We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Chromatin and nuclear organization in Trypanosoma cruzi

    ,
    Sheila Cristina Nardelli

    Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8, 04023-062 São Paulo, Brazil.

    &
    Sergio Schenkman

    † Author for correspondence

    Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8, 04023-062 São Paulo, Brazil.

    Published Online:https://doi.org/10.2217/fmb.09.74

    A total of 100 years have passed since the discovery of the protozoan Trypanosoma cruzi, the etiologic agent of Chagas’ disease. Since its discovery, the molecular and cellular biology of this early divergent eukaryote, as well as its interactions with the mammalian and insect hosts, has progressed substantially. It is now clear that this parasite presents unique mechanisms controlling gene expression, DNA replication, cell cycle and differentiation, generating several morphological forms that are adapted to survive in different hosts. In recent years, the relationship between the chromatin structure and nuclear organization with the unusual transcription, splicing, DNA replication and DNA repair mechanisms have been investigated in T. cruzi. This article reviews the relevant aspects of these mechanisms in relation to chromatin and nuclear organization.

    Papers of special note have been highlighted as: ▪ of interest

    Bibliography

    • Misteli T: Beyond the sequence: cellular organization of genome function. Cell128(4),787–800 (2007).
    • Cook PR: The organization of replication and transcription. Science284(5421),1790–1795 (1999).
    • Marshall WF, Straight A, Marko JF et al.: Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol.7(12),930–939 (1997).
    • Vazquez J, Belmont AS, Sedat JW: Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol.11(16),1227–1239 (2001).
    • Heun P, Laroche T, Shimada K, Furrer P, Gasser SM: Chromosome dynamics in the yeast interphase nucleus. Science294(5549),2181–2186 (2001).
    • Kumaran RI, Thakar R, Spector DL: Chromatin dynamics and gene positioning. Cell132(6),929–934 (2008).
    • Misteli T: Physiological importance of RNA and protein mobility in the cell nucleus. Histochem. Cell Biol.129(1),5–11 (2008).
    • Minton AP: Implications of macromolecular crowding for protein assembly. Curr. Opin. Struct. Biol.10(1),34–39 (2000).
    • Kitamura E, Blow JJ, Tanaka TU: Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell125(7),1297–1308 (2006).
    • 10  Essers J, Vermeulen W, Houtsmuller AB: DNA damage repair: anytime, anywhere? Curr. Opin. Cell Biol.18(3),240–246 (2006).
    • 11  Misteli T, Soutoglou E: The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell. Biol.10(4),243–254 (2009).
    • 12  Schneider R, Grosschedl R: Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev.21(23),3027–3043 (2007).
    • 13  Gilbert DM: Making sense of eukaryotic DNA replication origins. Science294(5540),96–100 (2001).
    • 14  Bell SP, Dutta A: DNA replication in eukaryotic cells. Annu. Rev. Biochem.71(1),333–374 (2002).
    • 15  Stillman B: Origin recognition and the chromosome cycle. FEBS Lett.579(4),877–884 (2005).
    • 16  Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J: Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell79(7),1233–1243 (1994).
    • 17  Kumar D, Mukherji A, Saha S: Expression and subcellular localization of ORC1 in Leishmania major. Biochem. Biophys. Res. Commun.375(1),74–79 (2008).
    • 18  Elias MC, Faria M, Mortara RA et al.: Chromosome localization changes in the Trypanosoma cruzi nucleus. Eukaryot. Cell1(6),944–953 (2002).
    • 19  Hakem R: DNA-damage repair; the good, the bad, and the ugly. EMBO J.27(4),589–605 (2008).
    • 20  Machado CR, Augusto-Pinto L, McCulloch R, Teixeira SM: DNA metabolism and genetic diversity in trypanosomes. Mutat. Res.612(1),40–57 (2006).▪ The first overview of the genes involved in DNA repair and recombination in trypanosomes. Interestingly, the authors comment on the role of DNA repair in generating diversity when comparing Trypanosoma cruzi and Trypanosoma brucei.
