Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Recent Advancements and Patents on Buccal Drug Delivery Systems: A Comprehensive Review

Author(s): Nimisha Srivastava* and Sahifa Aslam

Volume 16, Issue 4, 2022

Published on: 09 June, 2021

Page: [308 - 325] Pages: 18

DOI: 10.2174/1872210515666210609145144

Price: $65

Abstract

The major requirement for a dosage form to be successful is its ability to penetrate the site of application and the bioavailability of the drug released from the dosage form. The buccal drug delivery is an influential route to deliver the drug into the body. Here, in this context, various novel approaches that include lipoidal carriers like ethosomes, transferosomes, niosomes etc. and electrospun nanofibers are discussed, with respect to buccal drug delivery. These carriers can be easily incorporated into buccal dosage forms like patches and gels that are responsible for increased permeation across the buccal epithelium. The in vivo methods of evaluation on animal models are conscribed here. The novel biocarriers of lipoidal and non-lipoidal nature can be utilized by loading the drug into them, which are helpful in preventing drug degradation and other drawbacks as compared to conventional formulations. The globally patented buccal formulations give us a wide context in literature about the patents filed and granted in the recent years. When it comes to patient compliance, age is an issue, which is also solved by the buccal route. The pediatric buccal formulations are researched for the customization to be delivered to children. Diseases like mouth ulcers, oral cancer, Parkinson’s disease, aphthous stomatitis etc. have been successfully treated through the buccal route, which infers that the buccal drug delivery system is an effective and emerging area for formulation and development in the field of pharmaceutics.

Keywords: Buccal, penetration, buccal mucosa, lipid carriers, diseases, animal models, patents.

Graphical Abstract
[1]
Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C 2017; 79(79): 958-71.
[http://dx.doi.org/10.1016/j.msec.2017.05.096] [PMID: 28629101]
[2]
Tsai W, Tsai H, Wong Y, Hong J, Chang S, Lee M. Preparation and characterization of gellan gum/glucosamine/clioquinol film as oral cancer treatment patch. Mater Sci Eng C 2018; 82(82): 317-22.
[http://dx.doi.org/10.1016/j.msec.2017.05.040] [PMID: 29025664]
[3]
Alvarez Echazú MI, Olivetti CE, Anesini C, Perez CJ, Alvarez GS, Desimone MF. Development and evaluation of thymol-chitosan hydrogels with antimicrobial-antioxidant activity for oral local delivery. Mater Sci Eng C 2017; 81(81): 588-96.
[http://dx.doi.org/10.1016/j.msec.2017.08.059] [PMID: 28888014]
[4]
Verma S, Kaul M, Rawat A, Saini S. An overview on buccal drug delivery system. Int J Pharm Sci Res 2011; 2(6): 1303-21.
[5]
Rao NR, Shravani B, Reddy MS. Overview on buccal drug delivery systems. J Pharm Sci Res 2013; 5(4): 80.
[6]
Sattar M, Sayed OM, Lane ME. Oral transmucosal drug delivery-Current status and future prospects. Int J Pharm 2014; 471(1-2): 498-506.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.043] [PMID: 24879936]
[7]
Smart JD. Recent developments in the use of bio adhesive systems for delivery of drugs to the oral cavity. Crit Rev Ther Drug Carrier Syst 2004; 21(4): 319-44.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i4.20]
[8]
Collins LM, Dawes C. The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J Dent Res 1987; 66(8): 1300-2.
[http://dx.doi.org/10.1177/00220345870660080201] [PMID: 3476596]
[9]
Morantes SJ, Buitrago DM, Ibla JF, García YM, Lafaurie GI, Parraga JE. Composites of hydrogels and nanoparticles: A potential solution to current challenges in buccal drug delivery. In: Sougata J, Sabyasachi M, Subrata J, Eds. Biopolymer-Based Composites. 1st ed. Amsterdam: Elsevier 2017; pp. 107-38.
[10]
Gandhi RB, Robinson JR. Oral cavity as a site for bioadhesive drug delivery. Adv Drug Deliv Rev 1994; 13(1-2): 43-74.
