Research Article
BibTex RIS Cite

FAZ DEĞİŞTİREN MALZEMELERİN YAPI ELEMANLARININ BASINÇ DAYANIMI VE TERMAL İLETKENLİĞE OLAN ETKİLERİ HAKKINDA LİTERATÜR ARAŞTIRMASI

Year 2022, Volume: 10 Issue: 4, 1495 - 1508, 30.12.2022
https://doi.org/10.21923/jesd.875102

Abstract

Faz Değiştiren Malzemelerin (FDM) önemli alanlarından biri, bina bileşenlerinin ısı tutma kapasitesini artırmaktır. Bina bileşenlerinde enerji depolamak ve bina sıcaklık kontrolünü sağlamak için FDM'lerin ısı tutma kapasiteleri üzerinde araştırmalar yapılmaktadır. Yaz ve kış koşullarında bina sıcaklık kontrolünün sağlanması süreklilik gerektiren bir durum olduğundan, bina bileşenlerinde FDM'nin kullanılması enerji tasarrufu için önemli bir araç haline gelmiştir. Bina bileşenine sağlanan bu özellik, binanın enerji kimliğinde bir iyileşme sağlar. Genel araştırmalarda makro ve mikro kapsüllenmiş FDM kullanımı, bina bileşenlerinin ısı tutma kapasitesini artırdığı için ısı iletim katsayısını düşürür, ancak basınç dayanımını pozitif veya negatif etkiler. Ancak mikro kapsül uygulamalarında kullanılan kapsül boyutu 7 mikron ve altına düştüğünde mukavemetin arttığı, ısıl iletkenlik katsayısının düşmeye devam ettiği görülmektedir. Yapı bileşenlerinde kullanılan PCM kapsül partikül boyutları küçültüldüğünde, bileşenin granülometrisinde bir gelişme sağlar, böylece yapı bileşenlerinde mukavemet üzerinde olumlu bir etki görülür. Bu araştırma sonucunda, FDM ilavesinin makro, mikro ve nano boyutlarına ve karışım oranlarına bağlı olarak basınç dayanımında farklılıklar gözlenmiştir. Bununla birlikte, bina bileşeninin FDM oranındaki sürekli artış nedeniyle, bina bileşeninin ısı tutma kapasitesi artar ve ısıl iletkenliği azalır.