    • 21  Perez J, Gallego C, Bernier-Villamor V, Camacho A, Gonzalez-Pacanowska D, Ruiz-Perez LM: Apurinic/apyrimidinic endonuclease genes from the trypanosomatidae Leishmania major and Trypanosoma cruzi confer resistance to oxidizing agents in DNA repair-deficient Escherichia coli. Nucleic Acids Res.27(3),771–777 (1999).
    • 22  Farez-Vidal ME, Gallego C, Ruiz-Perez LM, Gonzalez-Pacanowska D: Characterization of uracil-DNA glycosylase activity from Trypanosoma cruzi and its stimulation by AP endonuclease. Nucleic Acids Res.29(7),1549–1555 (2001).
    • 23  Fernandez Villamil SH, Baltanas R, Alonso GD, Vilchez Larrea SC, Torres HN, Flawia MM: TcPARP: a DNA damage-dependent poly(ADP-ribose) polymerase from Trypanosoma cruzi. Int. J. Parasitol.38(3–4),277–287 (2008).
    • 24  Lopes DD, Schamber-Reis BL, Regis-da-Silva CG et al.: Biochemical studies with DNA polymerase β and DNA polymerase β-PAK of Trypanosoma cruzi suggest the involvement of these proteins in mitochondrial DNA maintenance. DNA Repair (Amst.)7(11),1882–1892 (2008).
    • 25  Rajão MA, Passos-Silva DG, DaRocha WD et al.: DNA polymerase k from Trypanosoma cruzi localizes to the mitochondria, bypasses 8-oxoguanine lesions and performs DNA synthesis in a recombination intermediate. Mol. Microbiol.71(1),185–197 (2009).
    • 26  Augusto-Pinto L, Bartholomeu DC, Teixeira SM, Pena SD, Machado CR: Molecular cloning and characterization of the DNA mismatch repair gene class 2 from Trypanosoma cruzi. Gene272(1–2),323–333 (2001).
    • 27  Augusto-Pinto L, Teixeira SM, Pena SD, Machado CR: Single-nucleotide polymorphisms of the Trypanosoma cruziMSH2 gene support the existence of three phylogenetic lineages presenting differences in mismatch-repair efficiency. Genetics164(1),117–126 (2003).
    • 28  San Filippo J, Sung P, Klein H: Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem.77,229–257 (2008).
    • 29  Regis-da-Silva CG, Freitas JM, Passos-Silva DG et al.: Characterization of the Trypanosoma cruziRad51 gene and its role in recombination events associated with the parasite resistance to ionizing radiation. Mol. Biochem. Parasitol.149(2),191–200 (2006).
    • 30  McKean PG, Keen JK, Smith DF, Benson FE: Identification and characterisation of a RAD51 gene from Leishmania major. Mol. Biochem. Parasitol.115(2),209–216 (2001).
    • 31  Proudfoot C, McCulloch R: Distinct roles for two RAD51-related genes in Trypanosoma brucei antigenic variation. Nucleic Acids Res.33(21),6906–6919 (2005).
    • 32  Glover L, McCulloch R, Horn D: Sequence homology and microhomology dominate chromosomal double-strand break repair in African trypanosomes. Nucleic Acids Res.36(8),2608–2618 (2008).
    • 33  Altaf M, Saksouk N, Cote J: Histone modifications in response to DNA damage. Mutat. Res.618(1–2),81–90 (2007).
    • 34  Nardelli SC, da Cunha JP, Motta MC, Schenkman S: Distinct acetylation of Trypanosoma cruzi histone H4 during cell cycle, parasite differentiation, and after DNA damage. Chromosoma118(4),487–499 (2009).▪ Shows the distinct pattern of H4 acetylation in T. cruzi (H4K4ac, H4K10ac and H4K14ac) during the life cycle, cell cycle and after DNA damage, providing evidence regarding their importance to parasite biology.
    • 35  Teixeira SM, DaRocha WD: Control of gene expression and genetic manipulation in the Trypanosomatidae. Genet. Mol. Res.2(1),148–158 (2003).
    • 36  Campbell DA, Thomas S, Sturm NR: Transcription in kinetoplastid protozoa: why be normal? Microb. Infect.5(13),1231–1240 (2003).
    • 37  Lewis JD, Tollervey D: Like attracts like: getting RNA processing together in the nucleus. Science288(5470),1385–1389 (2000).
    • 38  Howe KJ: RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim. Biophys. Acta1577,308–324 (2002).
    • 39  Ejchel TF, Ramirez MI, Vargas N, Nascimento EB, Zingales B, Schenkman S: The largest subunit of the RNA polymerase II of Trypanosoma cruzi lacks the repeats in the carboxy-terminal domain and is encoded by several genes. Parasitol. Int.52,243–249 (2003).
    • 40  Zwierzynski TA, Buck GA: RNA–protein complexes mediate in vitro capping of the spliced-leader primary transcript and U-RNAs in Trypanosoma cruzi. Proc. Natl Acad. Sci. USA88(13),5626–5630 (1991).
    • 41  Mayer MG, Floeter-Winter LM: Pre-mRNA trans-splicing: from kinetoplastids to mammals, an easy language for life diversity. Mem. Inst. Oswaldo Cruz100(5),501–513 (2005).
    • 42  Martinez-Calvillo S, Yan S, Nguyen D, Fox M, Stuart K, Myler PJ: Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region. Mol. Cell11(5),1291–1299 (2003).
    • 43  Abuin G, Freitas-Junior LHG, Colli W, Alves MJ, Schenkman S: Expression of trans-sialidase and 85 kDa glycoprotein genes in Trypanosoma cruzi is differentially regulated at the post-transcriptional level by labile protein factors. J. Biol. Chem.274(19),13041–13047 (1999).
    • 44  Elias MC, Marques-Porto R, Freymuller E, Schenkman S: Transcription rate modulation through the Trypanosoma cruzi life cycle occurs in parallel with changes in nuclear organisation. Mol. Biochem. Parasitol.112(1),79–90 (2001).
    • 45  Dossin FM, Schenkman S: Actively transcribing RNA polymerase II concentrates on spliced leader genes in the nucleus of Trypanosoma cruzi. Eukaryot. Cell4(5),960–970 (2005).▪ Demonstrates the localization of spliced leader RNA transcription in the nuclear space of the proliferative stage epimastigote of T. cruzi. Moreover, it shows that the mRNA transcription is dispersed on the nucleoplasm.
    • 46  Ferreira LR, Dossin FM, Ramos TC, Freymuller E, Schenkman S: Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis. An. Acad. Bras. Cienc.80(1),157–166 (2008).
    • 47  Cribb P, Serra E: One- and two-hybrid analysis of the interactions between components of the Trypanosoma cruzi spliced leader RNA gene promoter binding complex. Int. J. Parasitol.39(5),525–532 (2009).
    • 48  Xu P, Wen L, Benegal G, Wang X, Buck GA: Identification of a spliced leader RNA binding protein from Trypanosoma cruzi. Mol. Biochem. Parasitol.112(1),39–49 (2001).
    • 49  Palenchar JB, Liu W, Palenchar PM, Bellofatto V: A divergent transcription factor TFIIB in trypanosomes is required for RNA polymerase II-dependent spliced leader RNA transcription and cell viability. Eukaryot. Cell5(2),293–300 (2006).
    • 50  Lee JH, Jung HS, Gunzl A: Transcriptionally active TFIIH of the early-diverged eukaryote Trypanosoma brucei harbors two novel core subunits but not a cyclin-activating kinase complex. Nucleic Acids Res. (2009) (Epub ahead of print).
    • 51  Khorasanizadeh S: The nucleosome: from genomic organization to genomic regulation. Cell116(2),259–272 (2004).
    • 52  Toro GC, Galanti N: H1 histone and histone variants in Trypanosoma cruzi. Exp. Cell Res.174(1),16–24 (1988).
    • 53  Toro GC, Galanti N, Hellman U, Wernstedt C: Unambiguous identification of histone H1 in Trypanosoma cruzi. J. Cell Biochem.52(4),431–439 (1993).