[http://dx.doi.org/10.1016/0169-409X(94)90026-4]
[11]
Paderni C, Compilato D, Giannola LI, Campisi G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114(3): e25-34.
[http://dx.doi.org/10.1016/j.oooo.2012.02.016] [PMID: 22771408]
[12]
Morales JO, Brayden DJ. Buccal delivery of small molecules and biologics: Of mucoadhesive polymers, films, and nanoparticles. Curr Opin Pharmacol 2017; 36(36): 22-8.
[http://dx.doi.org/10.1016/j.coph.2017.07.011] [PMID: 28800417]
[13]
Pather SI, Rathbone MJ, Şenel S. Current status and the future of buccal drug delivery systems. Expert Opin Drug Deliv 2008; 5(5): 531-42.
[http://dx.doi.org/10.1517/17425247.5.5.531] [PMID: 18491980]
[14]
Gilhotra RM, Ikram M, Srivastava S, Gilhotra N. A clinical perspective on mucoadhesive buccal drug delivery systems. J Biomed Res 2014; 28(2): 81-97.
[PMID: 24683406]
[15]
Gavhane YN, Yadav AV. Loss of orally administered drugs in GI tract. Saudi Pharm J 2012; 20(4): 331-44.
[http://dx.doi.org/10.1016/j.jsps.2012.03.005] [PMID: 23960808]
[16]
Figueiras A, Vieira A, Simões S, Veiga F. Mucoadhesive buccal systems as a novel strategy for anti-inflammatory drugs administration. Antiinflamm Antiallergy Agents Med Chem 2011; 10(3): 190-202.
[http://dx.doi.org/10.2174/1871523011109030190]
[17]
Chinna Reddy P, Chaitanya KS, Madhusudan Rao Y. A review on bioadhesive buccal drug delivery systems: Current status of formulation and evaluation methods. Daru 2011; 19(6): 385-403.
[PMID: 23008684]
[18]
Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm 2010; 7(5): 1388-405.
[http://dx.doi.org/10.1021/mp100149j] [PMID: 20822152]
[19]
Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov 2019; 18(1): 19-40.
[http://dx.doi.org/10.1038/nrd.2018.183] [PMID: 30498202]
[20]
Yang TZ, Wang XT, Yan XY, Zhang Q. Phospholipid deformable vesicles for buccal delivery of insulin. Chem Pharm Bull (Tokyo) 2002; 50(6): 749-53.
[http://dx.doi.org/10.1248/cpb.50.749] [PMID: 12045327]
[21]
Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front Pharmacol 2018; 9(9): 790-803.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[22]
Atcha Z, Rourke C, Neo AH, et al. Alternative method of oral dosing for rats. J Am Assoc Lab Anim Sci 2010; 49(3): 335-43.
[PMID: 20587166]
[23]
Bhati R, Nagrajan RK. A detailed review on oral mucosal drug delivery system. Int J Pharm Sci Res 2012; 3(3): 659-81.
[24]
Hua S, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine (Lond) 2015; 11(5): 1117-32.
[http://dx.doi.org/10.1016/j.nano.2015.02.018] [PMID: 25784453]
[25]
Poonia N, Kharb R, Lather V, Pandita D. Nanostructured lipid carriers: Versatile oral delivery vehicle. Future Sci OA 2016; 2(3): FSO135.
[http://dx.doi.org/10.4155/fsoa-2016-0030] [PMID: 28031979]
[26]
Xu HB, Huang KX, Zhu YS, et al. Hypoglycaemic effect of a novel insulin buccal formulation on rabbits. Pharmacol Res 2002; 46(5): 459-67.
[http://dx.doi.org/10.1016/S1043661802002049] [PMID: 12419651]
[27]
Hoogstraate AJ, Senel S, Cullander C, Verhoef J, Junginger HE, Bodde HE. Effects of bile salts on transport rates and routes of FITC-labelled compounds across porcine buccal epithelium in vitro. J Control Release 1996; 40(3): 211-21.
[http://dx.doi.org/10.1016/0168-3659(95)00187-5]
[28]
Marques AC, Rocha AI, Leal P, Estanqueiro M, Lobo JMS. Development and characterization of mucoadhesive buccal gels containing lipid nanoparticles of ibuprofen. Int J Pharm 2017; 533(2): 455-62.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.025] [PMID: 28412446]
[29]
Baltzley S, Malkawi AA, Alsmadi M, Al-Ghananeem AM. Sublingual spray drug delivery of ketorolac-loaded chitosan nanoparticles. Drug Dev Ind Pharm 2018; 44(9): 1467-72.
[http://dx.doi.org/10.1080/03639045.2018.1460378] [PMID: 29607693]
[30]
Gavin A, Pham JT, Wang D, Brownlow B, Elbayoumi TA. Layered nanoemulsions as mucoadhesive buccal systems for controlled delivery of oral cancer therapeutics. Int J Nanomedicine 2015; 10(10): 1569-84.
[PMID: 25759580]
[31]
El-Nahas AE, Allam AN, El-Kamel AH. Mucoadhesive buccal tablets containing silymarin Eudragit-loaded nanoparticles: Formulation, characterisation and ex vivo permeation. J Microencapsul 2017; 34(5): 463-74.
[http://dx.doi.org/10.1080/02652048.2017.1345996] [PMID: 28691562]
[32]
Giovino C, Ayensu I, Tetteh J, Boateng JS. An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles. Colloids Surf B Biointerfaces 2013; 112(112): 9-15.
[http://dx.doi.org/10.1016/j.colsurfb.2013.07.019] [PMID: 23928054]
[33]
Mortazavian E, Dorkoosh FA, Rafiee-Tehrani M. Design, characterization and ex vivo evaluation of chitosan film integrating of insulin nanoparticles composed of thiolated chitosan derivative for buccal delivery of insulin. Drug Dev Ind Pharm 2014; 40(5): 691-8.
[http://dx.doi.org/10.3109/03639045.2014.886590] [PMID: 24524272]
[34]
Al-Dhubiab BE, Nair AB, Kumria R, Attimarad M, Harsha S. Development and evaluation of buccal films impregnated with selegiline-loaded nanospheres. Drug Deliv 2016; 23(7): 2154-62.
[http://dx.doi.org/10.3109/10717544.2014.948644] [PMID: 25182182]
[35]
Mašek J, Lubasová D, Lukáč R, et al. Multi-layered nanofibrous mucoadhesive films for buccal and sublingual administration of drug-delivery and vaccination nanoparticles - important step towards effective mucosal vaccines. J Control Release 2017; 249(249): 183-95.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.036] [PMID: 27469472]
[36]
Castro PM, Baptista P, Madureira AR, Sarmento B, Pintado ME. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int J Pharm 2018; 547(1-2): 593-601.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.051] [PMID: 29800740]
[37]
Mahdizadeh Barzoki Z, Emam-Djomeh Z, Mortazavian E, Akbar Moosavi-Movahedi A, Rafiee Tehrani M. Formulation, in vitro evaluation and kinetic analysis of chitosan-gelatin bilayer muco-adhesive buccal patches of insulin nanoparticles. J Microencapsul 2016; 33(7): 613-24.
[http://dx.doi.org/10.1080/02652048.2016.1234513] [PMID: 27606816]
[38]
Al-Nemrawi NK, Alsharif SSM, Alzoubi KH, Alkhatib RQ. Preparation and characterization of insulin chitosan-nanoparticles loaded in buccal films. Pharm Dev Technol 2019; 24(8): 967-74.
[http://dx.doi.org/10.1080/10837450.2019.1619183] [PMID: 31092092]
[39]
Pistone S, Goycoolea FM, Young A, Smistad G, Hiorth M. Formulation of polysaccharide-based nanoparticles for local administration into the oral cavity. Eur J Pharm Sci 2017; 96: 381-9.
[http://dx.doi.org/10.1016/j.ejps.2016.10.012] [PMID: 27721043]
[40]
He C, Cui F, Yin L, Qian F, Tang C, Yin C. A polymeric composite carrier for oral delivery of peptide drugs: Bilaminated hydrogel film loaded with nanoparticles. Eur Polym J 2009; 45(2): 368-76.
[http://dx.doi.org/10.1016/j.eurpolymj.2008.11.004]
[41]
Roblegg E, Fröhlich E, Meindl C, Teubl B, Zaversky M, Zimmer A. Evaluation of a physiological in vitro system to study the transport of nanoparticles through the buccal mucosa. Nanotoxicology 2012; 6(4): 399-413.
[http://dx.doi.org/10.3109/17435390.2011.580863] [PMID: 21591874]
[42]
Tran PHL, Duan W, Tran TTD. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int J Pharm 2019; 571: 118697.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118697] [PMID: 31526839]
[43]
Teubl BJ, Leitinger G, Schneider M, et al. The buccal mucosa as a route for TiO2 nanoparticle uptake. Nanotoxicology 2015; 9(2): 253-61.
[http://dx.doi.org/10.3109/17435390.2014.921343] [PMID: 24873758]
[44]
Mouftah S, Abdel-Mottaleb MMA, Lamprecht A. Buccal delivery of low molecular weight heparin by cationic polymethacrylate nanoparticles. Int J Pharm 2016; 515(1-2): 565-74.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.039] [PMID: 27773855]
[45]
Patil NH, Devarajan PV. Insulin-loaded alginic acid nanoparticles for sublingual delivery. Drug Deliv 2016; 23(2): 429-36.
[http://dx.doi.org/10.3109/10717544.2014.916769] [PMID: 24901208]
[46]
Chaves PD, Ourique AF, Frank LA, Pohlmann AR, Guterres SS, Beck RC. Carvedilol-loaded nanocapsules: Mucoadhesive properties and permeability across the sublingual mucosa. Eur J Pharm Biopharm 2017; 114(114): 88-95.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.007] [PMID: 28119104]
[47]
Xu Y, Zhang X, Zhang Y, et al. Mechanisms of deformable nanovesicles based on insulin-phospholipid complex for enhancing buccal delivery of insulin. Int J Nanomedicine 2018; 13(13): 7319-31.
[http://dx.doi.org/10.2147/IJN.S175425] [PMID: 30519017]
[48]
Kraisit P, Limmatvapirat S, Luangtana-Anan M, Sriamornsak P. Buccal administration of mucoadhesive blend films saturated with propranolol loaded nanoparticles. asian journal of pharmaceutical sciences 2018; 13(1): 34-43.
[49]
Anwunobi AP, Emeje MO. Recent applications of natural polymers in nanodrug delivery. J Nanomedic Nanotechnol S 2011; 4(002): 1-6.
[http://dx.doi.org/10.4172/2157-7439.S4-002]
[50]
Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery-A promising option for orally less efficient drugs. J Control Release 2006; 114(1): 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.012] [PMID: 16828915]
[51]
Caon T, Jin L, Simões CM, Norton RS, Nicolazzo JA. Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm Res 2015; 32(1): 1-21.
[http://dx.doi.org/10.1007/s11095-014-1485-1] [PMID: 25168518]
[52]
Macedo AS, Castro PM, Roque L, et al. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J Control Release 2020; 320(320): 125-41.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.006] [PMID: 31917295]
[53]
Singh N, Singh A, Pandey K. Nimisha. Current insights for the management of acne in the modern era. Recent Pat Antiinfect Drug Discov 2020; 15(1): 3-29.
[http://dx.doi.org/10.2174/1574891X15999200729192138] [PMID: 32729430]
[54]
Abd El Azim H, Nafee N, Ramadan A, Khalafallah N. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins. Int J Pharm 2015; 488(1-2): 78-85.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.052] [PMID: 25899288]
[55]
Jijie R, Barras A, Boukherroub R, Szunerits S. Nanomaterials for transdermal drug delivery: Beyond the state of the art of liposomal structures. J Mater Chem B Mater Biol Med 2017; 5(44): 8653-75.
[http://dx.doi.org/10.1039/C7TB02529G] [PMID: 32264260]
[56]
El-Samaligy MS, Afifi NN, Mahmoud EA. Increasing bioavailability of silymarin using a buccal liposomal delivery system: Preparation and experimental design investigation. Int J Pharm 2006; 308(1-2): 140-8.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.006] [PMID: 16356669]
[57]
Kim SH, Lee KY, Jang YS. Mucosal immune system and M cell-targeting strategies for oral mucosal vaccination. Immune Netw 2012; 12(5): 165-75.
[http://dx.doi.org/10.4110/in.2012.12.5.165] [PMID: 23213309]
[58]
Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004; 56(9): 1257-72.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[59]
Zhen Y, Wang N, Gao Z, et al. Multifunctional liposomes constituting microneedles induced robust systemic and mucosal immunoresponses against the loaded antigens via oral mucosal vaccination. Vaccine 2015; 33(35): 4330-40.
[http://dx.doi.org/10.1016/j.vaccine.2015.03.081] [PMID: 25858854]
[60]
Islan GA, Tornello PC, Abraham GA, Duran N, Castro GR. Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surf B Biointerfaces 2016; 143(143): 168-76.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.040] [PMID: 27003467]
[61]
Rassu G, Soddu E, Posadino AM, et al. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf B Biointerfaces 2017; 152: 296-301.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.031] [PMID: 28126681]
[62]
Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part II - Ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm 2017; 110: 58-69.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.013] [PMID: 27789359]
[63]
Hazzah HA, Farid RM, Nasra MM, El-Massik MA, Abdallah OY. Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: Development and characterization. Int J Pharm 2015; 492(1-2): 248-57.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.022] [PMID: 26189427]
[64]
Portero A, Teijeiro-Osorio D, Alonso MJ, Remuñán-López C. Development of chitosan sponges for buccal administration of insulin. Carbohydr Polym 2007; 68(4): 617-265.
[http://dx.doi.org/10.1016/j.carbpol.2006.07.028]
[65]
Holpuch AS, Hummel GJ, Tong M, et al. Nanoparticles for local drug delivery to the oral mucosa: Proof of principle studies. Pharm Res 2010; 27(7): 1224-36.
[http://dx.doi.org/10.1007/s11095-010-0121-y] [PMID: 20354767]
[66]
Kassem MA, ElMeshad AN, Fares AR. Lyophilized sustained release mucoadhesive chitosan sponges for buccal buspirone hydrochloride delivery: Formulation and in vitro evaluation. AAPS PharmSciTech 2015; 16(3): 537-47.
[http://dx.doi.org/10.1208/s12249-014-0243-3] [PMID: 25370025]
[67]
Farid RM, Etman MA, Nada AH, Ebian Ael A. Formulation and in vitro evaluation of salbutamol sulphate in situ gelling nasal inserts. AAPS PharmSciTech 2013; 14(2): 712-8.
[http://dx.doi.org/10.1208/s12249-013-9956-y] [PMID: 23516112]
[68]
Teubl BJ, Meindl C, Eitzlmayr A, Zimmer A, Fröhlich E, Roblegg E. In-vitro permeability of neutral polystyrene particles via buccal mucosa. Small 2013; 9(3): 457-66.
[http://dx.doi.org/10.1002/smll.201201789] [PMID: 23112142]
[69]
Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[70]
Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in Solid Lipid Nanoparticle (SLN™) dispersions. Int J Pharm 1998; 168(2): 221-9.
[http://dx.doi.org/10.1016/S0378-5173(98)00092-1]
[71]
Kraisit P, Sarisuta N. Development of triamcinolone acetonide-loaded Nanostructured Lipid Carriers (NLCs) for buccal drug delivery using the Box-Behnken design. Molecules 2018; 23(4): 982-95.
[http://dx.doi.org/10.3390/molecules23040982] [PMID: 29690622]
[72]
Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 2005; 57(11): 1556-68.
[http://dx.doi.org/10.1016/j.addr.2005.07.001] [PMID: 16198441]
[73]
Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 2012; 92: 299-304.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.004] [PMID: 22205066]
[74]
Pandey K. Nimisha. An Overview on promising nanotechnological approaches for the treatment of psoriasis. Recent Pat Nanotechnol 2020; 14(2): 102-18.
[http://dx.doi.org/10.2174/1872210514666200204124130] [PMID: 32013854]
[75]
Verma P, Pathak K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine (Lond) 2012; 8(4): 489-96.
[http://dx.doi.org/10.1016/j.nano.2011.07.004] [PMID: 21839053]
[76]
Srivastava N, Fatima Z, Kaur CD, Rizvi DA. Berberine chloride dihydrate enthused nanovesicles for the management of dermatitis nanovesicles for Dermatitis. Nanosci Nanotechnol Asia 2020; 10: 1.
[http://dx.doi.org/10.2174/2210681210666200313123550]
[77]
El-Menshawe SF, Kharshom R, El Sisi A. Preparation and optimization of buccal propranolol hydrochloride nanoethosomal gel: A novel approach for enhancement of bioavailability. J Nanomed Nanotechnol 2017; 8(2): 1000435-43.
[78]
Elkomy MH, El Menshawe SF, Abou-Taleb HA, Elkarmalawy MH. Loratadine bioavailability via buccal transferosomal gel: Formulation, statistical optimization, in vitro/in vivo characterization, and pharmacokinetics in human volunteers. Drug Deliv 2017; 24(1): 781-91.
[http://dx.doi.org/10.1080/10717544.2017.1321061] [PMID: 28480758]
[79]
Arafa MG, Ghalwash D, El-Kersh DM, Elmazar MM. Propolis-based niosomes as oromuco-adhesive films: A randomized clinical trial of a therapeutic drug delivery platform for the treatment of oral recurrent aphthous ulcers. Sci Rep 2018; 8(1): 18056.
[http://dx.doi.org/10.1038/s41598-018-37157-7] [PMID: 30575794]
[80]
Braithwaite MC, Tyagi C, Tomar LK, Kumar P, Choonara YE, Pillay V. Nutraceutical-based therapeutics and formulation strategies augmenting their efficiency to complement modern medicine: An overview. J Funct Foods 2014; 6: 82-99.
[http://dx.doi.org/10.1016/j.jff.2013.09.022]
[81]
Bei D, Meng J, Youan BB. Engineering nanomedicines for improved melanoma therapy: Progress and promises. Nanomedicine (Lond) 2010; 5(9): 1385-99.
[http://dx.doi.org/10.2217/nnm.10.117] [PMID: 21128721]
[82]
Patole VC, Chaudhari SP. Eugenyl methacrylate microsponges loaded with eugenol incorporated in situ gel for treatment of periodontitis. J Pharm Innov 2020; 8: 1-11.
[http://dx.doi.org/10.1007/s12247-020-09456-y]
[83]
Junqueira MV, Calçado SC, de Castro-Hoshino LV, et al. Influence of the ethanol/dichloromethane ratio on the preparation of microsponges composed of ethylcellulose and Eudragit or HPMC phthalate for hydrophilic drug delivery. J Mol Liq 2020; 303: 112633-43.
[http://dx.doi.org/10.1016/j.molliq.2020.112633]
[84]
Dott C, Tyagi C, Tomar LK, et al. A mucoadhesive electrospun nanofibrous matrix for rapid oramucosal drug delivery. J Nanomater 2013; 2013: 1-19.
[http://dx.doi.org/10.1155/2013/924947]
[85]
Lancina MG III, Shankar RK, Yang H. Chitosan nanofibers for transbuccal insulin delivery. J Biomed Mater Res A 2017; 105(5): 1252-9.
[http://dx.doi.org/10.1002/jbm.a.35984] [PMID: 28000386]
[86]
RxList. 2020. Available from: https://www.rxlist.com/drugs/alpha_a.htm [Accessed August, 17 2020].
[87]
Nair AB, Al-Dhubiab BE, Shah J, et al. Mucoadhesive buccal film of almotriptan improved therapeutic delivery in rabbit model. Saudi Pharm J 2020; 28(2): 201-9.
[http://dx.doi.org/10.1016/j.jsps.2019.11.022] [PMID: 32042259]
[88]
Ahmed S, El-Setouhy DA, El-Latif Badawi AA, El-Nabarawi MA. Provesicular granisetron hydrochloride buccal formulations: In vitro evaluation and preliminary investigation of in vivo performance. Eur J Pharm Sci 2014; 60: 10-23.
[http://dx.doi.org/10.1016/j.ejps.2014.04.013] [PMID: 24793896]
[89]
Meng-Lund E, Jacobsen J, Müllertz A, Jørgensen EB, Holm R. Buccal absorption of diazepam is improved when administered in bioadhesive tablets-An in vivo study in conscious Göttingen mini-pigs. Int J Pharm 2016; 515(1-2): 125-31.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.084] [PMID: 27697631]
[90]
Silva RD, Campos DR, Oliveira PD, et al. Efficacy of chitosan gel mucoadhesive containing doxycycline associated or not to meloxicam as adjuvant to treatment of gingivitis in dogs with periodontal disease. Rev Bras Med Vet 2016; 38(Suppl. 2): 40-4.
[91]
Eleftheriadis GK, Ritzoulis C, Bouropoulos N, et al. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: In vitro and ex vivo evaluation. Eur J Pharm Biopharm 2019; 144: 180-92.
[http://dx.doi.org/10.1016/j.ejpb.2019.09.018] [PMID: 31550525]
[92]
Alansari K, Barkat M, Mohamed AH, Al Jawala SA, Othman SA. Intramuscular versus Buccal Midazolam for Pediatric seizures: A randomized double-blinded trial. Pediatr Neurol 2020; 109: 28-34.
[http://dx.doi.org/10.1016/j.pediatrneurol.2020.03.011] [PMID: 32387007]
[93]
Sneha R, Hari BV, Devi DR. Design of antiretroviral drug-polymeric nanoparticles laden buccal films for chronic HIV therapy in paediatrics. Colloid and Interface Science Communications 2018; 27: 49-59.
[http://dx.doi.org/10.1016/j.colcom.2018.10.004]
[94]
Abruzzo A, Nicoletta FP, Dalena F, Cerchiara T, Luppi B, Bigucci F. Bilayered buccal films as child-appropriate dosage form for systemic administration of propranolol. Int J Pharm 2017; 531(1): 257-65.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.070] [PMID: 28811117]
[95]
Trastullo R, Abruzzo A, Saladini B, et al. Design and evaluation of buccal films as paediatric dosage form for transmucosal delivery of ondansetron. Eur J Pharm Biopharm 2016; 105: 115-21.
[http://dx.doi.org/10.1016/j.ejpb.2016.05.026] [PMID: 27267732]
[96]
Khan S, Boateng JS, Mitchell J, Trivedi V. Formulation, characterisation and stabilisation of buccal films for paediatric drug delivery of omeprazole. AAPS PharmSciTech 2015; 16(4): 800-10.
[http://dx.doi.org/10.1208/s12249-014-0268-7] [PMID: 25559373]
[97]
De Caro V, Giandalia G, Siragusa MG, Sutera FM, Giannola LI. New prospective in treatment of Parkinson’s disease: Studies on permeation of ropinirole through buccal mucosa. Int J Pharm 2012; 429(1-2): 78-83.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.022] [PMID: 22465630]
[98]
Woo SB, Sonis ST. Recurrent aphthous ulcers: A review of diagnosis and treatment. J Am Dent Assoc 1996; 127(8): 1202-13.
[http://dx.doi.org/10.14219/jada.archive.1996.0412] [PMID: 8803396]
[99]
Messadi DV, Younai F. Aphthous ulcers. Dermatol Ther 2010; 23(3): 281-90.
[http://dx.doi.org/10.1111/j.1529-8019.2010.01324.x] [PMID: 20597946]
[100]
Akintoye SO, Greenberg MS. Recurrent aphthous stomatitis. Dent Clin North Am 2005; 49(1): 31-47. vii-viii.
[http://dx.doi.org/10.1016/j.cden.2004.08.001] [PMID: 15567359]
[101]
Chavan M, Jain H, Diwan N, Khedkar S, Shete A, Durkar S. Recurrent aphthous stomatitis: A review. J Oral Pathol Med 2012; 41(8): 577-83.
[http://dx.doi.org/10.1111/j.1600-0714.2012.01134.x] [PMID: 22413800]
[102]
Edgar NR, Saleh D, Miller RA. Recurrent aphthous stomatitis: A review. J Clin Aesthet Dermatol 2017; 10(3): 26-36.
[PMID: 28360966]
[103]
Baccaglini L, Lalla RV, Bruce AJ, et al. Urban legends: Recurrent aphthous stomatitis. Oral Dis 2011; 17(8): 755-70.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01840.x] [PMID: 21812866]
[104]
Laffleur F. Mucoadhesive polymers for buccal drug delivery. Drug Dev Ind Pharm 2014; 40(5): 591-8.
[http://dx.doi.org/10.3109/03639045.2014.892959] [PMID: 24576266]
[105]
Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm 2002; 28(6): 621-30.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[106]
Beier W, Horstkotte E. Nanoparticles comprising Tacrolimus. US Patent 20200170934A1, 2019.
[107]
Nielsen KA. Mucoadhesive Oromucosal formulation comprising a Nicotine complex. US Patent 20200085806A1, 2016.
[108]
Omar AM, Ahmed TA. Pullulan based vinpocetine tablets, lyoplant- tabs, as a buccal solid dosage form US Patent 10668020B1, 2019.
[109]
Dugger HA, El-Shafy MA. Buccal, polar and non-polar spray containing Zolipidem. US Patent 20200061034A1, 2019.
[110]
Xiao K, Zhanqiu Y, Shun L. Anti-influenza virus buccal tablet and preparation method thereof. CN Patent 106038686B, 2020.
[111]
José JEC, Pablo SC, Cristian FER. Mucoadhesive buccal patch optimized for the unidirectional administration of pharmaceutical compounds. MX Patent 2017012751A, 2019.
[112]
Zhao Y, Hughey J, Vaughn J, Fang Q. Soft lozenge compositions. US Patent 10188662B2, 2019.
[113]
Boyer S, Hubinette F, Ingemarsson L, Suchdev S. Pharmaceutical formulation. CA Patent 3056992A1, 2018.
[114]
Guo YG, Singh AP. Emerging strategies for enhancing buccal and sublingual administration of nutraceuticals and pharmaceuticals. J Drug Deliv Sci Technol 2019; 52: 440-51.
[http://dx.doi.org/10.1016/j.jddst.2019.05.014]
[115]
Puri VI, Sharma AM, Maman PA, Rathore NI, Singh IN. Overview of mucoadhesive biopolymers for buccal drug delivery systems. Int J App Pharm 2019; 11: 18-29.
[http://dx.doi.org/10.22159/ijap.2019v11i6.35438]
[116]
Hua S. Advances in drug formulation of the sublingual and buccal routes for gastrointestinal drug delivery. Front Pharmacol 2019; 10.
[http://dx.doi.org/10.3389/fphar.2019.01328] [PMID: 31827435]
[117]
Esposito D, Conte C, d’Angelo I, Miro A, Ungaro F, Quaglia F. Mucoadhesive zein/beta-cyclodextrin nanoparticles for the buccal delivery of curcumin. Int J Pharm 2020; 586: 119587.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119587] [PMID: 32619690]
[118]
Okafor NI, Ngoepe M, Noundou XS, Krause RW. Nano-enabled liposomal mucoadhesive films for enhanced efavirenz buccal drug delivery. J Drug Deliv Sci Technol 2019; 54: 101312-22.
[http://dx.doi.org/10.1016/j.jddst.2019.101312]
[119]
Salve P, Bali N. Fabrication and optimization of buccal film comprising rizatriptan benzoate loaded solid lipid nanoparticles for improved ex vivo permeation. J Drug Deliv Ther 2019; 9(3-s): 636-48.
[120]
Murgia D, Angellotti G, D’Agostino F, De Caro V. Bioadhesive matrix tablets loaded with lipophilic nanoparticles as vehicles for drugs for periodontitis treatment: Development and characterization. Polymers (Basel) 2019; 11(11): 1801-19.
[http://dx.doi.org/10.3390/polym11111801] [PMID: 31684081]
[121]
Reda RI, Wen MM, El-Kamel AH. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis. Int J Nanomedicine 2017; 12: 2335-51.
[http://dx.doi.org/10.2147/IJN.S131253] [PMID: 28392691]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy