Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

General Review Article

A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems

Author(s): Sweet Naskar, Sanjoy Kumar Das, Suraj Sharma and Ketousetuo Kuotsu*

Volume 9, Issue 1, 2021

Published on: 14 December, 2020

Page: [36 - 50] Pages: 15

DOI: 10.2174/2211738508666201214103010

Price: $65

Abstract

Poly (lactic-co-glycolic acid) (PLGA) is a versatile synthetic polymer comprehensively used in the pharmaceutical sector because of its biocompatibility and biodegradability. These benefits lead to its application in the area of nanoparticles (NPs) for drug delivery for over thirty years. This article offers a general study of the different poly (lactic-co-glycolic acid) nanoparticles (PNPs), preparation methods such as emulsification-solvent evaporation, coacervation, emulsification solvent diffusion, dialysis, emulsification reverse salting out, spray drying nanoprecipitation, and supercritical fluid technology, from the methodological point of view. The physicochemical behavior of PNPs, including morphology, drug loading, particle size and its distribution, surface charge, drug release, stability as well as cytotoxicity study and cellular uptake, are briefly discussed. This survey additionally coordinates to bring a layout of the significant uses of PNPs in different drug delivery system over the three decades. At last, surface modifications of PNPs and PLGA nanocomplexes (NCs) are additionally examined.

Keywords: PLGA nanoparticles, pharmaceutical applications of PNPs, surface modification of PNPs, PLGA nanocomplexes, nanoparticles, synthetic polymer.

Graphical Abstract
[1]
Naskar, S.; Sharma, S.; Koutsu, K. Chitosan-based nanoparticles: an overview of biomedical applications and its preparation. J. Drug Deliv. Sci. Technol., 2019, 49, 66-81.
[http://dx.doi.org/10.1016/j.jddst.2018.10.022]
[2]
Naskar, S.; Sharma, S. S., K. Kuotsu, A smart gelatin nanoparticle for delivery of metoprolol succinate: A strategy for enhancing the therapeutic efficacy by improving bioavailability. J. Drug Deliv. Sci. Technol., 2019, 53, 101214.
[http://dx.doi.org/10.1016/j.jddst.2019.101214]
[3]
Naskar, S.; Koutsu, K.; Sharma, S. Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. J. Drug Target., 2019, 27(4), 379-393.
[http://dx.doi.org/10.1080/1061186X.2018.1512112] [PMID: 30103626]
[4]
Mehta, T.A.; Shah, N.; Parekh, K.; Dhas, N.; Patel, J.K. Surface-modified PLGA nanoparticles for targeted drug delivery to neurons. In: Pathak Y, Ed. Surface modification of nanoparticles for targeted drug delivery. Cham: Springer , 2019.
[http://dx.doi.org/10.1007/978-3-030-06115-9_3]
[5]
Ahmad, N.; Alam, A.; Ahmad, R.; Naqv, A.A; Ahmad, F.J. Ahmad Preparation and characterization of surface-modified PLGA-polymeric nanoparticles used to target treatment of intestinal cancer, Artificial Cells, Nanomedicine, and Biotechnology 2018, 46, 432-446.
[6]
Vasir, J.K.; Labhasetwar, V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv. Drug Deliv. Rev., 2007, 59(8), 718-728.
[http://dx.doi.org/10.1016/j.addr.2007.06.003] [PMID: 17683826]
[7]
Owens, D.E., III; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307(1), 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010] [PMID: 16303268]
[8]
Betancourt, T.; Byrne, J.D.; Sunaryo, N.; Crowder, S.W.; Kadapakkam, M.; Patel, S.; Casciato, S.; Brannon-Peppas, L. PEGylation strategies for active targeting of PLA/PLGA nanoparticles. J. Biomed. Mater. Res. A, 2009, 91(1), 263-276.
[http://dx.doi.org/10.1002/jbm.a.32247] [PMID: 18980197]
[9]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[10]
Tahara, K.; Sakai, T.; Yamamoto, H.; Takeuchi, H.; Hirashima, N.; Kawashima, Y. Improved cellular uptake of chitosan-modified PLGA nanospheres by A549 cells. Int. J. Pharm., 2009, 382(1-2), 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.023] [PMID: 19646519]
[11]
Fessi, P.F.; Devissaguet, H.J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm., 1989, 55, R1-R4.
[http://dx.doi.org/10.1016/0378-5173(89)90281-0]
[12]
Jain, R.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000, 21(23), 2475-2490.
[http://dx.doi.org/10.1016/S0142-9612(00)00115-0] [PMID: 11055295]
[13]
Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[14]
Sadat Tabatabaei Mirakabad, F.; Nejati-Koshki, K.; Akbarzadeh, A.; Yamchi, M.R.; Milani, M.; Zarghami, N.; Zeighamian, V.; Rahimzadeh, A.; Alimohammadi, S.; Hanifehpour, Y.; Joo, S.W. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac. J. Cancer Prev., 2014, 15(2), 517-535.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.517] [PMID: 24568455]
[15]
Mao, S.; Xu, J.; Cai, C.; Germershaus, O.; Schaper, A.; Kissel, T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int. J. Pharm., 2007, 334(1-2), 137-148.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.036] [PMID: 17196348]
[16]
Hua, F.J.; Park, T.G.; Lee, D.S. A facile preparation of highly interconnected macroporouspoly(d,l-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid–liquid phase separation of a PLGA–dioxane–water ternary system. Polymer (Guildf.), 2003, 44, 1911-1920.
[http://dx.doi.org/10.1016/S0032-3861(03)00025-9]
[17]
Sharma, S.; Parmar, A.; Kori, S.; Sandhir, R. PLGA-based nanoparticles: A new paradigm in biomedical applications. Trac Trend. Anal. Chem., 2016, 80, 30-40.
[http://dx.doi.org/10.1016/j.trac.2015.06.014]
[18]
Lambert, G.; Fattal, E.; Couvreur, P. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv. Drug Deliv. Rev., 2001, 47(1), 99-112.
[http://dx.doi.org/10.1016/S0169-409X(00)00116-2] [PMID: 11251248]
[19]
Govender, T.; Stolnik, S.; Garnett, M.C.; Illum, L.; Davis, S.S. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release, 1999, 57(2), 171-185.
[http://dx.doi.org/10.1016/S0168-3659(98)00116-3] [PMID: 9971898]
[20]
Jeong, Y.I.; Cho, C.S.; Kim, S.H.; Ko, K-S.; Kim, S.I.; Shim, Y.H.; Nah, J.W. Preparation of poly(dl-lactide-co-glycolide) nanoparticles without surfactant. J. Appl. Polym. Sci., 2001, 80, 2228-2236.
[http://dx.doi.org/10.1002/app.1326]
[21]
Kostag, M.; Köhler, S.; Liebert, T.; Heinze, T. Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol. Symp., 2010, 294(2), 96-106.
[22]
Nie, H.; Lee, L.Y.; Tong, H.; Wang, C.H. PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: new carriers for DNA delivery. J. Control. Release, 2008, 129(3), 207-214.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.018] [PMID: 18539352]
[23]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36, 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[24]
Sun, Y.P.; Rollins, H.W.; Bandara, J.; Meziani, J.M.; Bunker, C.E. Preparation and processing of nanoscale materials by supercritical fluid technology.Supercritical Fluid Technology in Materials Science and Engineering: Synthesis, Properties, and Applications. Sun Y.P.New York Marcel Dekker; , 2002, pp. 492-581.
