  • 105 Bonomo RA. New Delhi metallo-β-lactamase and multidrug resistance: a global SOS? Clin. Infect. Dis. 52(4), 485–487 (2011).• Briefly addresses the complex transmission routes of NDM genes carried on Enterobacteriaceae spp.
  • 106 Ho PL, Lo WU, Yeung MK et al. Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PLoS One 6(3), e17989 (2011).
  • 107 Poirel L, Lagrutta E, Taylor P, Pham J, Nordmann P. Emergence of metallo-β-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrob. Agents Chemother. 54(11), 4914–4916 (2010).
  • 108 Miriagou V, Carattoli A, Tzelepi E, Villa L, Tzouvelekis LS. IS26-associated In4-type integrons forming multiresistance loci in enterobacterial plasmids. Antimicrob. Agents Chemother. 49(8), 3541–3543 (2005).
  • 109 Nordmann P, Poirel L, Toleman MA, Walsh TR. Does broad-spectrum β-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? J. Antimicrob. Chemother. 66(4), 689–692 (2011).
  • 110 Shanthi M, Sekar U, Sowmiya M et al. Clonal diversity of New Delhi metallo-β-lactamase-1 producing Enterobacteriaceae in a tertiary care centre. Indian J. Med. Microbiol. 31(3), 237–241 (2013).
  • 111 Rolain JM, Parola P, Cornaglia G. New Delhi metallo-β-lactamase (NDM-1): towards a new pandemia? Clin. Microbiol. Infect. 16(12), 1699–1701 (2010).
  • 112 Jovcic B, Lepsanovic Z, Suljagic V et al. Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob. Agents Chemother. 55(8), 3929–3931 (2011).
  • 113 Livermore DM, Mushtaq S, Warner M et al. Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase-Producing Enterobacteriaceae. Antimicrob. Agents Chemother. 55(1), 390–394 (2011).
  • 114 Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Infect. doi: 10.1111/1469-0691.12697 (Epub ahead of print) (2014).•• Systematic review focusing on analyses of effective therapy options against these highly resistant GNB in details.
  • 115 Escobar Pérez JA, Olarte Escobar NM, Castro-Cardozo B et al. Outbreak of NDM-1-producing Klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrob. Agents Chemother. 57(4), 1957–1960 (2013).
  • 116 Pasteran F, Albornoz E, Faccone D et al. Emergence of NDM-1-producing Klebsiella pneumoniae in Guatemala. J. Antimicrob. Chemother. 67(7), 1795–1797 (2012).
  • 117 Rogers BA, Sidjabat HE, Silvey A et al. Treatment options for New Delhi metallo-β-lactamase-harboring enterobacteriaceae. Microb. Drug Resist. 19(2), 100–103 (2013).
  • 118 Sidjabat H, Nimmo GR, Walsh TR et al. Carbapenem resistance in Klebsiella pneumoniae due to the New Delhi Metallo-β-lactamase. Clin. Infect. Dis. 52(4), 481–484 (2011).
  • 119 Dash N, Panigrahi D, Al Zarouni M et al. High Incidence of New Delhi Metallo-β-Lactamase producing Klebsiella pneumoniae Isolates in Sharjah, United Arab Emirates. Microb. Drug Resist. 20(1), 52–56 (2014).
  • 120 Livermore DM, Walsh TR, Toleman M, Woodford N. Balkan NDM-1: escape or transplant? Lancet Infect. Dis. 11(3), 164 (2011).
  • 121 Nordmann P, Couard JP, Sansot D, Poirel L. Emergence of an autochthonous and community-acquired NDM-1-producing Klebsiella pneumoniae in Europe. Clin. Infect. Dis. 54(1), 150–151 (2012).
  • 122 Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin. Microbiol. Rev. 25(4), 682–707 (2012).•• Detailed review comprising a wealth of data about worldwide epidemiology, antimicrobial nonsusceptibilities, detection methods and comparison of outcome on various therapies against carbapenemase-producing Enterobacteriaceae spp.
  • 123 Poirel L, Magalhaes M, Lopes M, Nordmann P. Molecular analysis of metallo-β-lactamase gene blaSPM-1-surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recife, Brazil. Antimicrob. Agents Chemother. 48(4), 1406–1409 (2004).