References

  • Adesina, A., P. O. Awoyera, A. Sivakrishna, K. Rajesh Kumar, and R. Gobinath. 2020. “Materials Today : Proceedings Phase Change Materials in Concrete : An Overview of Properties.” Materials Today: Proceedings 27:391–95.
  • Adesina, Adeyemi. 2019. “Use of Phase Change Materials in Concrete: Current Challenges.” Renewable Energy and Environmental Sustainability 4:9.
  • Aguayo, Matthew, Sumanta Das, Amit Maroli, Nihat Kabay, James C. E. Mertens, Subramaniam D. Rajan, Gaurav Sant, Nikhilesh Chawla, and Narayanan Neithalath. 2016. “The in Fl Uence of Microencapsulated Phase Change Material ( PCM ) Characteristics on the Microstructure and Strength of Cementitious Composites : Experiments and Fi Nite Element Simulations.” Cement and Concrete Composites 73:29–41.
  • Anon. n.d. “The Distribution of Natural Gas Consumption of Turkey for 2018.” Retrieved August 10, 2020a (http://www.enerji.gov.tr).
  • Anon. n.d. “The Distribution Turkey’s Total Energy Consumption in 2017.” Retrieved August 1, 2020b (http://www.eigm.gov.tr/).
  • Bai, Lu, Jingchao Xie, Mohammed M. Farid, Wei Wang, and Jiaping Liu. 2020. “Analytical Model to Study the Heat Storage of Phase Change Material Envelopes in Lightweight Passive Buildings.” Building and Environment 169(July 2019):106531.
  • Berardi, Umberto and Andres Alejandro Gallardo. 2019. “Energy & Buildings Properties of Concretes Enhanced with Phase Change Materials for Building Applications.” Energy & Buildings 199:402–14.
  • Beyhan, Beyza, Kemal Cellat, Yeliz Konuklu, Caner Gungor, Okan Karahan, Cengiz Dundar, and Halime Paksoy. 2017. “Robust Microencapsulated Phase Change Materials in Concrete Mixes for Sustainable Buildings.” International Journal of Energy Research 41(1):113–26.
  • Cao, Lei, Fang Tang, and Guiyin Fang. 2014. “Synthesis and Characterization of Microencapsulated Paraffin with Titanium Dioxide Shell as Shape-Stabilized Thermal Energy Storage Materials in Buildings.” Energy & Buildings 72:31–37.
  • Çelik, Tahir and Khaled Marar. 1996. “Effects of Crushed Stone Dust on Some Properties of Concrete.” Cement and Concrete Research 26(7):1121–30.
  • Cellat, Kemal, Beyza Beyhan, Caner Güngör, Yeliz Konuklu, and Okan Karahan. 2015. “Thermal Enhancement of Concrete by Adding Bio-Based Fatty Acids as Phase Change Materials.” Energy & Buildings 106:156–63.
  • Cellat, Kemal, Fatih Tezcan, Beyza Beyhan, Gülfeza Kardas, and Halime Paksoy. 2017. “A Comparative Study on Corrosion Behavior of Rebar in Concrete with Fatty Acid Additive as Phase Change Material.” c:490–500.
  • Chen, Zhi, Lei Cao, Feng Shan, and Guiyin Fang. 2013. “Preparation and Characteristics of Microencapsulated Stearic Acid as Composite Thermal Energy Storage Material in Buildings.” Energy & Buildings 62:469–74.
  • Cui, Hongzhi, Wenyu Liao, Xuming Mi, Tommy Y. Lo, and Dazhu Chen. 2015. “Study on Functional and Mechanical Properties of Cement Mortar with Graphite-Modified Microencapsulated Phase-Change Materials.” Energy & Buildings 105:273–84.
  • Dakhli, Zakaria, Khaled Chaffar, and Zoubeir Lafhaj. 2019. “The Effect of Phase Change Materials on the Physical, Thermal and Mechanical Properties of Cement.” Sci 1(1):27.
  • Drissi, Sarra, Tung-chai Ling, Kim Hung, Anissa Eddhahak, Kim Hung Mo, and Anissa Eddhahak. 2019. “A Review of Microencapsulated and Composite Phase Change Materials: Alteration of Strength and Thermal Properties of Cement-Based Materials.” Renewable and Sustainable Energy Reviews 110(May):467–84.
  • Eddhahak-Ouni, Anissa, Sarra Drissi, Johan Colin, Jamel Neji, and Sabine Care. 2014. “Experimental and Multi-Scale Analysis of the Thermal Properties of Portland Cement Concretes Embedded with Microencapsulated Phase Change Materials (PCMs).” Applied Thermal Engineering 64(1–2):32–39.
  • Fernandes, Fabio, Shilpa Manari, Mathew Aguayo, Kevin Santos, Tandre Oey, Zhenhua Wei, Gabriel Falzone, Narayanan Neithalath, and Gaurav Sant. 2014. “Cement & Concrete Composites On the Feasibility of Using Phase Change Materials ( PCMs ) to Mitigate Thermal Cracking in Cementitious Materials.” Cement and Concrete Composites 51:14–26.
  • Fernández, A. Inés, Aran Solé, Jessica Giró-paloma, Mònica Martínez, Mila Hadjieva, Abdel Boudenne, Mariaella Constantinescu, Elena Maria, Marta Malikova, Igor Krupa, Conchita Peñalosa, Ana Lázaro, Halime O. Paksoy, Kemal Cellat, Jana Vecstaud, Diana Bajare, Bostjan Sumiga, Bojana Boh, Thomas Haussmann, Stefan Gschwander, Robert Weber, Piotr Furmanski, Maciej Jaworski, and Luisa F. Cabeza. 2015. “Unconventional Experimental Technologies Used for Phase Change Materials ( PCM ) Characterization : Part 2 – Morphological and Structural Characterization , Physico-Chemical Stability and Mechanical Properties.” 43:1415–26.
  • Figueiredo, António, José Lapa, Romeu Vicente, and Claudino Cardoso. 2016. “Mechanical and Thermal Characterization of Concrete with Incorporation of Microencapsulated PCM for Applications in Thermally Activated Slabs.” Construction and Building Materials 112:639–47.
  • Fu, Chao, Chunyan Xie, Jing Liu, Xiuli Wei, and Dake Wu. 2020. “A Comparative Study on the Effects of Three Nano-Materials on the Properties of Cement-Based Composites.” Materials 13(4):857.
  • Güğül, Gül Nihal and Merih Aydınalp Köksal. 2018. “Müstakil Bir Konutun Enerji Tüketiminin Azaltılmasında Kullanılan Yöntemlerinin Ekonomik Değerlendirmesi.” Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2018(2018).
  • Haydaraslan, Ersin, Burhan Çuhadaroğlu, and Yalçın Yaşar. 2020. “Kat Isıtmasında Yüzer Döşeme ve Faz Değiştiren Malzeme Kullanımının Enerji Verimliliğine ve Konfor Koşullarına Etkisi.” Mühendis ve Makina 61(700):180–97.
  • He, Fang, Xiaodong Wang, and Dezhen Wu. 2014. “New Approach for Sol e Gel Synthesis of Microencapsulated n - Octadecane Phase Change Material with Silica Wall Using Sodium Silicate Precursor.” Energy 67:223–33.
  • He, Fang, Xiaodong Wang, and Dezhen Wu. 2015. “Phase-Change Characteristics and Thermal Performance of Form-Stable n -Alkanes/Silica Composite Phase Change Materials Fabricated by Sodium Silicate Precursor.” Renewable Energy 74:689–98.
  • Hu C, Saucier F, Lanctôt MC, Clavaud B. 1999. “Investigation on the Strength Limit of Very High Strength Concretes.” in 5th international symposium on utilization of high strength/high performance concrete. Sandefjord,Norway.
  • Hunger, M., A. G. Entrop, I. Mandilaras, H. J. H. Brouwers, and M. Founti. 2009. “The Behavior of Self-Compacting Concrete Containing Micro-Encapsulated Phase Change Materials.” Cement and Concrete Composites 31(10):731–43.
  • Jiang, Mengjin, Xiaoqing Song, Guangdou Ye, and Jianjun Xu. 2008. “Preparation of PVA / Paraffin Thermal Regulating Fiber by in Situ Microencapsulation.” 68:2231–37.
  • Kayabaşı, Ramazan and Metin Kaya. 2020. “Fotovoltaik Modüllerde Faz Değiştiren Madde Kullanımı ve Verimlerine Etkisi.” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 8(2):262–78.
  • Konuklu, Yeliz, Murat Unal, and Halime O. Paksoy. 2014. “Solar Energy Materials & Solar Cells Microencapsulation of Caprylic Acid with Different Wall Materials as Phase Change Material for Thermal Energy Storage.” Solar Energy Materials and Solar Cells 120:536–42.
  • Korkut, Özlem and Gülşah Torun. 2017. “Preparation Of Cement Based Composites And Cellulosic Panels From Barley Straw For Thermal Insulation.” Gazi University Journal of Science 30(1):31–42.
  • Lecompte, T., P. Le Bideau, P. Glouannec, D. Nortershauser, and S. Le Masson. 2015. “Mechanical and Thermo-Physical Behaviour of Concretes and Mortars Containing Phase Change Material.” Energy & Buildings 94:52–60.
  • Ling, Tung-Chai and Chi-Sun Poon. 2013. “Use of Phase Change Materials for Thermal Energy Storage in Concrete: An Overview.” Construction and Building Materials 46(September):55–62.
  • Ma, Qinyong and Mei Bai. 2018. “Mechanical Behavior , Energy-Storing Properties and Thermal Reliability of Phase-Changing Energy-Storing Concrete.” Construction and Building Materials 176:43–49.
  • Ma, Yanhong, Shiding Sun, Jianguo Li, and Guoyi Tang. 2014. “Preparation and Thermal Reliabilities of Microencapsulated Phase Change Materials with Binary Cores and Acrylate-Based Polymer Shells.” Thermochimica Acta 588:38–46.
  • Marani, Afshin and Moncef L. Nehdi. 2020. “Machine Learning Prediction of Compressive Strength for Phase Change Materials Integrated Cementitious Composites.” Construction and Building Materials 265:120286.
  • Moosberg-Bustnes, H. 2004. “The Function of Fillers in Concrete.” Materials and Structures 37(266):74–81.
  • Navarro, Lidia, Alvaro De Gracia, Shane Colclough, Maria Browne, Sarah J. Mccormack, Philip Grif, and Luisa F. Cabeza. 2016. “Thermal Energy Storage in Building Integrated Thermal Systems : A Review . Part 1 . Active Storage Systems.” 88.
  • Navarro, Lidia, Alvaro De Gracia, Dervilla Niall, Albert Castell, Maria Browne, Sarah J. Mccormack, Philip Grif, and Luisa F. Cabeza. 2016. “Thermal Energy Storage in Building Integrated Thermal Systems : A Review . Part 2 . Integration as Passive System.” 85:1334–56.
  • Norvell, Chad, David J. Sailor, and Peter Dusicka. 2013. “The Effect of Microencapsulated Phase-Change Material on the Compressive Strength of Structural Concrete.” Journal of Green Building 8(3):116–24.
  • Oktay, Hasan, Recep Yumrutaş, and Zeki Argunhan. 2020. “An Experimental Investigation of the Effect of Thermophysical Properties on Time Lag and Decrement Factor for Building Elements.” Gazi University Journal of Science 33(2):492–508.
  • Ouglova, A., Y. Berthaud, and F. Foct. 2006. “Mechanical Properties of an Iron Oxide Formed by Corrosion in Reinforced Concrete Structures.” 48:3988–4000.
  • Paksoy, H., G. Kardas, Y. Konuklu, K. Cellat, and F. Tezcan. 2017. “Characterization of Concrete Mixes Containing Phase Change Materials.” IOP Conference Series: Materials Science and Engineering 251:012118.
  • Sarı, Ahmet, Cemil Alkan, and Ayşe Altıntaş. 2014. “Preparation, Characterization and Latent Heat Thermal Energy Storage Properties of Micro-Nanoencapsulated Fatty Acids by Polystyrene Shell.” Applied Thermal Engineering 73(1):1160–68.
  • Sarı, Ahmet, Cemil Alkan, and Ali Karaipekli. 2010. “Preparation , Characterization and Thermal Properties of PMMA / n -Heptadecane Microcapsules as Novel Solid – Liquid MicroPCM for Thermal Energy Storage.” Applied Energy 87(5):1529–34.
  • Schossig, P., H. Henning, and S. Gschwander. 2005. “Micro-Encapsulated Phase-Change Materials Integrated into Construction Materials.” 89:297–306.
  • Shan, X. L., J. P. Wang, X. X. Zhang, and X. C. Wang. 2009. “Thermochimica Acta Formaldehyde-Free and Thermal Resistant Microcapsules Containing n -Octadecane.” 494:104–9.
  • Soares, N., J. J. Costa, A. R. Gaspar, and P. Santos. 2013. “Review of Passive PCM Latent Heat Thermal Energy Storage Systems towards Buildings ’ Energy Efficiency.” Energy & Buildings 59:82–103.
  • Ürge-vorsatz, Diana, Luisa F. Cabeza, Susana Serrano, and Camila Barreneche. 2015. “Heating and Cooling Energy Trends and Drivers in Buildings.” Renewable and Sustainable Energy Reviews 41:85–98.
  • Xu, Biwan and Zongjin Li. 2013. “Paraffin / Diatomite Composite Phase Change Material Incorporated Cement-Based Composite for Thermal Energy Storage.” Applied Energy 105:229–37.
  • Zhang, Zhengguo, Guoquan Shi, Shuping Wang, Xiaoming Fang, and Xiaohong Liu. 2013. “Thermal Energy Storage Cement Mortar Containing N-Octadecane / Expanded Graphite Composite Phase Change Material.” Renewable Energy 50:670–75.

A LITERATURE REVIEW ABOUT EFFECTS of PHASE CHANGING MATERIALS on COMPRESSIVE STRENGTH and THERMAL CONDUCTIVITY of BUILDING COMPONENTS

Year 2022, Volume: 10 Issue: 4, 1495 - 1508, 30.12.2022
https://doi.org/10.21923/jesd.875102

Abstract

One of the important areas of Phase Changing Materials (PCM) is to increase the heat retention capacity of building components. Researches are carried out on the heat retention capacities of PCMs to store energy in building components and to ensure building temperature control. The use of PCM in building components has become an important tool for energy saving, since ensuring building temperature control in summer and winter conditions is a situation that requires continuity. This feature provided to the building component provides an improvement in the energy identity of the building. In general researches, the use of macro, micro encapsulated PCM decreases the heat conduction coefficient as it increases the heat retention capacity of the building components, but effects compressive strength positive or negative. However, when the capsule size used in micro capsule applications is reduced to 7 microns and below, it is seen that the strength increases, while the thermal conductivity coefficient continues to decrease. When the PCM capsule particle sizes used in the building components are reduced, it provides an improvement in the granulometry of the component, so a positive effect on strength is seen in the building components. As a result of this research, differences in compressive strength were observed depending on the macro, micro and nano dimensions and mixing ratios of the pcm addition. However, due to the continuous increase in the PCM ratio of the building component, the heat holding capacity of the building component increases and its thermal conductivity decreases.

References

  • Adesina, A., P. O. Awoyera, A. Sivakrishna, K. Rajesh Kumar, and R. Gobinath. 2020. “Materials Today : Proceedings Phase Change Materials in Concrete : An Overview of Properties.” Materials Today: Proceedings 27:391–95.
  • Adesina, Adeyemi. 2019. “Use of Phase Change Materials in Concrete: Current Challenges.” Renewable Energy and Environmental Sustainability 4:9.
  • Aguayo, Matthew, Sumanta Das, Amit Maroli, Nihat Kabay, James C. E. Mertens, Subramaniam D. Rajan, Gaurav Sant, Nikhilesh Chawla, and Narayanan Neithalath. 2016. “The in Fl Uence of Microencapsulated Phase Change Material ( PCM ) Characteristics on the Microstructure and Strength of Cementitious Composites : Experiments and Fi Nite Element Simulations.” Cement and Concrete Composites 73:29–41.
  • Anon. n.d. “The Distribution of Natural Gas Consumption of Turkey for 2018.” Retrieved August 10, 2020a (http://www.enerji.gov.tr).
  • Anon. n.d. “The Distribution Turkey’s Total Energy Consumption in 2017.” Retrieved August 1, 2020b (http://www.eigm.gov.tr/).
  • Bai, Lu, Jingchao Xie, Mohammed M. Farid, Wei Wang, and Jiaping Liu. 2020. “Analytical Model to Study the Heat Storage of Phase Change Material Envelopes in Lightweight Passive Buildings.” Building and Environment 169(July 2019):106531.
  • Berardi, Umberto and Andres Alejandro Gallardo. 2019. “Energy & Buildings Properties of Concretes Enhanced with Phase Change Materials for Building Applications.” Energy & Buildings 199:402–14.
  • Beyhan, Beyza, Kemal Cellat, Yeliz Konuklu, Caner Gungor, Okan Karahan, Cengiz Dundar, and Halime Paksoy. 2017. “Robust Microencapsulated Phase Change Materials in Concrete Mixes for Sustainable Buildings.” International Journal of Energy Research 41(1):113–26.
  • Cao, Lei, Fang Tang, and Guiyin Fang. 2014. “Synthesis and Characterization of Microencapsulated Paraffin with Titanium Dioxide Shell as Shape-Stabilized Thermal Energy Storage Materials in Buildings.” Energy & Buildings 72:31–37.
  • Çelik, Tahir and Khaled Marar. 1996. “Effects of Crushed Stone Dust on Some Properties of Concrete.” Cement and Concrete Research 26(7):1121–30.
  • Cellat, Kemal, Beyza Beyhan, Caner Güngör, Yeliz Konuklu, and Okan Karahan. 2015. “Thermal Enhancement of Concrete by Adding Bio-Based Fatty Acids as Phase Change Materials.” Energy & Buildings 106:156–63.
  • Cellat, Kemal, Fatih Tezcan, Beyza Beyhan, Gülfeza Kardas, and Halime Paksoy. 2017. “A Comparative Study on Corrosion Behavior of Rebar in Concrete with Fatty Acid Additive as Phase Change Material.” c:490–500.
  • Chen, Zhi, Lei Cao, Feng Shan, and Guiyin Fang. 2013. “Preparation and Characteristics of Microencapsulated Stearic Acid as Composite Thermal Energy Storage Material in Buildings.” Energy & Buildings 62:469–74.
  • Cui, Hongzhi, Wenyu Liao, Xuming Mi, Tommy Y. Lo, and Dazhu Chen. 2015. “Study on Functional and Mechanical Properties of Cement Mortar with Graphite-Modified Microencapsulated Phase-Change Materials.” Energy & Buildings 105:273–84.
  • Dakhli, Zakaria, Khaled Chaffar, and Zoubeir Lafhaj. 2019. “The Effect of Phase Change Materials on the Physical, Thermal and Mechanical Properties of Cement.” Sci 1(1):27.
  • Drissi, Sarra, Tung-chai Ling, Kim Hung, Anissa Eddhahak, Kim Hung Mo, and Anissa Eddhahak. 2019. “A Review of Microencapsulated and Composite Phase Change Materials: Alteration of Strength and Thermal Properties of Cement-Based Materials.” Renewable and Sustainable Energy Reviews 110(May):467–84.
  • Eddhahak-Ouni, Anissa, Sarra Drissi, Johan Colin, Jamel Neji, and Sabine Care. 2014. “Experimental and Multi-Scale Analysis of the Thermal Properties of Portland Cement Concretes Embedded with Microencapsulated Phase Change Materials (PCMs).” Applied Thermal Engineering 64(1–2):32–39.
  • Fernandes, Fabio, Shilpa Manari, Mathew Aguayo, Kevin Santos, Tandre Oey, Zhenhua Wei, Gabriel Falzone, Narayanan Neithalath, and Gaurav Sant. 2014. “Cement & Concrete Composites On the Feasibility of Using Phase Change Materials ( PCMs ) to Mitigate Thermal Cracking in Cementitious Materials.” Cement and Concrete Composites 51:14–26.
  • Fernández, A. Inés, Aran Solé, Jessica Giró-paloma, Mònica Martínez, Mila Hadjieva, Abdel Boudenne, Mariaella Constantinescu, Elena Maria, Marta Malikova, Igor Krupa, Conchita Peñalosa, Ana Lázaro, Halime O. Paksoy, Kemal Cellat, Jana Vecstaud, Diana Bajare, Bostjan Sumiga, Bojana Boh, Thomas Haussmann, Stefan Gschwander, Robert Weber, Piotr Furmanski, Maciej Jaworski, and Luisa F. Cabeza. 2015. “Unconventional Experimental Technologies Used for Phase Change Materials ( PCM ) Characterization : Part 2 – Morphological and Structural Characterization , Physico-Chemical Stability and Mechanical Properties.” 43:1415–26.
  • Figueiredo, António, José Lapa, Romeu Vicente, and Claudino Cardoso. 2016. “Mechanical and Thermal Characterization of Concrete with Incorporation of Microencapsulated PCM for Applications in Thermally Activated Slabs.” Construction and Building Materials 112:639–47.
  • Fu, Chao, Chunyan Xie, Jing Liu, Xiuli Wei, and Dake Wu. 2020. “A Comparative Study on the Effects of Three Nano-Materials on the Properties of Cement-Based Composites.” Materials 13(4):857.
  • Güğül, Gül Nihal and Merih Aydınalp Köksal. 2018. “Müstakil Bir Konutun Enerji Tüketiminin Azaltılmasında Kullanılan Yöntemlerinin Ekonomik Değerlendirmesi.” Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2018(2018).
  • Haydaraslan, Ersin, Burhan Çuhadaroğlu, and Yalçın Yaşar. 2020. “Kat Isıtmasında Yüzer Döşeme ve Faz Değiştiren Malzeme Kullanımının Enerji Verimliliğine ve Konfor Koşullarına Etkisi.” Mühendis ve Makina 61(700):180–97.
  • He, Fang, Xiaodong Wang, and Dezhen Wu. 2014. “New Approach for Sol e Gel Synthesis of Microencapsulated n - Octadecane Phase Change Material with Silica Wall Using Sodium Silicate Precursor.” Energy 67:223–33.
  • He, Fang, Xiaodong Wang, and Dezhen Wu. 2015. “Phase-Change Characteristics and Thermal Performance of Form-Stable n -Alkanes/Silica Composite Phase Change Materials Fabricated by Sodium Silicate Precursor.” Renewable Energy 74:689–98.
  • Hu C, Saucier F, Lanctôt MC, Clavaud B. 1999. “Investigation on the Strength Limit of Very High Strength Concretes.” in 5th international symposium on utilization of high strength/high performance concrete. Sandefjord,Norway.
  • Hunger, M., A. G. Entrop, I. Mandilaras, H. J. H. Brouwers, and M. Founti. 2009. “The Behavior of Self-Compacting Concrete Containing Micro-Encapsulated Phase Change Materials.” Cement and Concrete Composites 31(10):731–43.
  • Jiang, Mengjin, Xiaoqing Song, Guangdou Ye, and Jianjun Xu. 2008. “Preparation of PVA / Paraffin Thermal Regulating Fiber by in Situ Microencapsulation.” 68:2231–37.
  • Kayabaşı, Ramazan and Metin Kaya. 2020. “Fotovoltaik Modüllerde Faz Değiştiren Madde Kullanımı ve Verimlerine Etkisi.” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 8(2):262–78.
  • Konuklu, Yeliz, Murat Unal, and Halime O. Paksoy. 2014. “Solar Energy Materials & Solar Cells Microencapsulation of Caprylic Acid with Different Wall Materials as Phase Change Material for Thermal Energy Storage.” Solar Energy Materials and Solar Cells 120:536–42.
  • Korkut, Özlem and Gülşah Torun. 2017. “Preparation Of Cement Based Composites And Cellulosic Panels From Barley Straw For Thermal Insulation.” Gazi University Journal of Science 30(1):31–42.
  • Lecompte, T., P. Le Bideau, P. Glouannec, D. Nortershauser, and S. Le Masson. 2015. “Mechanical and Thermo-Physical Behaviour of Concretes and Mortars Containing Phase Change Material.” Energy & Buildings 94:52–60.
  • Ling, Tung-Chai and Chi-Sun Poon. 2013. “Use of Phase Change Materials for Thermal Energy Storage in Concrete: An Overview.” Construction and Building Materials 46(September):55–62.
  • Ma, Qinyong and Mei Bai. 2018. “Mechanical Behavior , Energy-Storing Properties and Thermal Reliability of Phase-Changing Energy-Storing Concrete.” Construction and Building Materials 176:43–49.
  • Ma, Yanhong, Shiding Sun, Jianguo Li, and Guoyi Tang. 2014. “Preparation and Thermal Reliabilities of Microencapsulated Phase Change Materials with Binary Cores and Acrylate-Based Polymer Shells.” Thermochimica Acta 588:38–46.
  • Marani, Afshin and Moncef L. Nehdi. 2020. “Machine Learning Prediction of Compressive Strength for Phase Change Materials Integrated Cementitious Composites.” Construction and Building Materials 265:120286.
  • Moosberg-Bustnes, H. 2004. “The Function of Fillers in Concrete.” Materials and Structures 37(266):74–81.
  • Navarro, Lidia, Alvaro De Gracia, Shane Colclough, Maria Browne, Sarah J. Mccormack, Philip Grif, and Luisa F. Cabeza. 2016. “Thermal Energy Storage in Building Integrated Thermal Systems : A Review . Part 1 . Active Storage Systems.” 88.
  • Navarro, Lidia, Alvaro De Gracia, Dervilla Niall, Albert Castell, Maria Browne, Sarah J. Mccormack, Philip Grif, and Luisa F. Cabeza. 2016. “Thermal Energy Storage in Building Integrated Thermal Systems : A Review . Part 2 . Integration as Passive System.” 85:1334–56.
  • Norvell, Chad, David J. Sailor, and Peter Dusicka. 2013. “The Effect of Microencapsulated Phase-Change Material on the Compressive Strength of Structural Concrete.” Journal of Green Building 8(3):116–24.
  • Oktay, Hasan, Recep Yumrutaş, and Zeki Argunhan. 2020. “An Experimental Investigation of the Effect of Thermophysical Properties on Time Lag and Decrement Factor for Building Elements.” Gazi University Journal of Science 33(2):492–508.
  • Ouglova, A., Y. Berthaud, and F. Foct. 2006. “Mechanical Properties of an Iron Oxide Formed by Corrosion in Reinforced Concrete Structures.” 48:3988–4000.
  • Paksoy, H., G. Kardas, Y. Konuklu, K. Cellat, and F. Tezcan. 2017. “Characterization of Concrete Mixes Containing Phase Change Materials.” IOP Conference Series: Materials Science and Engineering 251:012118.
  • Sarı, Ahmet, Cemil Alkan, and Ayşe Altıntaş. 2014. “Preparation, Characterization and Latent Heat Thermal Energy Storage Properties of Micro-Nanoencapsulated Fatty Acids by Polystyrene Shell.” Applied Thermal Engineering 73(1):1160–68.
  • Sarı, Ahmet, Cemil Alkan, and Ali Karaipekli. 2010. “Preparation , Characterization and Thermal Properties of PMMA / n -Heptadecane Microcapsules as Novel Solid – Liquid MicroPCM for Thermal Energy Storage.” Applied Energy 87(5):1529–34.
  • Schossig, P., H. Henning, and S. Gschwander. 2005. “Micro-Encapsulated Phase-Change Materials Integrated into Construction Materials.” 89:297–306.
  • Shan, X. L., J. P. Wang, X. X. Zhang, and X. C. Wang. 2009. “Thermochimica Acta Formaldehyde-Free and Thermal Resistant Microcapsules Containing n -Octadecane.” 494:104–9.
  • Soares, N., J. J. Costa, A. R. Gaspar, and P. Santos. 2013. “Review of Passive PCM Latent Heat Thermal Energy Storage Systems towards Buildings ’ Energy Efficiency.” Energy & Buildings 59:82–103.
  • Ürge-vorsatz, Diana, Luisa F. Cabeza, Susana Serrano, and Camila Barreneche. 2015. “Heating and Cooling Energy Trends and Drivers in Buildings.” Renewable and Sustainable Energy Reviews 41:85–98.
  • Xu, Biwan and Zongjin Li. 2013. “Paraffin / Diatomite Composite Phase Change Material Incorporated Cement-Based Composite for Thermal Energy Storage.” Applied Energy 105:229–37.
  • Zhang, Zhengguo, Guoquan Shi, Shuping Wang, Xiaoming Fang, and Xiaohong Liu. 2013. “Thermal Energy Storage Cement Mortar Containing N-Octadecane / Expanded Graphite Composite Phase Change Material.” Renewable Energy 50:670–75.
There are 51 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Review Articles
Authors

Ali İhsan Çelik 0000-0001-7233-7647

Ramazan Kayabaşı 0000-0001-6195-7445

Ahmet Şener 0000-0001-7562-7631

Publication Date December 30, 2022
Submission Date February 5, 2021
Acceptance Date June 11, 2022
Published in Issue Year 2022 Volume: 10 Issue: 4

Cite

APA Çelik, A. İ., Kayabaşı, R., & Şener, A. (2022). A LITERATURE REVIEW ABOUT EFFECTS of PHASE CHANGING MATERIALS on COMPRESSIVE STRENGTH and THERMAL CONDUCTIVITY of BUILDING COMPONENTS. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(4), 1495-1508. https://doi.org/10.21923/jesd.875102