
C ANNAL DEVA PRIYA DARSHINI AND V RAJKUMAR DARE: GENERATION OF TRANSLUCENT LANGUAGE BY SUPERIMPOSITION OPERATION

DOI: 10.21917/ijsc.2017.0207

1492

GENERATION OF TRANSLUCENT LANGUAGE BY SUPERIMPOSITION

OPERATION

C. Annal Deva Priya Darshini1 and V. Rajkumar Dare2
Department of Mathematics, Madras Christian College, India

Abstract

We have introduced a new operation called the superimposition

operation. The translucent language generated by a given

superimposition operation and a language L is the set of words

generated by the superimposition of any two words in L. In this paper

we study the properties of translucent languages. We also introduce a

variant of the operation called Superimposition under control. We

examine the properties of languages under this operation.

Keywords:

Translucent Words, Translucent Languages, Superimposition Under

Control

1. INTRODUCTION

Research on Operation on words is a vast and independent

area of study under combinatorics on words. The catenation

operation is studied widely in Formal Language Theory in

connection with composition of languages and their description

through grammars. Several generalizations of the catenation

operation like shuffle operation, insertion and deletion operations,

shuffle on trajectories were introduced and studied by many

authors in [6, 8]. The shuffle operation is useful in modelling

parallel composition of words and languages. Theoretical

generalization to the case of infinite words was studied in detail

by Kadrie et al. in [1]. Another notable operation is the Collage

operation on words [4]. Motivated by different real life examples,

we introduced a new operation called the superimposition

operation in [2]. In this paper we study the properties of languages

in relation to the superimposition operation. We take our

inspiration from three different real life scenarios to introduce this

operation. The scope of this study is to model picture composition

in Astronomy and explore the connections between Formal

Languages and Astronomy.

In Astronomy, information from celestial objects is collected

through special colour filters on telescopes. A colour picture is

composed by overlapping multiple layers of colours using

advanced image processing software. The output or final colour

that we perceive is the result of the superimposition of many

layers.

We model this phenomenon as an operation on words and

languages. The proposed model considers each letter of the

alphabet as a translucent unit like a filter so that when one is

placed on top of the other, we would be able to see through. The

result is a different colour or word. The rules of superimposition

specify what the resulting word would be. We can define an entire

class of superimposition operations on a given alphabet.

This paper is organized as follows: Section 2 gives the

preliminaries required for the study. In section 3 we introduce the

concept of translucent language associated with any language and

study the properties. Iterated superimposition of a language is

obtained by iterations of the same operation. We study the

properties of iterated superimpositions also in this section. In

section 4 we introduce a variation in the operation by imposing a

control. We study control languages and superimposition under

control in this section. The conclusion gives the relevance and

future work.

2. BASIC DEFINITIONS

Let Σ be a finite alphabet and Σ* be the collection of all words

over Σ including the empty word . Let Σ+ = Σ*-{}. For wΣ+,

alph(w) is the elements of Σ in w. The length of a word w is |w|. A

word is denoted by w = w1w2 …wn where each wi is in Σ. A word

u is a factor of w if there exists x and y such that w = xuy. The

word is a prefix or suffix of wif w = uy, w = xu respectively. If w

= w1w2 …wn where each wi is in Σ then wR = wnwn - 1 …w1. A

language L is a set of words or a subset of Σ*. Lc denotes the

complement of a language.

The shuffle operation [8], denoted by , is defined recursively

by,

(aubv) = a(ubv)  b(auv), and (u) = (u) = {u}

where, u,v  * and a,b  .

The shuffle of two languages L1 and L2 is
1 2

1 2

,u L v L

L L u v
 

   .

Example: (abbc) = {abbc, abcb, babc, bacb, bcab}.

The Collage operation on words is defined in [4] as: Given a

subset *W  of patches, the operation of Collage consists of

producing words in ({ })*  , ( is a new symbol not in Σ), by

starting with a word of the form m and then repeatedly replacing

random factors of the current word with elements of W. A word

thus obtained is called a Collage of W. Define C0(W) = * and for

all
10, () { [] | (),

,1 | | | | 1

k kk C W w i z w C W

z W i w z

   

    

Example: Consider n = 11 and assume the words aba, bbbbc,

ca, abaabcab belong to the subset W and are placed respectively

at the positions 2, 4, 10 and 1 in that order. The resulting word is

at the top of the following Table.1.

Table.1. Collage of W

a b a a b c a b - c a

a b a a b c a b

 c a

 b b b b c

 a b a

1 2 3 4 5 6 7 8 9 10 11

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2017, VOLUME: 07, ISSUE: 04

1493

Position 4 is covered by the occurrences aba, bbbbc and

abaabcab. Position 9 is covered by no occurrence and position 2

is covered by the occurrences of aba and abaabcab.

3. TRANSLUCENT LANGUAGES

We introduce the concept of superimposition operation and

translucent languages generated by a language. This language has

some interesting properties.

We recall the definition of superimposition operation

introduced in [2].

For a,b  Σ, a  b = c where c is also in Σ is called the

superimposition operation. This operation can be extended to Σ*.

Definition 3.1

Let u, v ϵ Σ+ and u = u1u2…un, v = v1v2…vm where ui, vj ϵ Σ,

for i = 1,2,…,n, j = 1, 2,…,m.

a) If |u| = |v|, then uv = (u1v1)(u2v2)…(unvn)

b) If |u| > |v|, and if u = u′u″ where |u′| = |v| = m,

then uv = (u1v1)(u2v2)…(umvm). u″.

c) If |u| < |v|, and if v = v′v″ where |v′| = |u| = n,

then uv = (u1v1)(u2v2)…(unvn).v″

d) For u ϵ Σ*, uλ = λu = u.

Given an alphabet, it is possible to define a class of

superimposition operations on the alphabet. If X = {a,b}, it is

possible to specify 16 different rules. The word z generated from

two words u and v is unique and is called a translucent word

obtained from u and v. We use a representation of the operation

in the form of a table.

Example 3.1

Let Σ = {b,w,g} and the operation  given by the following

Table.2.

Table.2. Superimposition rule

 b w g

b b b b

w b w g

g b g g

Let x = (bw)5, y = (wb)5 be words in Σ* then xy = b10.

Definition 3.2

Let a,b,c . The operation  is

a) associative if () ()a b c a b c     ,

b) commutative if b a a b   ,

c) Idempotent if a a a  .

Some simple results of the operation are immediate.

Let x, y, z be words in Σ+. Then

a) | | max{| |,| |}x y x y  ,

b) x y y x   if and only if  is commutative,

c) () ()x y z x y z     if and only if  is associative

The operation can be extended to languages.

Definition 3.3

Let 1 2,L L  then the superimposition of L1 and L2 is

1 2

1 2,

.
u L v L

L L u v
 

   For a given language L,

0 1 1, , i iL L L L L L 

       .

Then the star closure of a language is
* 0 1 2L L L L     

and the positive closure is
1 2L L L

    for a given

superimposition operation. The superimposition of two languages

is always a non-empty language.

Definition 3.4

For a given language L, the translucent language generated by

L under the superimposition operation  is given by

(,) { / , , }T L w w u v u v L      .

Example 3.2

Let { , }a b  and let the operation  be specified by Table.3.

Table.3. Superimposition rule

 a b

a a b

b b b

Let L be the set of words having exactly one a. The translucent

language generated is (,) { / 0}.nT L L b n   

The translucent language generated by a language is either

itself or different from the language. However, there are some

special cases where the translucent language generated is identical

to the language from which it is generated. We give an example

where the translucent language is the same as the language from

which it is generated.

Example 3.3

For the unary alphabet Σ = {a}, if L = {an/ n > 0} then

(,)T L L 

We give an illustration of the operation as a simulation on how

a colour image is produced.

Generation of a colour picture involves the use of two main

colour spaces – RGB and CMYK. The RGB colour model related

to the way we perceive colour with the r, g, b receptors in our

retina. RGB uses additive colour mixing and is the basic colour

model used in television or any other medium that projects colour

with light. The secondary colours of RGB – cyan, magenta and

yellow – are formed by mixing two of the primary colours and

excluding the third colour. The four colour CMYK model used in

printing lays down overlapping layers of transparent inks to form

a colour picture. In the following example we generate a

transclucent language by the superimposition of colours.

Example 3.4

Let Σ = {r, g, b, c, y, m, k} denote the colours

r – red

g – green

b – blue

c – cyan

C ANNAL DEVA PRIYA DARSHINI AND V RAJKUMAR DARE: GENERATION OF TRANSLUCENT LANGUAGE BY SUPERIMPOSITION OPERATION

1494

y – yellow

m – magenta

k – black

and the superimposition operation be given by Table.4.

Let 2{() , , 0} {() (), , 0}p q p q qL ymy c p q mym y m p q   

then (,) { ()), , 0}p qT L L r gb p q    .

We note that the superimposition operation on the colours is a

commutative and associative operation.

Table.4. Superimposition rule on colours

 r g b c y m k

r r k k k r r k

g k b k g g k k

b k k b b k b k

c k g b c g b k

y r g k g y r k

m r k b b r m k

k k k k k k k k

A black and white picture would look something like this.

Example 3.5

Let, Σ be the alphabet { }

where, denote the colours black, white and gray

respectively and the superimposition operation be given by

Table.5.

Let L be the language, {()n, n > 1}

then LLT ),(.

Table.5. Superimposition rule on black and white colours



Proposition 3.1

If
nL   is closed with respect to a superimposition  then

(,)T L  is also closed with respect to the superimposition

operation.

Proof: Let w1,w2  T(L,). Since w1  T(L,), we have w1 =

x1  y1 for some x1, y1  L. Similarly, w2 = x2  y2 for some x2,y2

 L. Since L is closed, x1  y1 = x  L and x2  y2 = y  L. Now,

x  y = z  T(L, ) by the definition of translucent languages.

Hence T(L,) is closed.

A language L is commutative [6] if for any w  L contains all

the words obtained from w by arbitrarily permuting its letters. For

a word u = a1a2…ak  *, k  0, we define com(u) =

{as(1)as(2)…as(k)|s a permutation of {1,…,k}} that is, com(u)

contains all the words obtained by arbitrarily permuting the letters

of u. If *L   then () ()
u L

com L com u


 . L is commutative if

and only if L = com(L).

Proposition 3.2

If L  + is a commutative language then T(L, ) is also a

commutative language.

Proof: Let w  T(L, ). Then w = x  y for some x,y  L.

Since L is commutative, com(x),com(y)  L. This implies com(x)

 com(y)  T(L,) for all possible permutations of

{1,2,…,n}. Further, com(x)com(y) = com(xy) for each

permutation.

Proposition 3.3

The translucent language T(n,) is always a commutative

language.

Proof: By definition, n is commutative and T(n,) = n.

Note that 2(,)T L L  .

Definition 3.5

The iterated superimposition of two languages is given by

1 2 1 2

0

* (),n

n

L L L L




   where

0

1 2 1L L L  and 1

1 2 1 2 2()n nL L L L L    .

We say that a superimposition operation is neutral if

a) The superimposition operation is given by the following

rules: aa = ab = ba = a, bb = b,

b) aa = a, ab = b, ba = a, bb = b.

The neutral superimposition leaves the word unaltered or

hides the word completely. We call the superimposition operation

given by rule (i) as Type I neutral operation and the rule (ii) as

Type II neutral operation.

Proposition 3.4

If  is a neutral operation of Type I or Type II then T(L, ) =

L for any L  +.

Proposition 3.5

If  is a neutral operation then we have

a) L1 n L2 = L1 for any L  + if the operation is of Type I

and

b) L1 n L2 = L2 for any L  + if the operation is of Type II.

Proposition 3.6

If  is a neutral operation then we have

a) T(L1 n L2, ) = L1 for any L  + if the operation is of

Type I and

b) T(L1 n L2, ) = L2 for any L  + if the operation is of

Type II.

Proof follows from propositions 3.4 and 3.5.

Proposition 3.7

If  is idempotent then we have,

a) L  T(L, ) for any L  +,

b) L n L = L for any L  +.

Proof: If x  L then xx = x since the operation  is

idempotent. This implies x  T(L,).

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2017, VOLUME: 07, ISSUE: 04

1495

4. SUPERIMPOSITION UNDER CONTROL

In this section, we introduce a variant of this operation where

we restrict the superimposition of two words using a control

language. Here, we subdivide both the words into factors using

the control language as a guide and then allow the factors to

superimpose.

We introduce a new alphabet V = {f, s} to define the operation.

Let c  V* be the control word and C  V* be a control language.

Definition 4.1

Let x = x1,x2,…xm  * and y = y1,y2,…yn  * for xi, yi  ,

i = 1,2,…m, j = 1,2,…n.

Let 1 2

1 2 ... *, ,knn n

k i ic z z z V z V n    .

If , ,
f s

c x c y c x y    , we define the

superimposition of x and y controlled by *c V as

1 2

1 1

1 2 1 2 1

1 2 1 2 2 1

(...) (...).....,

(...) (...).....,

,

n n

c n n

x x x y y y z f

x y y y y x x x z s

otherwise

 


   



Each Vzi  is repeated a certain number of times in c. The

number of repetitions is counted by the indices n1, n2, … If z1 is f

then z2 is s. In such a case, the first n1 letters of the first word is

superimposed on the first n2 letters of the second word. The zi

alternate between f and s.

Hence it is enough to check the first letter of C. The

superimposition is repeated until all the letters of the control word

are exhausted. The word generated is unique and is of length

max(n1, n2) + max(n3, n4) + … max (nk-1, nk).

Example 4.1

Let 1 2 8... *x a a a  and 1 2 5... *x b b b  , c = f3s2f3sfsfs.

Note that , ,
f s

c x c y c x y    . The word x is

factorised as x = u1u2u3u4 and y = v1v2v3v4 using c as a control.

We have,

u1 = a1a2a3, u2 = a4a5a6, u3 = a7, u4 = a8,

vi = b1b2, v2 = b3, v3 = b4, v4 = b5.

Therefore,

1 2 3 1 2 4 5 6 3 7 4 8 5()()()()cx y a a a b b a a a b a b a b     

Definition 4.2

If c is a control language over V* then C c

c C

x y x y


   .

If c is the empty set then x c y = .

Also if 1 2, *L L   then 1 2 1 2{ / , }C CL L x y x L y L     .

Intuitively, a control language gives us a guide to subdivide

two words in a particular way and to superimpose the subwords.

The factorization of x and y into subwords using a control word

gives us an alternate definition of superimposition under control.

Definition 4.3

Let us denote the run of a letter in *c V be the number of

consecutive occurrences of the letter in c.

For example, if c = f 3s2 then run(f) = 3 and run(s) = 2.

If c is a word with more than one non – consecutive occurrence

of the letter f or s then we denote the runs as runi(f).

If c = f 3s2f 3sfsfs then run1(f) = 3, run2(f) = 3, run3(f) = 1,

run4(f) = 1, run1(s) = 2, run2(s) = run3(s) = run4(s) = 1.

Then if ()i

i

run f x and ()j

j

run s y we factorise x =

u1u2…, y = v1v2… where ()i iu run f and ()j jv run s for i, j =

1, 2, …..

In such a case, if t  V denotes f or s and c = tV* we have

1 1 2 2

1 1 2 2

()().....,

()().....,

,

c

u v u v t f

x y v u v u t s

otherwise

  


    



Example 4.2

Let Σ = {a,b} and V = {f, s}. Let c  V14 and let x, y  7 be

words on Σ. Let x = abaabab, y = abbbaab.

Then,

a) if c = f 7s7 we have x c y = x  y

b) if c = (fs)7 we have x c y = x  y

c) if c = f 7 we have x c y = x

d) if c = s7 we have x c y = y

e) if c = s7f 7 we have x c y = y  x.

Definition 4.4

Let C be a control set. We say that C is commutative if and

only if the operation c is commutative, that is, x c y = y c x for

all x,y  *.

Let  be the family of all commutative sets of control words.

Proposition 4.1

If  i i I
C


is a family of control languages such that (Ci) is a

commutative control language for all i  I then their intersection

' i

i I

C C


 is also a commutative control language.

Proof:

Let u,v  * and 'Cw u v  . Then it follows that
iCw u v 

for all i I . But, each (Ci) is commutative and hence
iCw v u 

for all i I . Therefore, 'Cw v u  . Thus, we have

' 'C Cu v v u   which implies that ' i

i I

C C


 is also a

commutative control language.

Definition 4.5

Let C be a control language. The commutative closure of C

denoted by C is given by
', '

'
C C C

C C
 

 .

Corollary: For all C  {f,s}*, C is a commutative control

language.

Remark: C is the smallest control language that contains C.

Definition 4.6

A control language C is associative if and only if c is

associative. We have x c (y c z) = (x c y) c z for all x,y,z  *.

C ANNAL DEVA PRIYA DARSHINI AND V RAJKUMAR DARE: GENERATION OF TRANSLUCENT LANGUAGE BY SUPERIMPOSITION OPERATION

1496

Proposition 4.2

If  i i I
C


is a family of control languages such that (Ci) is an

associative control language for all i  I then their intersection

'' i

i I

C C


 is also an associative control language.

Proof: Let
*,, zyx and let)('''' zyxw CC  . Then it

follows that)(zyxw
ii CC  for all Ii . But, each  iC is

associative and hence zyxw
ii CC )(for all Ii .

Therefore, zyxw CC '''')( . Thus, we have
'' ''()C Cx y z 

'' ''()C Cx y z   which implies that I
Ii

iCC


'' is also an

associative control language.

Definition 4.7

 Let C be a control language. The associative closure of C

denoted by C is
", '

"
c C C

C C
 

 where A is the family of all

associative control languages.

Proposition 4.3

The associative closure C is also an associative control

language.

Proposition 4.4

Let 1 2, *L L   be regular languages. Then 1 2L L is regular.

Proof: We give the automata to prove that the superimposition

of two regular languages is also regular. Let A1 and A2 be two

finite automata accepting the languages L(A1) and L(A2). Then we

can find an automaton A such that 1 2() () ()L A L A L A  . Let

0(, , , ,)i

i i iA Q q F  for i = 1, 2 be the two finite automata

accepting languages L(A1) and L(A2). We construct the automaton

0(, , , ,)A Q q F  as 1 2

1 2 1 2 0 0 0, , (,)Q Q Q F F F q q q     and

1 2((,),(,)) ((,),)i j k lq q a b q q c  where, 1

1(,)i kq a q  ,
2

2(,)jq b 

lq and a b c  is the rule of superimposition specified.

The automaton A accepts an input w if and only if A1 accepts

w1 and A2 accepts w2 where the transition rules are
1 2

1 2((,),(,)) ((,),),(,)i j k l k lq q w w q q w q q F   for 1

1 1(,) ,i kq w q 

kq 1F and
2

2 2 2(,) ,j l lq w q q F   and 1 2w w w  .Then ()L A 

1 2() ()L A L A .

Proposition 4.5

For every language, *L   , Σ = {a,b} there exists a control

language C such that * *cL a b  .

Proof: Let φ be a morphism, φ(a)=f, φ(b)=s and let C = φ(L)

then * *cL a b  .

Theorem 4.1

Let V = {f, s}. Let *C V be a control language, then the

following are equivalent:

a) For all regular languages 1 2, *L L   , the language

1 2cL L L  is a regular language,

b) C is a regular language.

Proof: To prove (i) implies (ii). Assume 1 *L f and 2 *L s

then 1 2cL L C  . Therefore, C is a regular language.

To prove (ii) implies (i), Assume that C is a regular language.

Let L1, L2 be two regular languages over the same alphabet Σ. Let

0(, , , ,)i

i i iA Q q F  for i = 1, 2, be finite automata such that

L(Ai) = Li for i = 1,2. Also, let (, , , ,)c

c c c cA Q V q F be an

automaton such that L(Ac) = C. Define an automaton

(, , , ,)oA Q Q F  such that. 1 2() cL A L L  The input is

accepted by if and only if A1, A2, Ac are in accepting states. Then

1 2cL L is a regular language. We have,

1 2cQ Q Q Q   and],,{ 21 c

oooo qqqQ 

where, 21 FFFF c  and
1 2

1 2 1 2(, , , ,) (, ,)q c q a b q q c  ,

1

1 1 1(, ,)q f a q  ,
2

2 2(, ,)q s b
2q ,

ca b c  , *c V .

Define the transformation σ:{f,s}{f,s}* as σ(f) = s,σ(s) = f.

Then we have the following property of superimposition under

control.

Proposition 4.6

Let 1 2, *L L   and *C V be any two languages and a

control language. Let
1 1x L , 22 Lx  and 1 2,c c C . We have

1 2cx x 2 1cx x  if and only if
2 1()c c .

Definition 4.8

A control language C is commutative if and only if C = σ(C).

Proposition 4.7

If C is a regular control language then it is decidable whether

or not C is commutative.

Proof: If C is a regular language then σ(C) is also regular.

Hence the equality, C = σ(C) is decidable.

5. CONCLUSION

We have introduced the translucent language associated with

a language generated by the operation and studied the properties.

The natural extension to arrays is an obvious direction in which

the work can proceed. Expressions involving superimpositions

were introduced in [2]. This study can be taken further.

REFERENCES

[1] Ahmad Kadrie, V. Rajkumar Dare, D.G. Thomas and K.G.

Subramanian, “Algebraic Properties of the Shuffle Over ω-

Trajectories”, Information Processing Letters, Vol. 80, No.

3, pp. 139-144, 2001.

[2] C. Annal Deva Priya Darshini and V. Rajkumar Dare,

“Superimposition Operations on Words”, Proceedings of

National Conference on Mathematics and Computer

Applications, pp. 48-52, 2015.

[3] Christian Choffrut and Juhani Karhumaki, “Combinatorics

of words in Handbook of Formal Languages”, Vol. 1,

Handbook of Formal Languages, Springer, pp. 329-438,

1997.

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JULY 2017, VOLUME: 07, ISSUE: 04

1497

[4] Christian Choffrut and Berke Durak, “Collage of Two-

Dimensional Words”,Theoretical Computer Science, Vol.

340, No. 2, pp. 364-380, 2005.

[5] J.E. Hopcroft and J.D. Ullman, “Introduction to Automata

Theory, Languages and Computation”, Narosa Publishing

House, 1979.

[6] Masami Ito, Lila Kari and Gabriel Thierrin, “Shuffle and

Scattered Deletion Closure of Languages”, Theoretical

Computer Science, Vol. 245, No. 1, pp. 115-133, 2000.

[7] Jean Berstel and Dominique Perrin, “The Origins of

Combinatorics of Words”, European Journal of

Combinatorics, Vol. 28, No. 3, pp. 996-1022, 2007.

[8] A. Mateescu, G. Rozenberg and A. Salomaa, “Shuffle on

Trajectories: Syntactic Constraints”, Theoretical Computer

Science, Vol. 197, No. 1-2, pp. 1-56,1998.

[9] J.E. Tremblay and R. Manohar, “Discrete Mathematical

Structures with Applications to Computer Science”, Tata

McGraw Hill, 1997.