[http://dx.doi.org/10.1201/9780203909362]
[25]
Riley, T.; Govender, T.; Stolnik, S.; Xiong, C.; Garnett, M.; Illum, L.; Davis, S.S. Colloidal stability and drug incorporation aspects of micellar-like PLA–PEG nanoparticles. Colloids Surf. B Biointerfaces, 1999, 16, 147-159.
[http://dx.doi.org/10.1016/S0927-7765(99)00066-1]
[26]
Quintanar-Guerrero, D.; Allemann, E.; Doelker, E.; Fessi, H. A mechanistic study of the formation of polymer nanoparticles by the emulsification-diffusion technique. Colloid Polym. Sci., 1997, 275, 640-647.
[http://dx.doi.org/10.1007/s003960050130]
[27]
Pietzonka, P.; Walter, E.; Duda-Johner, S.; Langguth, P.; Merkle, H.P. Compromised integrity of excised porcine intestinal epithelium obtained from the abattoir affects the outcome of in vitro particle uptake studies. Eur. J. Pharm. Sci., 2002, 15(1), 39-47.
[http://dx.doi.org/10.1016/S0928-0987(01)00203-2] [PMID: 11803130]
[28]
Song, C.; Labhasetwar, V.; Murphy, H.; Qu, X.; Humphrey, W.; Shebuski, R.; Levy, R. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J. Control. Release, 1997, 43, 197-212.
[http://dx.doi.org/10.1016/S0168-3659(96)01484-8]
[29]
Jeong, B.; Windisch, C.F.; Park, M.J.; Sohn, Y.S.; Gutowska, A.; Char, K. Phase Transition of the PLGA-g-PEG Copolymer Aqueous Solutions. J. Phys. Chem. B, 2003, 107(37), 10032-10039.
[http://dx.doi.org/10.1021/jp027339n]
[30]
Dailey, L.A.; Kleemann, E.; Wittmar, M.; Gessler, T.; Schmehl, T.; Roberts, C.; Seeger, W.; Kissel, T. Surfactant-free, biodegradable nanoparticles for aerosol therapy based on the branched polyesters, DEAPA-PVAL-g-PLGA. Pharm. Res., 2003, 20(12), 2011-2020.
[http://dx.doi.org/10.1023/B:PHAM.0000008051.94834.10] [PMID: 14725368]
[31]
Kreuter, J. Peroral administration of nanoparticles. Adv. Drug Deliv. Rev., 1991, 7, 71-86.
[http://dx.doi.org/10.1016/0169-409X(91)90048-H]
[32]
Sahin, A.; Esendagli, G.; Yerlikaya, F.; Caban-Toktas, S.; Yoyen-Ermis, D.; Horzum, U.; Aktas, Y.; Khan, M.; Couvreur, P.; Capan, Y. A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to considerable change in nanoparticles’ characteristics and efficacy of intracellular delivery. Artif Cells Nanomed Biotechnol, 2017.
[33]
Jeong, Y.I.; Shim, Y.H.; Choi, C.; Jang, M.K.; Shin, G.M.; Nah, J.W. Surfactant-free nanoparticles of Poly(DL-Lactide-co-glycolide) prepared with Poly(L-lactide)/Poly(ethylene glycol). J. Appl. Polym. Sci., 2003, 89(4), 1116-1123.
[http://dx.doi.org/10.1002/app.12297.]
[34]
Konan, Y.N.; Berton, M.; Gurny, R.; Allémann, E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur. J. Pharm. Sci., 2003, 18(3-4), 241-249.
[http://dx.doi.org/10.1016/S0928-0987(03)00017-4] [PMID: 12659935]
[35]
Csaba, N.; Caamaño, P.; Sánchez, A.; Domínguez, F.; Alonso, M.J. PLGA:poloxamer and PLGA:poloxamine blend nanoparticles: new carriers for gene delivery. Biomacromolecules, 2005, 6(1), 271-278.
[http://dx.doi.org/10.1021/bm049577p] [PMID: 15638530]
[36]
Win, K.Y.; Feng, S.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 2005, 26(15), 2713-2722.
[http://dx.doi.org/10.1016/j.biomaterials.2004.07.050] [PMID: 15585275]
[37]
Nam, Y.; Park, J.; Han, S.; Chang, I. Intracellular drug delivery using poly(d,l-lactide-co-glycolide) nano-particles derivatized with a peptide from a transcriptional activator protein of HIV-1. Biotechnol. Lett., 2002, 24, 2093-2098.
[http://dx.doi.org/10.1023/A:1021373731787]
[38]
Ringe, K.; Walz, C.; Sabel, B. Nanoparticle drug delivery to the brain.In: Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S. New York American Scientific Publishers , 2004; Vol. 7, .
[39]
Konan, Y.N.; Cerny, R.; Favet, J.; Berton, M.; Gurny, R.; Allémann, E. Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur. J. Pharm. Biopharm., 2003, 55(1), 115-124.
[http://dx.doi.org/10.1016/S0939-6411(02)00128-5] [PMID: 12551712]
[40]
Niwa, T.; Takeuchi, H.; Hino, T.; Kunou, N.; Kawashima, Y. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D,L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J. Control. Release, 1993, 25, 89-98.
[http://dx.doi.org/10.1016/0168-3659(93)90097-O]
[41]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[42]
Peppas, N.A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv., 1985, 60(4), 110-111.
[PMID: 4011621]
[43]
Peppas, N.A.; Korsmeyer, R.W. Dynamically swelling hydrogels in controlled release applications.In: Hydrogels in Medicine and Pharmacy; Peppas, N.A. Boca Raton, FL CRC Press , 1987; pp. 103-135.
[44]
Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv. Drug Deliv. Rev., 2006, 58(15), 1688-1713.
[http://dx.doi.org/10.1016/j.addr.2006.09.017] [PMID: 17118485]
[45]
Hunter, R.J. Foundations of colloid science. New York: Oxford science publications , 1993; 1, pp. 489-491.
[46]
Alonso, M.J. Nanoparticulate drug carrier technologyS. Cohen, H. Bernstein H (Eds.), Microparticulate Systems for the Delivery of Proteins and Vaccines; Marcel Dekker: NewYork, 1996, pp. 203-242.
[47]
Ahmed, R.; Tariq, M.; Ahmad, I.S.; Fouly, H.; Abbas, F.I.; Hasan, A.; Kushad, M. Poly(lactic-co-glycolic acid) Nanoparticles loaded with Callistemon citrinus phenolics exhibited anticancer properties against three breast cancer cell lines. J. Food Qual., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/2638481]
[48]
Du, J.; Sun, Y.; Shi, Q.S.; Liu, P.F.; Zhu, M.J.; Wang, C.H.; Du, L.F.; Duan, Y.R. Biodegradable nanoparticles of mPEG-PLGA-PLL triblock copolymers as novel non-viral vectors for improving siRNA delivery and gene silencing. Int. J. Mol. Sci., 2012, 13(1), 516-533.
[http://dx.doi.org/10.3390/ijms13010516] [PMID: 22312268]
[49]
Xiong, S.; George, S.; Yu, H.; Damoiseaux, R.; France, B.; Ng, K.W.; Loo, J.S. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles. Arch. Toxicol., 2013, 87(6), 1075-1086.
