We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

In vivo detection of single-walled carbon nanotubes: progress and challenges

    Ching-Wei Lin

    Department of Chemistry & Smalley–Curl Institute, Rice University, Houston, TX 77005, USA

    &
    R Bruce Weisman

    *Author for correspondence:

    E-mail Address: weisman@rice.edu

    Department of Chemistry & Smalley–Curl Institute, Rice University, Houston, TX 77005, USA

    Published Online:https://doi.org/10.2217/nnm-2016-0338
    Free first page

    References

    • 1 Zellweger M, Goujon D, Conde R, Forrer M, Van Den Bergh H, Wagnieres G. Absolute autofluorescence spectra of human healthy, metaplastic, and early cancerous bronchial tissue in vivo. Appl. Opt. 40(22), 3784–3791 (2001).
    • 2 Na RH, Stender IM, Ma LX, Wulf HC. Autofluorescence spectrum of skin: component bands and body site variations. Skin Res. Technol. 6(3), 112–117 (2000).
    • 3 Ghosh S, Bachilo SM, Simonette RA, Beckingham KM, Weisman RB. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).
    • 4 Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126(48), 15638–15639 (2004).
    • 5 Tsyboulski DA, Bachilo SM, Weisman RB. Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy. Nano Lett. 5(5), 975–979 (2005).
    • 6 Leeuw TK, Reith RM, Simonette RA et al. Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila. Nano Lett. 7(9), 2650–2654 (2007).
    • 7 Hong G, Diao S, Antaris AL, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115(19), 10816–10906 (2015).
    • 8 Welsher K, Liu Z, Sherlock SP et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4(11), 773–780 (2009).
    • 9 Lin C-W, Bachilo SM, Vu M, Beckingham KM, Weisman RB. Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo. Nanoscale 8(19), 10348–10357 (2016).
    • 10 Machida M, Panasyuk GY, Wang ZM, Markel VA, Schotland JC. Radiative transport and optical tomography with large datasets. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 33(4), 551–558 (2016).
    • 11 Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging. Phys. Med. Biol. 50(4), R1–R43 (2005).
    • 12 Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Meth. 7(8), 603–614 (2010).
    • 13 Ale A, Ermolayev V, Herzog E, Cohrs C, De Angelis MH, Ntziachristos V. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat. Meth. 9(6), 615–622 (2012).
    • 14 Klose AD, Ntziachristos V, Hielscher AH. The inverse source problem based on the radiative transfer equation in optical molecular imaging. J. Comput. Phys. 202(1), 323–345 (2005).
    • 15 Mohajerani P, Adibi A, Kempner J, Yared W. Compensation of optical heterogeneity-induced artifacts in fluorescence molecular tomography: theory and in vivo validation. J. Biomed. Opt. 14(3), 034021 (2009).
    • 16 Nishimura G, Kida I, Tamura M. Characterization of optical parameters with a human forearm at the region from 1.15 to 1.52 μm using diffuse reflectance measurements. Phys. Med. Biol. 51(11), 2997–3011 (2006).
    • 17 Brooksby B, Pogue BW, Jiang SD et al. Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography. Proc. Natl Acad. Sci. USA 103(23), 8828–8833 (2006).
    • 18 Metzger WK, Mcdonald TJ, Engtrakul C et al. Temperature-dependent excitonic decay and multiple states in single-wall carbon nanotubes. J. Phys. Chem. C 111(9), 3601–3606 (2007).
    • 19 Berube-Lauziere Y, Crotti M, Boucher S, Ettehadi S, Pichette J, Rech I. Prospects on time-domain diffuse optical tomography based on time-correlated single photon counting for small animal imaging. J. Spectrosc. 2016, 1947613 (2016).