    • 54  Aslund L, Carlsson L, Henriksson J et al.: A gene family encoding heterogeneous histone H1 proteins in Trypanosoma cruzi. Mol. Biochem. Parasitol.65(2),317–330 (1994).
    • 55  Hecker H, Betschart B, Bender K, Burri M, Schlimme W: The chromatin of trypanosomes. Int. J. Parasitol.24(6),809–819 (1994).
    • 56  Toro GC, Wernstedt C, Medina C, Jaramillo N, Hellman U, Galanti N: Extremely divergent histone H4 sequence from Trypanosoma cruzi: evolutionary implications. J. Cell. Biochem.49,266–271 (1992).
    • 57  Bontempi EJ, Porcel BM, Henriksson J et al.: Genes for histone H3 in Trypanosoma cruzi. Mol. Biochem. Parasitol.66(1),147–151 (1994).
    • 58  Toro GC, Galanti N: Trypanosoma cruzi histones. Further characterization and comparison with higher eukaryotes. Biochem. Int.21(3),481–490 (1990).
    • 59  Garcia-Salcedo JA, Oliver JL, Stock RP, Gonzalez A: Molecular characterization and transcription of the histone H2B gene from the protozoan parasite Trypanosoma cruzi. Mol. Microbiol.13(6),1033–1043 (1994).
    • 60  Puerta C, Martin J, Alonso C, Lopez MC: Isolation and characterization of the gene encoding histone H2A from Trypanosoma cruzi. Mol. Biochem. Parasitol.64(1),1–10 (1994).
    • 61  da Cunha JPC, Nakayasu ES, de Almeida IC, Schenkman S: Post-translational modifications of Trypanosoma cruzi histone H4. Mol. Biochem. Parasitol.150(2),268–277 (2006).
    • 62  Janzen CJ, Fernandez JP, Deng H, Diaz R, Hake SB, Cross GA: Unusual histone modifications in Trypanosoma brucei. FEBS Lett.580(9),2306–2310 (2006).
    • 63  Astolfi S, De Sá C, Gander E: On the chromatin structure of Trypanosoma cruzi. Mol. Biochem. Parasitol.1,45–43 (1980).
    • 64  Hecker H, Gander ES: The compaction pattern of the chromatin of trypanosomes. Biol. Cell53(3),199–208 (1985).
    • 65  Spadiliero B, Sanchez F, Slezynger TC, Henriquez DA: Differences in the nuclear chromatin among various stages of the life cycle of Trypanosoma cruzi. J. Cell. Biochem.84(4),832–839 (2002).
    • 66  Vickerman K, Preston TM: Spindle microtubules in the dividing nuclei of trypanosomes. J. Cell Sci.6(2),365–383 (1970).
    • 67  Solari AJ: The 3-dimensional fine structure of the mitotic spindle in Trypanosoma cruzi. Chromosoma78(2),239–255 (1980).
    • 68  Elias MC, da Cunha JP, de Faria FP, Mortara RA, Freymuller E, Schenkman S: Morphological events during the Trypanosoma cruzi cell cycle. Protist158(2),147–157 (2007).▪ Morphological alterations that occur during the cell cycle of the proliferative stage epimastigote of T. cruzi are presented. In addition, it was shown that it is possible to identify different stages of the cell cycle based on the number of flagella, nuclei and kinetoplasts.
    • 69  Cano MI, Gruber A, Vazquez M et al.: Molecular karyotype of clone CL Brener chosen for the Trypanosoma cruzi genome project. Mol. Biochem. Parasitol.71,273–278 (1995).
    • 70  Henriksson J, Dujardin JC, Barnabe C et al.: Chromosomal size variation in Trypanosoma cruzi is mainly progressive and is evolutionarily informative. Parasitol.124(Pt 3),277–286 (2002).
    • 71  Vargas N, Pedroso A, Zingales B: Chromosomal polymorphism, gene synteny and genome size in T. cruzi I and T. cruzi II groups. Mol. Biochem. Parasitol.138(1),131–141 (2004).
    • 72  Dujardin JC, Henriksson J, Victoir K et al.: Genomic rearrangements in trypanosomatids: an alternative to the ‘one gene’ evolutionary hypotheses? Mem. Inst. Oswaldo Cruz95(4),527–534 (2000).
    • 73  Galindo M, Sabaj V, Espinoza I et al.: Chromosomal size conservation through the cell cycle supports karyotype stability in Trypanosoma cruzi. FEBS Lett.581(10),2022–2026 (2007).
    • 74  Chiurillo MA, Cano I, Da Silveira JF, Ramirez JL: Organization of telomeric and sub-telomeric regions of chromosomes from the protozoan parasite Trypanosoma cruzi. Mol. Biochem. Parasitol.100(2),173–183 (1999).
    • 75  Freitas-Junior LH, Porto RM, Pirrit LA, Schenkman S, Scherf A: Identification of the telomere in Trypanosoma cruzi reveals highly heterogeneous telomere lengths in different parasite strains. Nucleic Acids Res.27(12),2451–2456 (1999).
    • 76  Obado SO, Taylor MC, Wilkinson SR, Bromley EV, Kelly JM: Functional mapping of a trypanosome centromere by chromosome fragmentation identifies a 16-kb GC-rich transcriptional ‘strand-switch’ domain as a major feature. Genome Res.15(1),36–43 (2005).
    • 77  Gonzalez A, Prediger E, Huecas ME, Nogueira N, Lizardi PM: Minichromosomal repetitive DNA in Trypanosoma cruzi: its use in a high-sensitivity parasite detection assay. Proc. Natl Acad. Sci. USA81(11),3356–3360 (1984).
    • 78  Elias MC, Vargas NS, Zingales B, Schenkman S: Organization of satellite DNA in the genome of Trypanosoma cruzi. Mol. Biochem. Parasitol.129(1),1–9 (2003).
    • 79  Obado SO, Bot C, Nilsson D, Andersson B, Kelly JM: Repetitive DNA is associated with centromeric domains in Trypanosoma brucei but not Trypanosoma cruzi. Genome Biol.8(3),R37 (2007).
    • 80  Peterson CL, Laniel MA: Histones and histone modifications. Curr. Biol.14(14),546–551 (2004).
    • 81  Mujtaba S, Zeng L, Zhou MM: Structure and acetyl-lysine recognition of the bromodomain. Oncogene26(37),5521–5527 (2007).
    • 82  Daniel JA, Pray-Grant MG, Grant PA: Effector proteins for methylated histones: an expanding family. Cell Cycle4(7),919–926 (2005).
    • 83  Figueiredo LM, Cross GA, Janzen CJ: Epigenetic regulation in African trypanosomes: a new kid on the block. Nat. Rev. Microbiol.7(7),504–513 (2009).▪▪ Recent and complete review discussing histone modifications in T. brucei.
    • 84  Mandava V, Fernandez JP, Deng H, Janzen CJ, Hake SB, Cross GA: Histone modifications in Trypanosoma brucei. Mol. Biochem. Parasitol.156(1),41–50 (2007).
    • 85  Respuela P, Ferella M, Rada-Iglesias A, Aslund L: Histone acetylation and methylation at sites initiating divergent polycistronic transcription in Trypanosoma cruzi. J. Biol. Chem.283(6),15884–15892 (2008).
    • 86  Siegel TN, Hekstra DR, Kemp LE et al.: Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev.23(9),1063–1076 (2009).
    • 87  Siegel TN, Kawahara T, Degrasse JA, Janzen CJ, Horn D, Cross GA: Acetylation of histone H4K4 is cell cycle regulated and mediated by HAT3 in Trypanosoma brucei. Mol. Microbiol.67(4),762–771 (2008).
    • 88  Kawahara T, Siegel TN, Ingram AK, Alsford S, Cross GA, Horn D: Two essential MYST-family proteins display distinct roles in histone H4K10 acetylation and telomeric silencing in trypanosomes. Mol. Microbiol.69(4),1054–1068 (2008).
    • 89  Villanova GV, Nardelli SC, Cribb P et al.: Trypanosoma cruzi bromodomain factor 2 (BDF2) binds to acetylated histones and is accumulated after UV irradiation. Int. J. Parasitol.39(6),665–673 (2009).