[http://dx.doi.org/10.1007/s00204-012-0938-8] [PMID: 22983807]
[50]
Loureiro, J.A.; Gomes, B.; Fricker, G.; Coelho, M.A.N.; Rocha, S.; Pereira, M.C. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf. B Biointerfaces, 2016, 145, 8-13.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.041] [PMID: 27131092]
[51]
Xiong, S.; Zhao, X.; Heng, B.C.; Ng, K.W.; Loo, J.S.C. Cellular uptake of Poly-(D,L-lactide-co-glycolide) (PLGA) nanoparticles synthesized through solvent emulsion evaporation and nanoprecipitation method. Biotechnol. J., 2011, 6(5), 501-508.
[http://dx.doi.org/10.1002/biot.201000351] [PMID: 21259442]
[52]
Mu, L.; Feng, S.S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release, 2003, 86(1), 33-48.
[http://dx.doi.org/10.1016/S0168-3659(02)00320-6] [PMID: 12490371]
[53]
Danhier, F.; Lecouturier, N.; Vroman, B.; Jérôme, C.; Marchand-Brynaert, J.; Feron, O.; Préat, V. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J. Control. Release, 2009, 133(1), 11-17.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.086] [PMID: 18950666]
[54]
Fonseca, C.; Simões, S.; Gaspar, R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release, 2002, 83(2), 273-286.
[http://dx.doi.org/10.1016/S0168-3659(02)00212-2] [PMID: 12363453]
[55]
Handali, S.; Moghimipour, E.; Rezaei, M.; Ramezani, Z.; Abedin Dorkoosh, F. PHBV/PLGA nanoparticles for enhanced delivery of 5-Fluorouracil as promising treatment of colon cancer. Pharm. Dev. Technol., 2019, 1-34.
[http://dx.doi.org/10.1080/10837450.2019.1684945] [PMID: 31648589]
[56]
Esmaeili, F.; Ghahremani, M.H.; Ostad, S.N.; Atyabi, F.; Seyedabadi, M.; Malekshahi, M.R.; Amini, M.; Dinarvand, R. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J. Drug Target., 2008, 16(5), 415-423.
[http://dx.doi.org/10.1080/10611860802088630] [PMID: 18569286]
[57]
Yin, Y.; Chen, D.; Qiao, M.; Wei, X.; Hu, H. Lectin-conjugated PLGA nanoparticles loaded with thymopentin: ex vivo bioadhesion and in vivo biodistribution. J. Control. Release, 2007, 123(1), 27-38.
[http://dx.doi.org/10.1016/j.jconrel.2007.06.024] [PMID: 17728000]
[58]
Teixeira, M.; Alonso, M.J.; Pinto, M.M.; Barbosa, C.M. Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur. J. Pharm. Biopharm., 2005, 59(3), 491-500.
[http://dx.doi.org/10.1016/j.ejpb.2004.09.002] [PMID: 15760730]
[59]
Cartiera, M.S.; Ferreira, E.C.; Caputo, C.; Egan, M.E.; Caplan, M.J.; Saltzman, W.M. Partial correction of cystic fibrosis defects with PLGA nanoparticles encapsulating curcumin. Mol. Pharm., 2010, 7(1), 86-93.
[http://dx.doi.org/10.1021/mp900138a] [PMID: 19886674]
[60]
Dinarvand, R.; Sepehri, N.; Manoochehri, S.; Rouhani, H.; Atyabi, F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int. J. Nanomedicine, 2011, 6, 877-895.
[http://dx.doi.org/10.2147/IJN.S18905] [PMID: 21720501]
[61]
Choi, S.H.; Park, T.G. G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method. Int. J. Pharm., 2006, 311(1-2), 223-228.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.023] [PMID: 16423477]
[62]
Zeisser-Labouèbe, M.; Lange, N.; Gurny, R.; Delie, F. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int. J. Pharm., 2006, 326(1-2), 174-181.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.012] [PMID: 16930882]
[63]
Noh, W.C.; Mondesire, W.H.; Peng, J.; Jian, W.; Zhang, H.; Dong, J.; Mills, G.B.; Hung, M.C.; Meric-Bernstam, F. Determinants of rapamycin sensitivity in breast cancer cells. Clin. Cancer Res., 2004, 10(3), 1013-1023.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0043] [PMID: 14871980]
[64]
Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I.H.; Yoo, K.H. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano, 2009, 3(10), 2919-2926.
[http://dx.doi.org/10.1021/nn900215k] [PMID: 19772302]
[65]
Reddy, L.H.; Sharma, R.K.; Chuttani, K.; Mishra, A.K.; Murthy, R.R. Etoposide-incorporated tripalmitin nanoparticles with different surface charge: formulation, characterization, radiolabeling, and biodistribution studies. AAPS J., 2004, 6(3), e23.
[http://dx.doi.org/10.1208/aapsj060323] [PMID: 15760108]
[66]
Gryparis, E.C.; Hatziapostolou, M.; Papadimitriou, E.; Avgoustakis, K. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur. J. Pharm. Biopharm., 2007, 67(1), 1-8.
[http://dx.doi.org/10.1016/j.ejpb.2006.12.017] [PMID: 17303395]
[67]
Song, X.; Zhao, Y.; Wu, W.; Bi, Y.; Cai, Z.; Chen, Q.; Li, Y.; Hou, S. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int. J. Pharm., 2008, 350(1-2), 320-329.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.034] [PMID: 17913411]
[68]
Song, X.R.; Cai, Z.; Zheng, Y.; He, G.; Cui, F.Y.; Gong, D.Q.; Hou, S.X.; Xiong, S.J.; Lei, X.J.; Wei, Y.Q. Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur. J. Pharm. Sci., 2009, 37(3-4), 300-305.
[http://dx.doi.org/10.1016/j.ejps.2009.02.018] [PMID: 19491019]
[69]
Edwards, R.H. Drug delivery via the blood-brain barrier. Nat. Neurosci., 2001, 4(3), 221-222.
[http://dx.doi.org/10.1038/85045] [PMID: 11224531]
[70]
Costantino, L.; Gandolfi, F.; Bossy-Nobs, L.; Tosi, G.; Gurny, R.; Rivasi, F.; Vandelli, M.A.; Forni, F. Nanoparticulate drug carriers based on hybrid poly(D,L-lactide-co-glycolide)-dendron structures. Biomaterials, 2006, 27(26), 4635-4645.
[http://dx.doi.org/10.1016/j.biomaterials.2006.04.026] [PMID: 16716395]
[71]
Reddy, M.K.; Wu, L.; Kou, W.; Ghorpade, A.; Labhasetwar, V. Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress. Appl. Biochem. Biotechnol., 2008, 151(2-3), 565-577.