  • 124 Zavascki AP, Gaspareto PB, Martins AF, Gonçalves AL, Barth AL. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-β-lactamase in a teaching hospital in southern Brazil. J. Antimicrob. Chemother. 56(6), 1148–1151 (2005).
  • 125 Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a β-lactamase gene, blaGIM-1, encoding a new subclass of metallo-β-lactamase. Antimicrob. Agents Chemother. 48(12), 4654–4661 (2004).
  • 126 Rieber H, Frontzek A, Pfeifer Y. Emergence of metallo-β-lactamase GIM-1 in a clinical isolate of Serratia marcescens. Antimicrob. Agents Chemother. 56(9), 4945–4947 (2012).
  • 127 Hamprecht A, Poirel L, Göttig S, Seifert H, Kaase M, Nordmann P. Detection of the carbapenemase GIM-1 in Enterobacter cloacae in Germany. J. Antimicrob. Chemother. 68(3), 558–561 (2013).
  • 128 Lee K, Yum JH, Yong D et al. Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother. 49(11), 4485–4491 (2005).
  • 129 Huang ST, Chiang MC, Kuo SC et al. Risk factors and clinical outcomes of patients with carbapenem-resistant Acinetobacter baumannii bacteremia. J. Microbiol. Immunol. Infect. 45(5), 356–362 (2012).• Addresses the clinical impact of carbapenem nonsusceptibility phenotype on A. baumannii bacteremia, which predicts higher clinical severity, mortality rates and likelihood of inappropriate antibiotic receipt than susceptible one.
  • 130 Hujer KM, Hujer AM, Hulten EA et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob. Agents Chemother. 50(12), 4114–4123 (2006).
  • 131 Bush K. Recent developments in β-lactamase research and their implications for the future. Rev. Infect. Dis. 10(4), 681–690 (1988).
  • 132 Paton R, Miles RS, Hood J, Amyes SG, Miles RS, Amyes SG. ARI 1: β-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int. J. Antimicrob. Agents 2(2), 81–87 (1993).
  • 133 Donald HM, Scaife W, Amyes SG, Young HK. Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob. Agents Chemother. 44(1), 196–199 (2000).
  • 134 Carvalho KR, Carvalho-Assef AP, Peirano G, Santos LC, Pereira MJ, Asensi MD. Dissemination of multidrug-resistant Acinetobacter baumannii genotypes carrying blaOXA-23 collected from hospitals in Rio de Janeiro, Brazil. Int. J. Antimicrob. Agents 34(1), 25–28 (2009).
  • 135 Turton JF, Kaufmann ME, Glover J et al. Detection and typing of integrons in epidemic strains of Acinetobacter baumannii found in the United Kingdom. J. Clin. Microbiol. 43(7), 3074–3082 (2005).
  • 136 Da Silva GJ, Quinteira S, Bértolo E et al. Long-term dissemination of an OXA-40 carbapenemase-producing Acinetobacter baumannii clone in the Iberian Peninsula. J. Antimicrob. Chemother. 54(1), 255–258 (2004).
  • 137 Ku WW, Kung CH, Lee CH et al. Evolution of carbapenem resistance in Acinetobacter baumannii: An 18-year longitudinal study from a medical center in northern Taiwan. J. Microbiol. Immunol. Infect. doi: 10.1016/j.jmii.2013.07.005 (2013) (Epub ahead of print).
  • 138 Héritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 49(8), 3198–3202 (2005).• Proves that A. baumannii isolates harboring OXA-23, OXA-40 would exhibit greater carbapenem nonsusceptibility than those with OXA-58.
  • 139 Bou G, Cerveró G, Domínguez MA, Quereda C, Martínez-Beltrán J. Characterization of a nosocomial outbreak caused by a multiresistant Acinetobacter baumannii strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance in A. baumannii is not due solely to the presence of β-lactamases. J. Clin. Microbiol. 38(9), 3299–3305 (2000).
  • 140 Corvec S, Caroff N, Espaze E, Giraudeau C, Drugeon H, Reynaud A. AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J. Antimicrob. Chemother. 52(4), 629–635 (2003).
  • 141 Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48(1), 15–22 (2004).
  • 142 Ledent P, Raquet X, Joris B, Van Beeumen J, Frère JM. A comparative study of class-D β-lactamases. Biochem. J. 292(Pt 2), 555–562 (1993).
  • 143 Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D β-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 45(2), 583–588 (2001).
  • 144 Maveyraud L, Golemi-Kotra D, Ishiwata A, Meroueh O, Mobashery S, Samama JP. High-resolution X-ray structure of an acyl-enzyme species for the class D OXA-10 β-lactamase. J. Am. Chem. Soc. 124(11), 2461–2465 (2002).
  • 145 Poirel L, Marqué S, Héritier C, Segonds C, Chabanon G, Nordmann P. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother. 49(1), 202–208 (2005).
  • 146 Bou G, Oliver A, Martínez-Beltrán J. OXA-24, a novel class D β-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob. Agents Chemother. 44(6), 1556–1561 (2000).
  • 147 Chuang YC, Sheng WH, Lauderdale TL et al. Molecular epidemiology, antimicrobial susceptibility and carbapenemase resistance determinants among Acinetobacter baumannii clinical isolates in Taiwan. J. Microbiol. Immunol. Infect. doi: 10.1016/j.jmii.2013.03.008 (2013) (Epub ahead of print).
  • 148 Poirel L, Nordmann P. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-58 in Acinetobacter baumannii. Antimicrob. Agents Chemother. 50(4), 1442–1448 (2006).
  • 149 Chen TL, Chang WC, Kuo SC et al. Contribution of a plasmid-borne blaOXA-58 gene with its hybrid promoter provided by IS1006 and an ISAba3-like element to β-lactam resistance in Acinetobacter genomic species 13TU. Antimicrob. Agents Chemother. 54(8), 3107–3112 (2010).•• Verifies the role of IS1006 and ISAba3 elements contributing to greater resistance to the β-lactam agents, including carbapenems, for A. nosocomalis).
  • 150 Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin. Microbiol. Infect. 12(9), 826–836 (2006).
  • 151 Jeon BC, Jeong SH, Bae IK et al. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 β-lactamase in Korea. J. Clin. Microbiol. 43(5), 2241–2245 (2005).
  • 152 Stoeva T, Higgins PG, Bojkova K, Seifert H. Clonal spread of carbapenem-resistant OXA-23-positive Acinetobacter baumannii in a Bulgarian university hospital. Clin. Microbiol. Infect. 14(7), 723–727 (2008).
  • 153 Mesli E, Berrazeg M, Drissi M, Bekkhoucha SN, Rolain JM. Prevalence of carbapenemase-encoding genes including New Delhi metallo-β-lactamase in Acinetobacter species, Algeria. Int. J. Infect. Dis. 17(9), e739 (2013).
  • 154 Lee MH, Chen TL, Lee YT et al. Dissemination of multidrug-resistant Acinetobacter baumannii carrying blaOXA-23 from hospitals in central Taiwan. J. Microbiol. Immunol. Infect. 46(6), 419–424 (2013).
  • 155 Zarrilli R, Giannouli M, Tomasone F, Triassi M, Tsakris A. Carbapenem resistance in Acinetobacter baumannii: the molecular epidemic features of an emerging problem in health care facilities. J. Infect. Dev. Ctries. 3(5), 335–341 (2009).
  • 156 Coelho J, Woodford N, Afzal-Shah M, Livermore D. Occurrence of OXA-58-like carbapenemases in Acinetobacter spp. collected over 10 years in three continents. Antimicrob. Agents Chemother. 50(2), 756–758 (2006).
  • 157 Marqué S, Poirel L, Héritier C et al. Regional occurrence of plasmid-mediated carbapenem-hydrolyzing oxacillinase OXA-58 in Acinetobacter spp. in Europe. J. Clin. Microbiol. 43(9), 4885–4888 (2005).
  • 158 Lolans K, Rice TW, Munoz-Price LS, Quinn JP. Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob. Agents Chemother. 50(9), 2941–2945 (2006).
  • 159 Poirel L, Héritier C, Nordmann P. Chromosome-encoded Ambler class D β-lactamase of Shewanella oneidensis as a progenitor of carbapenem-hydrolyzing oxacillinase. Antimicrob. Agents Chemother. 48(1), 348–351 (2004).
  • 160 Walther-Rasmussen J, Høiby N. OXA-type carbapenemases. J. Antimicrob. Chemother. 57(3), 373–383 (2006).
  • 161 Moquet O, Bouchiat C, Kinana A et al. Class D OXA-48 carbapenemase in multidrug-resistant enterobacteria, Senegal. Emerg. Infect. Dis. 17(1), 143–144 (2011).
  • 162 Cuzon G, Naas T, Lesenne A, Benhamou M, Nordmann P. Plasmid-mediated carbapenem-hydrolysing OXA-48 β-lactamase in Klebsiella pneumoniae from Tunisia. Int. J. Antimicrob. Agents 36(1), 91–93 (2010).
  • 163 Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN, Mendes RE. Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006–2007. Antimicrob. Agents Chemother. 55(3), 1274–1278 (2011).
  • 164 Oteo J, Saez D, Bautista V et al. Carbapenemase-producing Enterobacteriaceae in Spain in 2012. Antimicrob. Agents Chemother. 57(12), 6344–6347 (2013).• Discloses the great resistance threat brought by the OXA-48, followed by VIM-1 carbapenemase in Spain recently.
  • 165 Poirel L, Castanheira M, Carrër A et al. OXA-163, an OXA-48-related class D β-lactamase with extended activity toward expanded-spectrum cephalosporins. Antimicrob. Agents Chemother. 55(6), 2546–2551 (2011).
  • 166 Voulgari E, Zarkotou O, Ranellou K et al. Outbreak of OXA-48 carbapenemase-producing Klebsiella pneumoniae in Greece involving an ST11 clone. J. Antimicrob. Chemother. 68(1), 84–88 (2013).
  • 167 Wiskirchen DE, Crandon JL, Nicolau DP. Impact of various conditions on the efficacy of dual carbapenem therapy against KPC-producing Klebsiella pneumoniae. Int. J. Antimicrob. Agents 41(6), 582–585 (2013).
  • 168 Bulik CC, Nicolau DP. Double-carbapenem therapy for carbapenemase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 55(6), 3002–3004 (2011).
  • 169 Bratu S, Tolaney P, Karumudi U et al. Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J. Antimicrob. Chemother. 56(1), 128–132 (2005).
  • 170 Kontopoulou K, Protonotariou E, Vasilakos K et al. Hospital outbreak caused by Klebsiella pneumoniae producing KPC-2 β-lactamase resistant to colistin. J. Hosp. Infect. 76(1), 70–73 (2010).
  • 171 Spanu T, De Angelis G, Cipriani M et al. In vivo emergence of tigecycline resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli. Antimicrob. Agents Chemother. 56(8), 4516–4518 (2012).
  • 172 Samonis G, Matthaiou DK, Kofteridis D, Maraki S, Falagas ME. In vitro susceptibility to various antibiotics of colistin-resistant Gram-negative bacterial isolates in a general tertiary hospital in Crete, Greece. Clin. Infect. Dis. 50(12), 1689–1691 (2010).
  • 173 Garonzik SM, Li J, Thamlikitkul V et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob. Agents Chemother. 55(7), 3284–3294 (2011).•• Designs a formula to accurately calculate the appropriate colistin dose in accordance with population pharmacokinetics and creatinine clearance data.
  • 174 Yahav D, Lador A, Paul M, Leibovici L. Efficacy and safety of tigecycline: a systematic review and meta-analysis. J. Antimicrob. Chemother. 66(9), 1963–1971 (2011).• A meta-analysis regarding the tigecycline's clinical efficacy, and adverse effects documented in PubMed data.
  • 175 Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob. Agents Chemother. 58(2), 654–663 (2014).
  • 176 Endimiani A, Patel G, Hujer KM et al. In vitro activity of fosfomycin against blaKPC-containing Klebsiella pneumoniae isolates, including those nonsusceptible to tigecycline and/or colistin. Antimicrob. Agents Chemother. 54(1), 526–529 (2010).
  • 177 Michalopoulos A, Virtzili S, Rafailidis P, Chalevelakis G, Damala M, Falagas ME. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin. Microbiol. Infect. 16(2), 184–186 (2010).
  • 178 Jernigan MG, Press EG, Nguyen MH, Clancy CJ, Shields RK. The combination of doripenem and colistin is bactericidal and synergistic against colistin-resistant, carbapenemase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 56(6), 3395–3398 (2012).
  • 179 Lee J, Patel G, Huprikar S, Calfee DP, Jenkins SG. Decreased susceptibility to polymyxin B during treatment for carbapenem-resistant Klebsiella pneumoniae infection. J. Clin. Microbiol. 47(5), 1611–1612 (2009).
  • 180 Qureshi ZA, Paterson DL, Potoski BA et al. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob. Agents Chemother. 56(4), 2108–2113 (2012).
  • 181 Clinical and Laboratory Standards Institute. Performance Standards For Antimicrobial Susceptibility Testing; Twenty-first Informational Supplement. CLSI document M100-S21. CLSI, PA, USA (2011).
  • 182 Daikos GL, Markogiannakis A, Souli M, Tzouvelekis LS. Bloodstream infections caused by carbapenemase-producing Klebsiella pneumoniae: a clinical perspective. Expert Rev. Anti. Infect. Ther. 10(12), 1393–1404 (2012).
  • 183 Lee GC, Burgess DS. Treatment of Klebsiella pneumoniae carbapenemase (KPC) infections: a review of published case series and case reports. Ann. Clin. Microbiol. Antimicrob. 11, 32 (2012).
  • 184 Tumbarello M, Viale P, Viscoli C et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin. Infect. Dis. 55(7), 943–950 (2012).
  • 185 Daikos GL, Tsaousi S, Tzouvelekis LS et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob. Agents Chemother. 58(4), 2322–2328 (2014).•• An investigation issuing the impact of clinical characteristics, as well as therapeutic regimens on clinical outcomes of patients with the Klebsiella pneumoniae carbapenemase ± Verone integron-encoded metallo-β-lactamase infections in great details.
  • 186 European Committee on Antimicrobial Susceptibility Testing. Breakpoints tables for interpretation of MICs and zone diameters, version 3.1 (2013).• An important international reference about MIC breakpoints.
  • 187 Jean SS, Hsueh PR. Current review of antimicrobial treatment of nosocomial pneumonia caused by multidrug-resistant pathogens. Expert. Opin. Pharmacother. 12(14), 2145–2148 (2011).• Review suggesting appropriate regimens against difficult pathogens, including XDR-A. baumannii.
  • 188 Kuti JL, Dandekar PK, Nightingale CH, Nicolau DP. Use of Monte Carlo simulation to design an optimized pharmacodynamic dosing strategy for meropenem. J. Clin. Pharmacol. 43(10), 1116–1123 (2003).• PD study recommending the upper threshold of meropenem MIC level which is predicted to exert synergistic effect with high-dose sulbactam on therapy against the resistant GNB.
  • 189 Bonnefoy A, Dupuis-Hamelin C, Steier V et al. In vitro activity of AVE1330A, an innovative broad-spectrum non-β-lactam β-lactamase inhibitor. J. Antimicrob. Chemother. 54(2), 410–417 (2004).• Issues the promising potential of avibactam against Ambler class A, and class C β-lactamase-producing enteric Gram-negative bacteria when it is combined with ceftazidime with a fixed ration of 1:4.
  • 190 Lagacé-Wiens P, Walkty A, Karlowsky JA. Ceftazidime-avibactam: an evidence-based review of its pharmacology and potential use in the treatment of Gram-negative bacterial infections. Core Evid. 9, 13–25 (2014).
  • 191 Endimiani A, Hujer KM, Hujer AM, Pulse ME, Weiss WJ, Bonomo RA. Evaluation of ceftazidime and NXL104 in two murine models of infection due to KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 55(1), 82–85 (2011).
  • 192 Livermore DM, Warner M, Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 68(10), 2286–2290 (2013).
  • 193 Lee NY, Lee JC, Li MC, Li CW, Ko WC. Empirical antimicrobial therapy for critically ill patients with Acinetobacter baumannii bacteremia: Combination is better. J. Microbiol. Immunol. Infect. 46(5), 397–398 (2013).
  • 194 Shields RK, Clancy CJ, Gillis LM et al. Epidemiology, clinical characteristics and outcomes of extensively drug-resistant Acinetobacter baumannii infections among solid organ transplant recipients. PLoS ONE 7(12), e52349 (2012).
  • 195 Durante-Mangoni E, Signoriello G, Andini R et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin. Infect. Dis. 57(3), 349–358 (2013).• Demonstrates that colistin plus rifampicin is not superior to colistin monotherapy on XDR-A. baumannii infections in terms of decreasing mortality rates.
  • 196 Entenza JM, Moreillon P. Tigecycline in combination with other antimicrobials: a review of in vitro, animal and case report studies. Int. J. Antimicrob. Agents 34(1), 8.e1–8.e9 (2009).