    • 90  Lowell JE, Kaiser F, Janzen CJ, Cross GA: Histone H2AZ dimerizes with a novel variant H2B and is enriched at repetitive DNA in Trypanosoma brucei. J. Cell Sci.118(Pt 24),5721–5730 (2005).
    • 91  Mandava V, Janzen CJ, Cross GA: Trypanosome H2Bv replaces H2B in nucleosomes enriched for H3 K4 and K76 trimethylation. Biochem. Biophys. Res. Commun.368(4),846–851 (2008).
    • 92  Ivens AC, Peacock CS, Worthey EA et al.: The genome of the kinetoplastid parasite, Leishmania major. Science309(5733),436–442 (2005).
    • 93  Chagas C: Nova tripanossomíase humana. Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., agente etiológico de nova entidade mórbida do homem. Mem. Inst. Oswaldo Cruz1(2),159–218 (1909).
    • 94  de Souza W: Basic cell biology of Trypanosoma cruzi. Curr. Pharm. Des.8(4),269–285 (2002).▪ Emphasizes aspects of T. cruzi cell biology, including the different stages found in the T. cruzi cell cycle, cytoskeleton, flagellum, kinetoplast, peroxisome, acidocalcisome, the endocytic pathway, endoplasmic reticulum–Golgi complex, nucleus and some aspects of the parasite–host interaction.
    • 95  Tyler KM, Engman DM: The life cycle of Trypanosoma cruzi revisited. Int. J. Parasitol.31(5–6),472–481 (2001).
    • 96  Souza W: Electron microscopy of trypanosomes – a historical view. Mem. Inst. Oswaldo Cruz103(4),313–325 (2008).
    • 97  Shapiro TA, Englund PT: The structure and replication of kinetoplast DNA. Annu. Rev. Microbiol.49,117–143 (1995).
    • 98  Tyler KM, Engman DM: Flagellar elongation induced by glucose limitation is preadaptive for Trypanosoma cruzi differentiation. Cell Motil. Cytoskeleton46(4),269–278 (2000).
    • 99  Avila AR, Dallagiovanna B, Yamada-Ogatta SF et al.: Stage-specific gene expression during Trypanosoma cruzi metacyclogenesis. Genet. Mol. Res.2(1),159–168 (2003).
    • 100  Gomez EB, Kornblihtt AR, Tellez-Inon MT: Cloning of a cdc2-related protein kinase from Trypanosoma cruzi that interacts with mammalian cyclins. Mol. Biochem. Parasitol.91(2),337–351 (1998).
    • 101  Gomez EB, Santori MI, Laria S et al.: Characterization of the Trypanosoma cruzi Cdc2p-related protein kinase 1 and identification of three novel associating cyclins. Mol. Biochem. Parasitol.113(1),97–108 (2001).
    • 102  Santori MI, Laria S, Gomez EB, Espinosa I, Galanti N, Tellez-Inon MT: Evidence for CRK3 participation in the cell division cycle of Trypanosoma cruzi. Mol. Biochem. Parasitol.121(2),225–232 (2002).
    • 103  da Cunha JPC, Nakayasu ES, Elias MC et al.: Trypanosoma cruzi histone H1 is phosphorylated in a typical cyclin dependent kinase site accordingly to the cell cycle. Mol. Biochem. Parasitol.140(1),75–86 (2005).
    • 104  Munoz MJ, Santori MI, Rojas F, Gomez EB, Tellez-Inon MT: Trypanosoma cruzi Tcp12CKS1 interacts with parasite CRKs and rescues the p13SUC1 fission yeast mutant. Mol. Biochem. Parasitol.147(2),154–162 (2006).
    • 105  Galanti N, Galindo M, Sabaj V, Espinoza I, Toro GC: Histone genes in trypanosomatids. Parasitol. Today14(2),64–69 (1998).
    • 106  Sabaj V, Diaz J, Toro GC, Galanti N: Histone synthesis in Trypanosoma cruzi. Exp. Cell Res.236(2),446–452 (1997).
    • 201  Trypanosome database. http://tritrypdb.org/tritrypdb