[http://dx.doi.org/10.1007/s12010-008-8232-1] [PMID: 18509606]
[72]
Hu, K.; Li, J.; Shen, Y.; Lu, W.; Gao, X.; Zhang, Q.; Jiang, X. Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J. Control. Release, 2009, 134(1), 55-61.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.016] [PMID: 19038299]
[73]
Hu, K.; Shi, Y.; Jiang, W.; Han, J.; Huang, S.; Jiang, X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int. J. Pharm., 2011, 415(1-2), 273-283.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.062] [PMID: 21651967]
[74]
Costantino, L.; Gandolfi, F.; Tosi, G.; Rivasi, F.; Vandelli, M.A.; Forni, F. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J. Control. Release, 2005, 108(1), 84-96.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.013] [PMID: 16154222]
[75]
Mittal, G.; Carswell, H.; Brett, R.; Currie, S.; Kumar, M.N. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology. J. Control. Release, 2011, 150(2), 220-228.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.013] [PMID: 21111014]
[76]
Gelperina, S.; Maksimenko, O.; Khalansky, A.; Vanchugova, L.; Shipulo, E.; Abbasova, K.; Berdiev, R.; Wohlfart, S.; Chepurnova, N.; Kreuter, J. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur. J. Pharm. Biopharm., 2010, 74(2), 157-163.
[http://dx.doi.org/10.1016/j.ejpb.2009.09.003] [PMID: 19755158]
[77]
Sun, W.; Xie, C.; Wang, H.; Hu, Y. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials, 2004, 25(15), 3065-3071.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.087] [PMID: 14967540]
[78]
Tahara, K.; Miyazaki, Y.; Kawashima, Y.; Kreuter, J.; Yamamoto, H. Brain targeting with surface-modified poly(D,L-lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration. Eur. J. Pharm. Biopharm., 2011, 77(1), 84-88.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.002] [PMID: 21074612]
[79]
Chen, Y.C.; Hsieh, W.Y.; Lee, W.F.; Zeng, D.T. Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood-brain barrier. J. Biomater. Appl., 2013, 27(7), 909-922.
[http://dx.doi.org/10.1177/0885328211429495] [PMID: 22207601]
[80]
Wang, Z.H.; Wang, Z.Y.; Sun, C.S.; Wang, C.Y.; Jiang, T.Y.; Wang, S.L. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials, 2010, 31(5), 908-915.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.104] [PMID: 19853292]
[81]
Li, J.; Feng, L.; Fan, L.; Zha, Y.; Guo, L.; Zhang, Q.; Chen, J.; Pang, Z.; Wang, Y.; Jiang, X.; Yang, V.C.; Wen, L. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials, 2011, 32(21), 4943-4950.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.031] [PMID: 21470674]
[82]
Chang, J.; Jallouli, Y.; Kroubi, M.; Yuan, X.B.; Feng, W.; Kang, C.S.; Pu, P.Y.; Betbeder, D. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int. J. Pharm., 2009, 379(2), 285-292.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.035] [PMID: 19416749]
[83]
Zhang, W.; Prausnitz, M.R.; Edwards, A. Model of transient drug diffusion across cornea. J. Control. Release, 2004, 99(2), 241-258.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.001] [PMID: 15380634]
[84]
Tsai, C.H.; Wang, P.Y.; Lin, I.C.; Huang, H.; Liu, G.S.; Tseng, C.L. Ocular Drug Delivery: Role of Degradable Polymeric Nanocarriers for Ophthalmic Application. Int. J. Mol. Sci., 2018, 19(9), 2830.
[http://dx.doi.org/10.3390/ijms19092830] [PMID: 30235809]
[85]
Schalnus, R. Topical nonsteroidal anti-inflammatory therapy in ophthalmology. Ophthalmologica, 2003, 217(2), 89-98.
[http://dx.doi.org/10.1159/000068563] [PMID: 12592044]
[86]
Agnihotri, S.M.; Vavia, P.R. Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomedicine (Lond.), 2009, 5(1), 90-95.
[http://dx.doi.org/10.1016/j.nano.2008.07.003] [PMID: 18823824]
[87]
Dillen, K.; Vandervoort, J.; Van den Mooter, G.; Ludwig, A. Evaluation of ciprofloxacin-loaded Eudragit RS100 or RL100/PLGA nanoparticles. Int. J. Pharm., 2006, 314(1), 72-82.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.041] [PMID: 16600538]
[88]
Varshochian, R.; Riazi-Esfahani, M.; Jeddi-Tehrani, M.; Mahmoudi, A.R.; Aghazadeh, S.; Mahbod, M.; Movassat, M.; Atyabi, F.; Sabzevari, A.; Dinarvand, R. Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J. Biomed. Mater. Res. A, 2015, 103(10), 3148-3156.
[http://dx.doi.org/10.1002/jbm.a.35446] [PMID: 25773970]
[89]
Wagh, V.D.; Apar, D.U. Cyclosporine a loaded PLGA nanoparticles for dry eye disease: in vitro characterization studies. J. Nanotechnol., 2014, 2014, 683153.
[http://dx.doi.org/10.1155/2014/683153]
[90]
Klugherz, B.D.; Jones, P.L.; Cui, X.; Chen, W.; Meneveau, N.F.; DeFelice, S.; Connolly, J.; Wilensky, R.L.; Levy, R.J. Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nat. Biotechnol., 2000, 18(11), 1181-1184.
[http://dx.doi.org/10.1038/81176] [PMID: 11062438]
[91]
Perlstein, I.; Connolly, J.M.; Cui, X.; Song, C.; Li, Q.; Jones, P.L.; Lu, Z.; DeFelice, S.; Klugherz, B.; Wilensky, R.; Levy, R.J. DNA delivery from an intravascular stent with a denatured collagen-polylactic-polyglycolic acid-controlled release coating: mechanisms of enhanced transfection. Gene Ther., 2003, 10(17), 1420-1428.
[http://dx.doi.org/10.1038/sj.gt.3302043] [PMID: 12900756]
[92]
Kona, S.; Dong, J.F.; Liu, Y.; Tan, J.; Nguyen, K.T. Biodegradable nanoparticles mimicking platelet binding as a targeted and controlled drug delivery system. Int. J. Pharm., 2012, 423(2), 516-524.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.043] [PMID: 22172292]
[93]
Katsuki, S.; Matoba, T.; Nakashiro, S.; Sato, K.; Koga, J.; Nakano, K.; Nakano, Y.; Egusa, S.; Sunagawa, K.; Egashira, K. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation, 2014, 129(8), 896-906.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002870] [PMID: 24305567]
[94]
Kubo, M.; Egashira, K.; Inoue, T.; Koga, J.; Oda, S.; Chen, L.; Nakano, K.; Matoba, T.; Kawashima, Y.; Hara, K.; Tsujimoto, H.; Sueishi, K.; Tominaga, R.; Sunagawa, K. Therapeutic neovascularization by nanotechnology-mediated cell-selective delivery of pitavastatin into the vascular endothelium. Arterioscler. Thromb. Vasc. Biol., 2009, 29(6), 796-801.
[http://dx.doi.org/10.1161/ATVBAHA.108.182584] [PMID: 19325146]
[95]
Lamprecht, A.; Schäfer, U.; Lehr, C.M. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res., 2001, 18(6), 788-793.
[http://dx.doi.org/10.1023/A:1011032328064] [PMID: 11474782]
[96]
Lamprecht, A.; Ubrich, N.; Yamamoto, H.; Schäfer, U.; Takeuchi, H.; Maincent, P.; Kawashima, Y.; Lehr, C.M. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J. Pharmacol. Exp. Ther., 2001, 299(2), 775-781.
[PMID: 11602694]
[97]
Lamprecht, A.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J. Pharmacol. Exp. Ther., 2005, 315(1), 196-202.
[http://dx.doi.org/10.1124/jpet.105.088146] [PMID: 15980057]
[98]
Meissner, Y.; Pellequer, Y.; Lamprecht, A. Nanoparticles in inflammatory bowel disease: particle targeting versus pH-sensitive delivery. Int. J. Pharm., 2006, 316(1-2), 138-143.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.032] [PMID: 16675176]
[99]
Ali, H.; Weigmann, B.; Neurath, M.F.; Collnot, E.M.; Windbergs, M.; Lehr, C.M. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J. Control. Release, 2014, 183, 167-177.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.039] [PMID: 24685705]
[100]
Beloqui, A.; Coco, R.; Memvanga, P.B.; Ucakar, B.; des Rieux, A.; Préat, V. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int. J. Pharm., 2014, 473(1-2), 203-212.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.009] [PMID: 25014369]
[101]
Horisawa, E.; Kubota, K.; Tuboi, I.; Sato, K.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Size-dependency of DL-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm. Res., 2002, 19(2), 132-139.
[http://dx.doi.org/10.1023/A:1014260513728] [PMID: 11883639]
[102]
Higaki, M.; Ishihara, T.; Izumo, N.; Takatsu, M.; Mizushima, Y. Treatment of experimental arthritis with poly(D, L-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate. Ann. Rheum. Dis., 2005, 64(8), 1132-1136.
[http://dx.doi.org/10.1136/ard.2004.030759] [PMID: 15695536]
[103]
Pillai, R.R.; Somayaji, S.N.; Rabinovich, M.; Hudson, M.C.; Gonsalves, K.E. Nafcillin-loaded PLGA nanoparticles for treatment of osteomyelitis. Biomed. Mater., 2008, 3(3), 034114.
[http://dx.doi.org/10.1088/1748-6041/3/3/034114] [PMID: 18708713]
[104]
Öztürk, A.A.; Namlı, İ.; Güleç, K.; Kıyan, H.T. Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: Formulation, characterization and in vivo HET-CAM analysis. Microvasc. Res., 2020, 130, 103991.
[http://dx.doi.org/10.1016/j.mvr.2020.103991] [PMID: 32105668]
[105]
Fargnoli, A.S.; Mu, A.; Katz, M.G.; Williams, R.D.; Margulies, K.B.; Weiner, D.B.; Yang, S.; Bridges, C.R. Anti-inflammatory loaded poly-lactic glycolic acid nanoparticle formulations to enhance myocardial gene transfer: an in-vitro assessment of a drug/gene combination therapeutic approach for direct injection. J. Transl. Med., 2014, 12, 171.
[http://dx.doi.org/10.1186/1479-5876-12-171] [PMID: 24934216]
[106]
Español, L.; Larrea, A.; Andreu, V.; Mendoza, G.; Arruebo, M.; Sebastian, V.; Santamaria, J. Dual encapsulation of hydrophobic and hydrophilic drugs in PLGA nanoparticles by a single-step method: drug delivery and cytotoxicity assays. RSC Advances, 2016, 6(112), 111060-111069.
[http://dx.doi.org/10.1039/C6RA23620K]
[107]
Gonzalez-Pizarro, R.; Parrotta, G.; Vera, R.; Sánchez-López, E.; Galindo, R.; Kjeldsen, F.; Badia, J.; Baldoma, L.; Espina, M.; García, M.L. Ocular penetration of fluorometholone-loaded PEG-PLGA nanoparticles functionalized with cell-penetrating peptides. Nanomedicine (Lond.), 2019, 14(23), 3089-3104.
[http://dx.doi.org/10.2217/nnm-2019-0201] [PMID: 31769335]
[108]
Kim, D.H.; Martin, D.C. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials, 2006, 27(15), 3031-3037.
[http://dx.doi.org/10.1016/j.biomaterials.2005.12.021] [PMID: 16443270]
[109]
Esmaeili, F.; Hosseini-Nasr, M.; Rad-Malekshahi, M.; Samadi, N.; Atyabi, F.; Dinarvand, R. Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles. Nanomedicine (Lond.), 2007, 3(2), 161-167.
[http://dx.doi.org/10.1016/j.nano.2007.03.003] [PMID: 17468055]
[110]
Mohammadi, G.; Valizadeh, H.; Barzegar-Jalali, M.; Lotfipour, F.; Adibkia, K.; Milani, M.; Azhdarzadeh, M.; Kiafar, F.; Nokhodchi, A. Development of azithromycin-PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf. B Biointerfaces, 2010, 80(1), 34-39.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.027] [PMID: 20558048]
[111]
Mohammadi, G.; Nokhodchi, A.; Barzegar-Jalali, M.; Lotfipour, F.; Adibkia, K.; Ehyaei, N.; Valizadeh, H. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Colloids Surf. B Biointerfaces, 2011, 88(1), 39-44.
[http://dx.doi.org/10.1016/j.colsurfb.2011.05.050] [PMID: 21752610]
[112]
Vukomanović, M.; Skapin, S.D.; Poljanšek, I.; Zagar, E.; Kralj, B.; Ignjatović, N.; Uskoković, D. Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanosphere. Part 2: Simultaneous release of a drug and a prodrug (clindamycin and clindamycin phosphate). Colloids Surf. B Biointerfaces, 2011, 82(2), 414-421.
[http://dx.doi.org/10.1016/j.colsurfb.2010.09.012] [PMID: 20951006]
[113]
Gomes, C.; Moreira, R.G.; Castell-Perez, E. Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci., 2011, 76(2), N16-N24.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01985.x] [PMID: 21535781]
[114]
Tang, W.; Xu, H.; Kopelman, R.; Philbert, M.A. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem. Photobiol., 2005, 81(2), 242-249.
[http://dx.doi.org/10.1562/2004-05-24-RA-176.1] [PMID: 15595888]
[115]
Cheow, W.S.; Chang, M.W.; Hadinoto, K. Antibacterial efficacy of inhalable levofloxacin-loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release profile. Pharm. Res., 2010, 27(8), 1597-1609.
[http://dx.doi.org/10.1007/s11095-010-0142-6] [PMID: 20407918]
[116]
Pandey, R.; Sharma, S.; Khuller, G.K. Oral poly(lactide-co-glycolide) nanoparticle based antituberculosis drug delivery: toxicological and chemotherapeutic implications. Indian J. Exp. Biol., 2006, 44(6), 459-467.
[PMID: 16784116]
[117]
Hill, M.; Cunningham, R.N.; Hathout, R.M.; Johnston, C.; Hardy, J.G.; Migaud, M.E. Formulation of antimicrobial tobramycin loaded PLGA nanoparticles via complexation with AOT. J. Funct. Biomater., 2019, 10(2), 26.
[http://dx.doi.org/10.3390/jfb10020026] [PMID: 31200522]
[118]
Lecaroz, C.; Gamazo, C.; Blanco-Prieto, M.J. Nanocarriers with gentamicin to treat intracellular pathogens. J. Nanosci. Nanotechnol., 2006, 6(9-10), 3296-3302.
[http://dx.doi.org/10.1166/jnn.2006.478] [PMID: 17048550]
[119]
Gupta, H.; Aqil, M.; Khar, R.K.; Ali, A.; Bhatnagar, A.; Mittal, G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine (Lond.), 2010, 6(2), 324-333.
[http://dx.doi.org/10.1016/j.nano.2009.10.004] [PMID: 19857606]
[120]
Pereira, A.S.B.F.; Brito, G.A.C.; Lima, M.L.S.; Silva Júnior, A.A.D.; Silva, E.D.S.; de Rezende, A.A.; Bortolin, R.H.; Galvan, M.; Pirih, F.Q.; Araújo Júnior, R.F.; Medeiros, C.A.C.X.; Guerra, G.C.B.; Araújo, A.A. R.F. AraújoJúnior, C.A.C.X. Medeiros, G.C.B. Guerra, A.A. Araújo, Metformin hydrochloride-loaded PLGA nanoparticle in periodontal disease experimental model using diabetic rats. Int. J. Mol. Sci., 2018, 19(11), E3488.
[http://dx.doi.org/10.3390/ijms19113488] [PMID: 30404181]
[121]
Cui, F.; Shi, K.; Zhang, L.; Tao, A.; Kawashima, Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J. Control. Release, 2006, 114(2), 242-250.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.013] [PMID: 16859800]
[122]
Sun, S.; Liang, N.; Kawashima, Y.; Xia, D.; Cui, F. Hydrophobic ion pairing of an insulin-sodium deoxycholate complex for oral delivery of insulin. Int. J. Nanomedicine, 2011, 6, 3049-3056.
[http://dx.doi.org/10.2147/IJN.S26450] [PMID: 22162661]
[123]
Sun, S.; Cui, F.; Kawashima, Y.; Liang, N.; Zhang, L.; Shi, K.; Yu, Y. A novel insulin-sodium oleate complex for oral administration: preparation, characterization and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2008, 18(4), 239-243.
[http://dx.doi.org/10.1016/S1773-2247(08)50047-5]
[124]
Sun, S.; Liang, N.; Piao, H.; Yamamoto, H.; Kawashima, Y.; Cui, F. Insulin-S.O (sodium oleate) complex-loaded PLGA nanoparticles: formulation, characterization and in vivo evaluation. J. Microencapsul., 2010, 27(6), 471-478.
[http://dx.doi.org/10.3109/02652040903515490] [PMID: 20113168]
[125]
Davaran, S.; Omidi, Y.; Rashidi, M.R.; Anzabi, M.; Shayanfar, A.; Ghyasvand, S.; Vesal, N.; Davaran, F. Preparation and in vitro evaluation of linear and star-branched PLGA nanoparticles for insulin delivery. J. Bioact. Compat. Polym., 2008, 23, 115-131.
[http://dx.doi.org/10.1177/0883911507088276]
[126]
Cui, F.D.; Tao, A.J.; Cun, D.M.; Zhang, L.Q.; Shi, K. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J. Pharm. Sci., 2007, 96(2), 421-427.
[http://dx.doi.org/10.1002/jps.20750] [PMID: 17051590]
[127]
Sheng, J.; Han, L.; Qin, J.; Ru, G.; Li, R.; Wu, L.; Cui, D.; Yang, P.; He, Y.; Wang, J. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl. Mater. Interfaces, 2015, 7(28), 15430-15441.
[http://dx.doi.org/10.1021/acsami.5b03555] [PMID: 26111015]
[128]
Zhang, X.; Sun, M.; Zheng, A.; Cao, D.; Bi, Y.; Sun, J. Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur. J. Pharm. Sci., 2012, 45(5), 632-638.
[http://dx.doi.org/10.1016/j.ejps.2012.01.002] [PMID: 22248882]
[129]
Jain, S.; Rathi, V.V.; Jain, A.K.; Das, M.; Godugu, C. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine (Lond.), 2012, 7(9), 1311-1337.
[http://dx.doi.org/10.2217/nnm.12.31] [PMID: 22583576]
[130]
Kamei, N.; Morishita, M.; Eda, Y.; Ida, N.; Nishio, R.; Takayama, K. Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J. Control. Release, 2008, 132(1), 21-25.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.001] [PMID: 18727945]
[131]
Jain, A.; Jain, S.K. L-Valine appended PLGA nanoparticles for oral insulin delivery. Acta Diabetol., 2015, 52(4), 663-676.
[http://dx.doi.org/10.1007/s00592-015-0714-3] [PMID: 25655131]
[132]
Zhu, X.; Wu, J.; Shan, W.; Tao, W.; Zhao, L.; Lim, J.M.; D’Ortenzio, M.; Karnik, R.; Huang, Y.; Shi, J.; Farokhzad, O.C. Polymeric nanoparticles amenable to simultaneous installation of exterior targeting and interior therapeutic proteins. Angew. Chem. Int. Ed. Engl., 2016, 55(10), 3309-3312.
[http://dx.doi.org/10.1002/anie.201509183] [PMID: 26846161]
[133]
Wu, Z.M.; Zhou, L.; Guo, X.D.; Jiang, W.; Ling, L.; Qian, Y.; Luo, K.Q.; Zhang, L.J. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int. J. Pharm., 2012, 425(1-2), 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.055] [PMID: 22248666]
[134]
Jeong, W.Y.; Kim, S.; Lee, S.Y.; Lee, H.; Han, D.W.; Yang, S.Y.; Kim, K.S. Transdermal delivery of Minoxidil using HA-PLGA nanoparticles for the treatment in alopecia. Biomater. Res., 2019, 23, 16.
[http://dx.doi.org/10.1186/s40824-019-0164-z] [PMID: 31695925]
[135]
Tomoda, K.; Terashima, H.; Suzuki, K.; Inagi, T.; Terada, H.; Makino, K. Enhanced transdermal delivery of indomethacin using combination of PLGA nanoparticles and iontophoresis in vivo. Colloids Surf. B Biointerfaces, 2012, 92, 50-54.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.016] [PMID: 22154100]
[136]
Luengo, J.; Weiss, B.; Schneider, M.; Ehlers, A.; Stracke, F.; König, K.; Kostka, K.H.; Lehr, C.M.; Schaefer, U.F. Influence of nanoencapsulation on human skin transport of flufenamic acid. Skin Pharmacol. Physiol., 2006, 19(4), 190-197.
[http://dx.doi.org/10.1159/000093114] [PMID: 16679821]
[137]
Marimuthu, M.; Bennet, D.; Kim, S. Self-assembled nanoparticles of PLGA-conjugated glucosamine as a sustained transdermal drug delivery vehicle. Polym. J., 2013, 45, 202-209.
[http://dx.doi.org/10.1038/pj.2012.103]
[138]
Srivastava, A.K.; Bhatnagar, P.; Singh, M.; Mishra, S.; Kumar, P.; Shukla, Y.; Gupta, K.C. Synthesis of PLGA nanoparticles of tea polyphenols and their strong in vivo protective effect against chemically induced DNA damage. Int. J. Nanomedicine, 2013, 8, 1451-1462.
[PMID: 23717041]
[139]
Sanna, V.; Pintus, G.; Roggio, A.M.; Punzoni, S.; Posadino, A.M.; Arca, A.; Marceddu, S.; Bandiera, P.; Uzzau, S.; Sechi, M. Targeted biocompatible nanoparticles for the delivery of (-)-epigallocatechin 3-gallate to prostate cancer cells. J. Med. Chem., 2011, 54(5), 1321-1332.
[http://dx.doi.org/10.1021/jm1013715] [PMID: 21306166]
[140]
Ghosh, A.; Sarkar, S.; Mandal, A.K.; Das, N. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One, 2013, 8(4), e57735.
[http://dx.doi.org/10.1371/journal.pone.0057735] [PMID: 23620721]
[141]
Chakraborty, S.; Stalin, S.; Das, N.; Choudhury, S.T.; Ghosh, S.; Swarnakar, S. The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials, 2012, 33(10), 2991-3001.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.037] [PMID: 22257724]
[142]
Sanna, V.; Siddiqui, I.A.; Sechi, M.; Mukhtar, H. Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) and poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol. Pharm., 2013, 10(10), 3871-3881.
[http://dx.doi.org/10.1021/mp400342f] [PMID: 23968375]
[143]
Li, L.; Xiang, D.; Shigdar, S.; Yang, W.; Li, Q.; Lin, J.; Liu, K.; Duan, W. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int. J. Nanomedicine, 2014, 9, 1083-1096.
[http://dx.doi.org/10.2147/IJN.S59779] [PMID: 24591829]
[144]
Chereddy, K.K.; Coco, R.; Memvanga, P.B.; Ucakar, B.; des Rieux, A.; Vandermeulen, G.; Préat, V. Combined effect of PLGA and curcumin on wound healing activity. J. Control. Release, 2013, 171(2), 208-215.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.015] [PMID: 23891622]
[145]
Doggui, S.; Sahni, J.K.; Arseneault, M.; Dao, L.; Ramassamy, C. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J. Alzheimers Dis., 2012, 30(2), 377-392.
[http://dx.doi.org/10.3233/JAD-2012-112141] [PMID: 22426019]
[146]
Xie, X.; Tao, Q.; Zou, Y.; Zhang, F.; Guo, M.; Wang, Y.; Wang, H.; Zhou, Q.; Yu, S. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J. Agric. Food Chem., 2011, 59(17), 9280-9289.
[http://dx.doi.org/10.1021/jf202135j] [PMID: 21797282]
[147]
Shaikh, J.; Ankola, D.D.; Beniwal, V.; Singh, D.; Kumar, M.N. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci., 2009, 37(3-4), 223-230.
[http://dx.doi.org/10.1016/j.ejps.2009.02.019] [PMID: 19491009]
[148]
Thomas, C.; Rawat, A.; Hope-Weeks, L.; Ahsan, F.; Aerosolized, P.L.A. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol. Pharm., 2011, 8(2), 405-415.
[http://dx.doi.org/10.1021/mp100255c] [PMID: 21189035]
[149]
Santos, D.M.; Carneiro, M.W.; de Moura, T.R.; Fukutani, K.; Clarencio, J.; Soto, M.; Espuelas, S.; Brodskyn, C.; Barral, A.; Barral-Netto, M.; de Oliveira, C.I. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11. Int. J. Nanomedicine, 2012, 7, 2115-2127.
[http://dx.doi.org/10.2147/IJN.S30093] [PMID: 22619548]
[150]
Xiao, X.; Zeng, X.; Zhang, X.; Ma, L.; Liu, X.; Yu, H.; Mei, L.; Liu, Z. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma. Int. J. Nanomedicine, 2013, 8, 4553-4562.
[http://dx.doi.org/10.2147/IJN.S51633] [PMID: 24376349]
[151]
Lee, Y.R.; Lee, Y.H.; Kim, K.H.; Im, S.A.; Lee, C.K. Induction of potent antigen-specific cytotoxic T cell response by PLGA-nanoparticles containing antigen and TLR agonist. Immune Netw., 2013, 13(1), 30-33.
[http://dx.doi.org/10.4110/in.2013.13.1.30] [PMID: 23559898]
[152]
Garinot, M.; Fiévez, V.; Pourcelle, V.; Stoffelbach, F.; des Rieux, A.; Plapied, L.; Theate, I.; Freichels, H.; Jérôme, C.; Marchand-Brynaert, J.; Schneider, Y.J.; Préat, V. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control. Release, 2007, 120(3), 195-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.04.021] [PMID: 17586081]
[153]
Gupta, P.N.; Khatri, K.; Goyal, A.K.; Mishra, N.; Vyas, S.P. M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J. Drug Target., 2007, 15(10), 701-713.
[http://dx.doi.org/10.1080/10611860701637982] [PMID: 18041638]
[154]
Cohen, H.; Levy, R.J.; Gao, J.; Fishbein, I.; Kousaev, V.; Sosnowski, S.; Slomkowski, S.; Golomb, G. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther., 2000, 7(22), 1896-1905.
[http://dx.doi.org/10.1038/sj.gt.3301318] [PMID: 11127577]
[155]
Prabha, S.; Labhasetwar, V. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells. Mol. Pharm., 2004, 1(3), 211-219.
[http://dx.doi.org/10.1021/mp049970+] [PMID: 15981924]
[156]
Yi, F.; Wu, H.; Jia, G.L. Formulation and characterization of poly (D,L-lactide-co-glycolide) nanoparticle containing vascular endothelial growth factor for gene delivery. J. Clin. Pharm. Ther., 2006, 31(1), 43-48.
[http://dx.doi.org/10.1111/j.1365-2710.2006.00702.x] [PMID: 16476119]
[157]
Gvili, K.; Benny, O.; Danino, D.; Machluf, M. Poly (D, L-lactide-co-glycolide acid) nanoparticles for DNA delivery: waiving preparation complexity and increasing efficiency. Biopolymers, 2007, 85(5-6), 379-391.
[158]
Cui, F.Y.; Song, X.R.; Li, Z.Y.; Li, S.Z.; Mu, B.; Mao, Y.Q.; Wei, Y.Q.; Yang, L. The pigment epithelial-derived factor gene loaded in PLGA nanoparticles for therapy of colon carcinoma. Oncol. Rep., 2010, 24(3), 661-668.
[http://dx.doi.org/10.3892/or_00000905] [PMID: 20664971]
[159]
Budhian, A.; Siegel, S.J.; Winey, K.I. Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J. Microencapsul., 2005, 22(7), 773-785.
[http://dx.doi.org/10.1080/02652040500273753] [PMID: 16421087]
[160]
Mittal, G.; Sahana, D.K.; Bhardwaj, V.; Ravi Kumar, M.N. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J. Control. Release, 2007, 119(1), 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2007.01.016] [PMID: 17349712]
[161]
Destache, C.J.; Belgum, T.; Christensen, K.; Shibata, A.; Sharma, A.; Dash, A. Combination antiretroviral drugs in PLGA nanoparticle for HIV-1. BMC Infect. Dis., 2009, 9, 198.
[http://dx.doi.org/10.1186/1471-2334-9-198] [PMID: 20003214]
[162]
Garcia, X.; Escribano, E.; Domenech, J.; Queralt, J.; Freixes, J. In vitro characterization and in vivo analgesic and anti-allodynic activity of PLGA-bupivacaine nanoparticles. J. Nanopart. Res., 2011, 13, 2213-2223.
[http://dx.doi.org/10.1007/s11051-010-9979-1]
[163]
Lu, W.; Tan, Y.Z.; Hu, K.L.; Jiang, X.G. Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood-brain barrier. Int. J. Pharm., 2005, 295(1-2), 247-260.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.043] [PMID: 15848009]
[164]
Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R.H. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B Biointerfaces, 2000, 18(3-4), 301-313.
[http://dx.doi.org/10.1016/S0927-7765(99)00156-3] [PMID: 10915952]
[165]
Partikel, K.; Korte, R.; Stein, N.C.; Mulac, D.; Herrmann, F.C.; Humpf, H-U.; Langer, K. Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. Eur. J. Pharm. Biopharm., 2019, 141, 70-80.
[http://dx.doi.org/10.1016/j.ejpb.2019.05.006] [PMID: 31082511]
[166]
Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603.
[http://dx.doi.org/10.1126/science.8128245] [PMID: 8128245]
[167]
Tahara, K.; Yamamoto, H.; Kawashima, Y. Cellular uptake mechanisms and intracellular distributions of polysorbate 80-modified poly (D,L-lactide-co-glycolide) nanospheres for gene delivery. Eur. J. Pharm. Biopharm., 2010, 75(2), 218-224.
[http://dx.doi.org/10.1016/j.ejpb.2010.03.013] [PMID: 20332026]
[168]
Zhang, Z.; Feng, S.S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials, 2006, 27(21), 4025-4033.
[http://dx.doi.org/10.1016/j.biomaterials.2006.03.006] [PMID: 16564085]
[169]
Surassmo, S.; Saengkrit, N.; Ruktanonchai, U.R.; Suktham, K.; Woramongkolchai, N.; Wutikhun, T.; Puttipipatkhachorn, S. Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization. Colloids Surf. B Biointerfaces, 2015, 130, 229-236.
[http://dx.doi.org/10.1016/j.colsurfb.2015.04.015] [PMID: 25937384]
[170]
Ravi Kumar, M.N.V.; Bakowsky, U.; Lehr, C.M. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials, 2004, 25(10), 1771-1777.
[http://dx.doi.org/10.1016/j.biomaterials.2003.08.069] [PMID: 14738840]
[171]
Bivas-Benita, M.; Romeijn, S.; Junginger, H.E.; Borchard, G. PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium. Eur. J. Pharm. Biopharm., 2004, 58(1), 1-6.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.008] [PMID: 15207531]
[172]
Kim, I.S.; Lee, S.K.; Park, Y.M.; Lee, Y.B.; Shin, S.C.; Lee, K.C.; Oh, I.J. Physicochemical characterization of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier. Int. J. Pharm., 2005, 298(1), 255-262.
[http://dx.doi.org/10.1016/j.ijpharm.2005.04.017] [PMID: 15941631]
[173]
Chumakova, O.V.; Liopo, A.V.; Andreev, V.G.; Cicenaite, I.; Evers, B.M.; Chakrabarty, S.; Pappas, T.C.; Esenaliev, R.O. Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo. Cancer Lett., 2008, 261(2), 215-225.
[http://dx.doi.org/10.1016/j.canlet.2007.11.023] [PMID: 18164806]
[174]
Baoum, A.; Dhillon, N.; Buch, S.; Berkland, C. Cationic surface modification of PLG nanoparticles offers sustained gene delivery to pulmonary epithelial cells. J. Pharm. Sci., 2010, 99(5), 2413-2422.
[http://dx.doi.org/10.1002/jps.21994] [PMID: 19911425]
[175]
Park, J.S.; Yang, H.N.; Woo, D.G.; Jeon, S.Y.; Do, H.J.; Lim, H.Y.; Kim, J.H.; Park, K.H. Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles. Biomaterials, 2011, 32(14), 3679-3688.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.063] [PMID: 21333351]
[176]
Shau, M.D.; Shih, M.F.; Lin, C.C.; Chuang, I.C.; Hung, W.C.; Hennink, W.E.; Cherng, J.Y. A one-step process in preparation of cationic nanoparticles with poly(lactide-co-glycolide)-containing polyethylenimine gives efficient gene delivery. Eur. J. Pharm. Sci., 2012, 46(5), 522-529.
[http://dx.doi.org/10.1016/j.ejps.2012.04.006] [PMID: 22522118]
[177]
Díez, S.; Miguéliz, I.; Tros de Ilarduya, C. Targeted cationic poly(D,L-lactic-co-glycolic acid) nanoparticles for gene delivery to cultured cells. Cell. Mol. Biol. Lett., 2009, 14(2), 347-362.
[http://dx.doi.org/10.2478/s11658-009-0003-7] [PMID: 19194666]
[178]
Fay, F.; Quinn, D.J.; Gilmore, B.F.; McCarron, P.A.; Scott, C.J. Gene delivery using dimethyldidodecylammonium bromide-coated PLGA nanoparticles. Biomaterials, 2010, 31(14), 4214-4222.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.143] [PMID: 20185174]
[179]
Tang, J.; Chen, J.Y.; Liu, J.; Luo, M.; Wang, Y.J.; Wei, X.W.; Gao, X.; Wang, B.L.; Liu, Y.B.; Yi, T.; Tong, A.P.; Song, X.R.; Xie, Y.M.; Zhao, Y.; Xiang, M.; Huang, Y.; Zheng, Y. Calcium phosphate embedded PLGA nanoparticles: a promising gene delivery vector with high gene loading and transfection efficiency. Int. J. Pharm., 2012, 431(1-2), 210-221.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.046] [PMID: 22561795]
[180]
Liang, G.F.; Zhu, Y.L.; Sun, B.; Hu, F.H.; Tian, T.; Li, S.C.; Xiao, Z.D. PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells. Nanoscale Res. Lett., 2011, 6(1), 447.
[http://dx.doi.org/10.1186/1556-276X-6-447] [PMID: 21749688]
[181]
Wang, Y.; Zhang, K.; Qin, X.; Li, T.; Qiu, J.; Yin, T.; Huang, J.; McGinty, S.; Pontrelli, G.; Ren, J.; Wang, Q.; Wu, W.; Wang, G. Biomimetic nanotherapies: red blood cell based core-shell structured nanocomplexes for atherosclerosis management. Adv. Sci. (Weinh.), 2019, 6(12), 1900172.
[http://dx.doi.org/10.1002/advs.201900172] [PMID: 31380165]
[182]
Chuang, C.C.; Cheng, C.C.; Chen, P.Y.; Lo, C.; Chen, Y.N.; Shih, M.H.; Chang, C.W. Gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy. Int. J. Nanomedicine, 2018, 14, 181-193.
[http://dx.doi.org/10.2147/IJN.S177851] [PMID: 30613145]
[183]
Chun, S.H.; Shin, S.W.; Amornkitbamrung, L.; Ahn, S.Y.; Yuk, J.S.; Sim, S.J.; Luo, D.; Um, S.H. Polymeric nanocomplex encapsulating iron oxide nanoparticles in constant size for controllable magnetic field reactivity. Langmuir, 2018, 34(43), 12827-12833.
[http://dx.doi.org/10.1021/acs.langmuir.7b04143] [PMID: 30350682]
[184]
Thirunavukkarasu, G.K.; Nirmal, G.R.; Lee, H.; Lee, M.; Park, I.; Lee, J.Y. On-demand generation of heat and free radicals for dual cancer therapy using thermal initiator- and gold nanorod-embedded PLGA nanocomplexes. J. Ind. Eng. Chem., 2019, 69, 405-413.
[http://dx.doi.org/10.1016/j.jiec.2018.09.051]
[185]
Chen, H.; Xie, L.Q.; Qin, J.; Jia, Y.; Cai, X.; Nan, W.; Yang, W.; Lv, F.; Zhang, Q.Q. Surface modification of PLGA nanoparticles with biotinylated chitosan for the sustained in vitro release and the enhanced cytotoxicity of epirubicin. Colloids Surf. B Biointerfaces, 2016, 138, 1-9.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.033] [PMID: 26638176]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy