Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

General Review Article

Role of Nanotechnology in Electronics: A Review of Recent Developments and Patents

Author(s): Payal* and Parijat Pandey

Volume 16, Issue 1, 2022

Published on: 20 January, 2021

Page: [45 - 66] Pages: 22

DOI: 10.2174/1872210515666210120114504

Price: $65

Abstract

Background: Nanotechnology assures to be the base of the upcoming industrial revolution. The role that nanotechnology plays in electronic devices became a question of concern among the researchers when nanotechnology started to be the focal point of research programs in the developed and developing countries of the world. Nanoelectronics, formed by combining nanotechnology and electronics, deals with the handling, characterization, engineering, and manufacturing of electronic devices at the nanoscale.

Method: By reducing the size of materials, their electronic properties alter, and inter-atomic interactions and quantum effects gain significant importance. The challenge lies in interpreting their electronic properties at nanoscale so that they can be exploited for use in new generation electronic devices. The need to trim downsize and have a higher component density have ushered us into an era of nanoelectronics.

Results: This work presents a detailed review of nanotechnology, its approach towards nanoelectronics, classification and types of nanomaterials used in nanoelectronics, application areas of nanoelectronics and measuring instruments with characterization at nanoscale. Also, the work incorporates latest developments and patents in nanoelectronics.

Conclusion: In this manuscript, the authors have reviewed different aspects of nanotechnology in the field of electronics, recent patents and related advancements.

Keywords: Nanotechnology, nanomaterials, nanoelectronics, applications, nanometrology, patents.

Graphical Abstract
[1]
Siwach R, Pandey P, Chawla V, Dureja H. Role of nanotechnology in diabetic management. Recent Pat Nanotechnol 2019; 13(1): 28-37.
[http://dx.doi.org/10.2174/1872210513666190104122032] [PMID: 30608045]
[2]
Balzani V. Nanoscience and nanotechnology: a personal view of a chemist. Small 2005; 1(3): 278-83.
[http://dx.doi.org/10.1002/smll.200400010] [PMID: 17193444]
[3]
Thassu D, Deleers M, Pathak Y. Nanoparticulate drug-delivery systems: An overview. Drug Dev Ind Pharm 2008; 34(1): 1-31.
[4]
Lugani Y, Kaur G, Oberoi S, Sooch BS. Nanotechnology: Current applications and future prospects. World J Adv Healthcare Res 2018; 2(5): 137-9.
[6]
Kandil MM. The role of nanotechnology in electronic properties of materials https://www.researchgate.net/publication/304039202
[7]
Atkinson WI. NANOCOSM: Nanotechnology and the big changes coming from the inconceivably small, AMACOMAmerican Management Association, New York. DEStech Publication. Inc 2005; 1: 1-85.
[8]
Whitesides GM, Lipomi DJ. Soft nanotechnology: “structure” vs. “function. Faraday Discuss 2009; 143: 373-84.
[http://dx.doi.org/10.1039/b917540g] [PMID: 20334113]
[9]
Askew B. MEMS: A brief overview https://www.mouser.in/applications/mems-overview/
[10]
Jensen K, Weldon J, Garcia H, Zettl A, Zettl A. Nanotube radio. Nano Lett 2007; 7(11): 3508-11.
[http://dx.doi.org/10.1021/nl0721113] [PMID: 17973438]
[11]
Tian B, Zheng X, Kempa TJ, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007; 449(7164): 885-9.
[http://dx.doi.org/10.1038/nature06181] [PMID: 17943126]
[12]
Monthioux M, Kuznetsov V. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006; 44(9): 1621-3.
[http://dx.doi.org/10.1016/j.carbon.2006.03.019]
[13]
Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(6348): 56-8.
[http://dx.doi.org/10.1038/354056a0]
[15]
Ezema IC, Ogbobe PO, Omah AD. Initiatives and strategies for development of nanotechnology in nations: a lesson for Africa and other least developed countries. Nanoscale Res Lett 2014; 9(1): 133.
[http://dx.doi.org/10.1186/1556-276X-9-133] [PMID: 24650295]
[16]
Vaidman L. Quantum theory and determinism. Quantum Stud: Math Found 2014; 1: 5-38.
[http://dx.doi.org/10.1007/s40509-014-0008-4]
[17]
Park B. Current and future applications of nanotechnology.Issues in environmental science and technology. GBP Consulting Ltd 2007; Vol. 24: 1-18.
[18]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[19]
Wagner S, Gondikas A, Neubauer E, Hofmann T, von der Kammer F. Spot the difference: engineered and natural nanoparticles in the environment--release, behavior, and fate. Angew Chem Int Ed Engl 2014; 53(46): 12398-419.
[http://dx.doi.org/10.1002/anie.201405050] [PMID: 25348500]
[20]
Edvinsson T. Optical quantum confinement and photocatalytic properties in two-, one- and zero-dimensional nanostructures. R Soc Open Sci 2018; 5(9): 180387-94.
[http://dx.doi.org/10.1098/rsos.180387] [PMID: 30839677]
[21]
Melosh NA, Boukai A, Diana F, et al. Ultrahigh-density nanowire lattices and circuits. Science 2003; 300(5616): 112-5.
[http://dx.doi.org/10.1126/science.1081940] [PMID: 12637672]
[22]
Pokropivny VV, Skorokhod VV. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 2007; 27(5-8): 990-3.
[http://dx.doi.org/10.1016/j.msec.2006.09.023]
[23]
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007; 2(4): MR17-71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[24]
Anbazhagan M, Ramachandran S, Subramanian P, Nachimuthu R, Gothandam KM. Nanomaterials: classification, biological synthesis and characterizationNanoscience in Food and Agriculture. Springer International Publishing Switzerland 2016; 3: 31-71.
[25]
Zhang Y, Yin Q-Z. Carbon and other light element contents in the Earth’s core based on first-principles molecular dynamics. Proc Natl Acad Sci USA 2012; 109(48): 19579-83.
[http://dx.doi.org/10.1073/pnas.1203826109] [PMID: 23150591]
[26]
Allègre CJ, Poirier J-P, Humler E, Hofmann AW. The chemical composition of the Earth. Earth Planet Sci Lett 1995; 134: 515-26.
[http://dx.doi.org/10.1016/0012-821X(95)00123-T]
[27]
Marty B, Alexander CMO, Raymond SN. Primordial origins of earth’s carbonRev Mineral Geochem 2013; 75: 149-81.
[http://dx.doi.org/10.2138/rmg.2013.75.6]
[28]
Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev 2010; 110(1): 132-45.
[http://dx.doi.org/10.1021/cr900070d] [PMID: 19610631]
[29]
Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007; 6(3): 183-91.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[30]
Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature 2012; 490(7419): 192-200.
[http://dx.doi.org/10.1038/nature11458] [PMID: 23060189]
[31]
Donnet JB. Carbon black: Science and technology. Marcel Dekker 1993.
[32]
Rupprecht L. Conductive polymers and plastics in industrial applications. 1st ed. William Andrew Publishing 1999.
[33]
Alammar T, Hamm I, Grasmik V, Wark M, Mudring A-V. Microwave-assistedsynthesis of perovskite SrSnO3 nanocrystals in ionic liquids for photocatalytic applications. Inorg Chem 2017; 56(12): 6920-32.
[http://dx.doi.org/10.1021/acs.inorgchem.7b00279] [PMID: 28581732]
[34]
Conly A. Mining carbon to decrease the carbon footprint. Scientia 2017; 112: 17-20.
[35]
Bowers B. History of electric light and power. 1st ed. London, UK: Peter Peregrinus Ltd. 1982; Vol. 55: pp. 71-2.
[36]
Brandt NB, Chudinov SM, Ponomarev YG. Semimetals graphite and its compounds; modern problem in condensed matter sciences series. 1st ed. Amsterdam, The Netherlands: Elsevier 1988.
[37]
Wu Y, Lin YM, Bol AA, et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 2011; 472(7341): 74-8.
[http://dx.doi.org/10.1038/nature09979] [PMID: 21475197]
[38]
Mildren RP. Intrinsic optical properties of diamondOptical engineering of diamond Mildren, RP; Rabeau, JR; Eds; Wiley-VCH Verlag GmbH & Co KGaA:Weinheim, Germany 2001; pp 1-34
[39]
Deneuville A. Electronic properties, devices and applications of diamond thin films. Acad Sci 2000; 1: 81-90.
[http://dx.doi.org/10.1016/S1296-2147(00)00102-5]
[40]
Wei L, Kuo PK, Thomas RL, Anthony TR, Banholzer WF. Thermal conductivity of isotopically modified single crystal diamond. Phys Rev Lett 1993; 70(24): 3764-7.
[http://dx.doi.org/10.1103/PhysRevLett.70.3764] [PMID: 10053956]
[41]
Hausmann BJM, Khan M, Zhang Y, et al. Fabrication of diamond nanowires for quantum information processing applications. Diamond Related Materials 2010; 19: 621-9.
[http://dx.doi.org/10.1016/j.diamond.2010.01.011]
[42]
Hamzah A, Selvarajan RS, Majlis B. Graphene for Biomedical Applications: A Review. Sains Malays 2017; 46(7): 1125-39.
[http://dx.doi.org/10.17576/jsm-2017-4607-16]
[43]
Ferrari AC. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 2007; 143: 47-57.
[http://dx.doi.org/10.1016/j.ssc.2007.03.052]
[44]
Soldano C, Mahmood A, Dujardin E. Production, properties, and potential of graphene. Carbon 2010; 48: 2127-50.
[http://dx.doi.org/10.1016/j.carbon.2010.01.058]
[45]
Botas C, Álvarez P, Blanco P, et al. Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 2013; 65: 156-64.
[http://dx.doi.org/10.1016/j.carbon.2013.08.009]
[46]
Mattevi BC, Eda G, Agnoli S, et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 2009; 8854: 2577-83.
[http://dx.doi.org/10.1002/adfm.200900166]
[47]
Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai R, Ajayan PM. Direct synthesis of long single-walled carbon nanotube strands. Science 2002; 296(5569): 884-6.
[http://dx.doi.org/10.1126/science.1066996] [PMID: 11988567]
[48]
Sun H, She P, Lu G. Recent advances in the development of functionalized carbon nanotubes: A versatile vector for drug delivery. J Mater Sci 2014; 49: 6845-54.
[http://dx.doi.org/10.1007/s10853-014-8436-4]
[49]
Shvedova AA, Kisin ER, Mercer R, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005; 289(5): L698-708.
[http://dx.doi.org/10.1152/ajplung.00084.2005] [PMID: 15951334]
[50]
Lam C-W, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 2006; 36(3): 189-217.
[http://dx.doi.org/10.1080/10408440600570233] [PMID: 16686422]
[51]
Jia G, Wang H, Yan L, et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 2005; 39(5): 1378-83.
[http://dx.doi.org/10.1021/es048729l] [PMID: 15787380]
[52]
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7): 823-39.
[http://dx.doi.org/10.1289/ehp.7339] [PMID: 16002369]
[53]
Yildirim T, Ciraci S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys Rev Lett 2005; 94(17): 175501-14.
[http://dx.doi.org/10.1103/PhysRevLett.94.175501] [PMID: 15904309]
[54]
Zhao Y, Kim Y-H, Dillon AC, Heben MJ, Zhang SB. Hydrogen storage in novel organometallic buckyballs. Phys Rev Lett 2005; 94(15): 155504-19.
[http://dx.doi.org/10.1103/PhysRevLett.94.155504] [PMID: 15904160]
[55]
Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36(13): R167-76.
[http://dx.doi.org/10.1088/0022-3727/36/13/201]
[56]
Zhang W-X. Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 2003; 5: 323-30.
[http://dx.doi.org/10.1023/A:1025520116015]
[57]
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275(1): 177-82.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[58]
Bansal V, Poddar P, Ahmad A, Sastry M. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 2006; 128(36): 11958-63.
[http://dx.doi.org/10.1021/ja063011m] [PMID: 16953637]
[59]
Poole CP, Owens FJ. Introduction to nanotechnology. 1st ed. Hoboken, New Jersey: John Wiley & Sons, Inc. 2003.
[60]
Toma FL, Bertand G, Klein D, Coddet C. Photocatalytic removal of nitrogen oxides via titanium oxide. Environ Chem Lett 2004; 2: 117-22.
[http://dx.doi.org/10.1007/s10311-004-0087-2]
[61]
Matthews RW. Photocatalytic oxidation of organic contaminants in water: An aid to environmental preservation. Pure Appl Chem 1992; 64: 1285-90.
[http://dx.doi.org/10.1351/pac199264091285]
[62]
Aizenberg J, Hanson J, Koetzle TF, Weiner S, Addadi L. Control of macromolecule distribution within synthetic and biogenic single calcite crystals. J Am Chem Soc 1997; 119: 881-6.
[http://dx.doi.org/10.1021/ja9628821]
[63]
Nuraje N, Su K, Haboosheh A, et al. Room temperature synthesis of ferroelectric barium titanate nanoparticles using peptide nanorings as templates. Adv Mater 2006; 18(6): 807-11.
[http://dx.doi.org/10.1002/adma.200501340] [PMID: 31031545]
[64]
Klem MT, Resnick DA, Gilmore K, Young M, Idzerda YU, Douglas T. Synthetic control over magnetic moment and exchange bias in all-oxide materials encapsulated within a spherical protein cage. J Am Chem Soc 2007; 129(1): 197-201.
[http://dx.doi.org/10.1021/ja0667561] [PMID: 17199299]
[65]
Lang C, Schüler D, Faivre D. Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol Biosci 2007; 7(2): 144-51.
[http://dx.doi.org/10.1002/mabi.200600235] [PMID: 17295401]
[66]
Chavali M, Nikolova M. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci 2019; 1: 1007-15.
[http://dx.doi.org/10.1007/s42452-019-0592-3]
[67]
Klem MT, Mosolf J, Young M, Douglas T. Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage. Inorg Chem 2008; 47(7): 2237-9.
[http://dx.doi.org/10.1021/ic701740q] [PMID: 18307300]
[68]
Kim JH, Kim CS, Ignacio RM, et al. Immunotoxicity of silicon dioxide nanoparticles with different sizes and electrostatic charge. Int J Nanomedicine 2014; 9(2)(Suppl. 2): 183-93.
[http://dx.doi.org/10.2147/IJN.S57934] [PMID: 25565836]
[69]
Cavallaro G, Lazzara G, Parisi F, Riela S, Milioto S. Nanoclays for conservationAdvanced nanomaterials, nanotechnologies and nanomaterials for diagnostic, conservation and restoration of cultural heritage. Elsevier 2019; pp. 149-70.
[http://dx.doi.org/10.1016/B978-0-12-813910-3.00008-2]
[70]
Klimov VI, Mikhailovsky AA, Xu S, et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000; 290(5490): 314-7.
[http://dx.doi.org/10.1126/science.290.5490.314] [PMID: 11030645]
[71]
Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng 2005; 7: 55-76.
[http://dx.doi.org/10.1146/annurev.bioeng.7.060804.100432] [PMID: 16004566]
[72]
Bailey RE, Smith AM, Nie SM. Quantum dots in biology and medicine Phys E: Low-dimensional syst and nanostructure 2004; 25(1): 1-12.
[73]
Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interface Sci 2012; 170(1-2): 2-27.
[http://dx.doi.org/10.1016/j.cis.2011.11.001] [PMID: 22154364]
[74]
Aviram A. Molecules for memory, logic, and amplification. J Am Chem Soc 1988; 110(17): 5687-92.
[http://dx.doi.org/10.1021/ja00225a017]
[75]
Jayendran A, Jayendran R. Conductors, insulators, and semiconductors Englisch für Elektroniker Viewegs Fachbücher der Technik Vieweg+Teubner Verlag 1996
[http://dx.doi.org/10.1007/978-3-322-84907-6_1]
[76]
Cavallari MR, Santos G, Fonseca FJ. NanoelectronicsNanoscience and its application 2017.
[77]
Ratner M. A brief history of molecular electronics. Nat Nanotechnol 2013; 8(6): 378-81.
[http://dx.doi.org/10.1038/nnano.2013.110] [PMID: 23736207]
[78]
Volinsky AA. ASME Meeting of the applied mechanics and material division, proceedings of the symposium on characterization and mechanical reliability of advanced electronic materials at nanoscale, 2003 ASME Mechanics and Materials Conference .
[79]
LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol 2003; 21(10): 1184-91.
[http://dx.doi.org/10.1038/nbt876] [PMID: 14520404]
[80]
Luke G, Gregory G. Quantum confinement: Size on the grill. J Phys Chem Solids 2020; 1: 109320-9.
[81]
Yoffe AD. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 1993; 42(2): 173-262.
[http://dx.doi.org/10.1080/00018739300101484]
[82]
Matthew D, Randy E. Multiple exciton generation in semiconductor nanocrystals: toward efficient solar energy conversion. Laser Photonics Rev 2008; 2(5): 377-99.
[http://dx.doi.org/10.1002/lpor.200810013]
[83]
Li B-M, Hu M-L, Fan H. Quantum coherence. Wuli Xuebao 2019; 1: 68-76.
[PMID: 30191684]
[84]
Cavalcanti A, Shirinzadeh B, Zhang M, Kretly LC. Nanorobot hardware architecture for medical defense. Sensors (Basel) 2008; 8(5): 2932-58.
[http://dx.doi.org/10.3390/s8052932] [PMID: 27879858]
[85]
Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006; 23(7): 1417-50.
[http://dx.doi.org/10.1007/s11095-006-0284-8] [PMID: 16779701]
[86]
Dwivedi N, Kumar S, Carey JD, Dhand C. Functional nanomaterials for electronics, optoelectronics, and bioelectronics. J Nanomater 2015; 1: 1-2.
[http://dx.doi.org/10.1155/2015/136465]
[87]
Ramsden JJ. NanometrologyNanotechnology Science direct 2016; pp 91-22
[88]
Pandey P, Marwaha RK, Nanda A, Dureja H. Spray-dried nanoparticles-in-microparticles system (NiMS) of acetazolamide using central composite design. Nanosci Nanotechnol Asia 2016; 6(2): 146-56.
[http://dx.doi.org/10.2174/2210681206666160402004241]
[89]
Umberto C. Atomic Force Microscopy for Nanoelectronics 1sted IMECLeuven, Belgium. 2019.
[90]
Sanders WC. Introduction to Atomic Force Microscopy 1sted. CRC Press 2019.
[91]
Herrera-Basurto R, Simonet BM. NanometrologyEncyclopedia of Analytical Chemistry 2000; pp 1-12.
[92]
Vavia PR, Swaminathan S, Trotta F. Application of nanosponges in drug delivery Proceedings 12th International Cyclodextrin Symposium May 14-17; Turin, Italy Berlin: Springer 2006.
[93]
Ramnik S, Nitin B, Horemat SN. Characterization of cyclodextrin inclusion complexes – A review. J Pharm Sci Technol 2010; 2(3): 171-83.
[94]
Lojkowski W, Turan R, Proykova A, Aniszewska A. NanometrologyEncyclopedia Analytical Chemistry. John Wiley and Sons 2013.
[95]
Bunaciu AA, Udriştioiu EG, Aboul-Enein HY. X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem 2015; 45(4): 289-99.
[http://dx.doi.org/10.1080/10408347.2014.949616] [PMID: 25831472]
[96]
Petkov V. Nanostructure by high-energy X-ray diffraction. Mater Today 2008; 11(8): 28-38.
[http://dx.doi.org/10.1016/S1369-7021(08)70236-0]
[97]
Singh D, Soni GC, Prajapati SK. Recent advances in nanosponges as drug delivery system: A review article. Eur J Pharm Med Res 2016; 3(10): 364-71.
[98]
Echlin P. Handbook of sample preparation for scanning electron microscopy and X rays microanalysis. 1st ed. Springer 2009.
[http://dx.doi.org/10.1007/978-0-387-85731-2]
[99]
Griffiths P, de Hasseth JA. Fourier Transform Infrared Spectrometry. Wiley-Blackwell 2007.
[http://dx.doi.org/10.1002/047010631X]
[100]
Shivani S, Poladi KK. Nanosponges – Novel emerging drug delivery system: A review. Int J Pharm Sci Res 2015; 6(2): 529-40.
[101]
Aithal KS, Udupa N, Srinivasan KK. Physicochemical properties of drug cyclodextrin complexes. Indian Drugs 2008; 32: 293-305.
[102]
Pandey P, Purohit D, Dureja H. Nanosponges –A promising novel drug delivery system. Recent Pat Nanotechnol 2018; 12(3): 180-91.
[http://dx.doi.org/10.2174/1872210512666180925102842] [PMID: 30251614]
[103]
Toshishige Y. Nanoelectronics applicationsIn: Carbon nanotubes. 1st ed. CRC Press 2004.
[104]
Graham AP, Duesberg GS, Seidel RV, et al. Carbon nanotubes for microelectronics? Small 2005; 1(4): 382-90.
[http://dx.doi.org/10.1002/smll.200500009] [PMID: 17193459]
[105]
Liu X, Chen C, Sharma P, et al. Phys E 2015; 74: 451-6.
[http://dx.doi.org/10.1016/j.physe.2015.07.036]
[106]
Lu W, Lieber CM. Topical review: Semiconductor nanowires. J Phys D Appl Phys 2006; 39: 387-406.
[http://dx.doi.org/10.1088/0022-3727/39/21/R01]
[107]
Naif YH. A review on transistors in nano dimensions. Int J Eng Sci 2015; 4: 8-18.
[108]
Nsofor EC. Recent patents on nano fluids (nanoparticles in liquids) heat transfer. J Recent Pat Mechanical Eng 2008; 1: 190-7.
[http://dx.doi.org/10.2174/2212797610801030190]
[109]
Lundgaard LE, Hansen W, Linhjell D, Painter T. Ageing of mineral oil impregnated cellulose by acid catalysis. IEEE Trans Dielectr Electr Insul 2008; 15: 540-6.
[http://dx.doi.org/10.1109/TDEI.2008.4483475]
[110]
Zhou Y-X, Wang Y-S, Tian JH. Breakdown characteristics in transformer oil modified by nanoparticles. High Voltage Eng 2010; 36: 1155-9.
[113]
Zhuang J, Liu P, Dai W, et al. A novel application of nano anticontamination technology for outdoor high‐voltage ceramic insulators. Int J Appl Ceram Technol 2010; 7: 46-53.
[http://dx.doi.org/10.1111/j.1744-7402.2009.02395.x]
[114]
Meng Y, Gong G, Wu Z, Yin Z, Xie Y, Liu S. Fabrication and microstructure investigation of ultra-high-strength porcelain insulator. J Eur Ceram Soc 2012; 32: 3043-9.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2012.04.015]
[115]
Islam RA, Chan YC, Islam Md F. Structure-property relationship in high-tension ceramic insulator fired at high temperature. Mater. Sci. Eng. B-Solid 2004; 106: 132-40.
[http://dx.doi.org/10.1016/j.mseb.2003.09.005]
[116]
Yaya A, Tiburu EK, Vickers ME, Efavi JK, Onwona-Agyeman B, Knowes KM. Characterization and identification of local kaolin clay from Ghana: a potential material for electro porcelain insulator fabrication. Appl Clay Sci 2017; 150: 125-30.
[http://dx.doi.org/10.1016/j.clay.2017.09.015]
[117]
Pyrhönen J, Montonen J, Lindh P, Vauterin JJ, Otto M. Replacing copper with new carbon nanomaterials in electrical machine windings. Int Rev Electrical Eng 2015; 10: 1-10.
[http://dx.doi.org/10.15866/iree.v10i1.5253]
[118]
Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber. Science 2007; 318(5858): 1892-5.
[http://dx.doi.org/10.1126/science.1147635] [PMID: 18006708]
[119]
White CT, Todorov TN. Carbon nanotubes as long ballistic conductors. Nature 2007; 393: 240-2.
[http://dx.doi.org/10.1038/30420]
[120]
Poncharal P, Berger C, Yi Y, Wang ZL, de Heer WA. Room temperature ballistic conduction in carbon nanotubes. J Phys Chem B 2002; 106: 12104-18.
[http://dx.doi.org/10.1021/jp021271u]
[121]
Kurzepa L, Lekawa-Raus A, Patmore J, Koziol K. Replacing copper wires with carbon nanotube wires in electrical transformers. Adv Funct Mater 2014; 24: 619-24.
[http://dx.doi.org/10.1002/adfm.201302497]
[122]
Kumar R, Baghel O, Sidar S, Sen P, Bohidar S. Applications of nanorobotics. Int J Sci Res Eng Technol 2014; 3(8): 1-11.
[123]
Cavalcanti A, Shirinzadeh B, Kretly LC. Medical nanorobotics for diabetes control. Nanomedicine (Lond) 2008; 4(2): 127-38.
[http://dx.doi.org/10.1016/j.nano.2008.03.001] [PMID: 18455965]
[124]
Pandey P, Dureja H. Recent patents on polymeric nanoparticles for cancer therapy. Recent Pat Nanotechnol 2018; 12(2): 155-69.
[http://dx.doi.org/10.2174/1872210512666180327120648] [PMID: 29589551]
[125]
Durgakeri B, Naik D, Viraktamath S. Application of nanorobots in medical field. Int J Res Comm Eng 2016; 6: 1-10.
[126]
Elmustafa S, Ahmed A, Sohal HS. Nanotechnology in communication engineering: issues, applications, and future possibilities. World Scient News 2017; 66: 134-48.
[127]
Sun Y, Wang HH, Xia M. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: A quantitative high-resolution XPS and TPD/TPR study. J Phys Chem C 2008; 112: 1250-9.
[http://dx.doi.org/10.1021/jp076965n]
[128]
Abbas EG. Trends in CMOS image sensor technology and design 2001.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.7812&rep=rep1&type=pdf
[129]
Xiang Du . Surface engineered two-dimensional and quasi-one-dimensional nanomaterials for electronic and optoelectronic devicesPhD Thesis, National University of Singapore 2015.
[130]
Zhang X, Butler W. Theory of giant magnetoresistance and tunneling magnetoresistanceHandbook of Spintronics. Springer 2015.
[http://dx.doi.org/10.1007/978-94-007-7604-3_2-1]
[131]
Burgess D. ZnO nanowire LEDs have UV output. Photon Spectra 2006; 1: 135-6.
[133]
Zhou L, Wanga A, Wu SC, Sun J, Park S, Jackson TN. All-organic active matrix flexible display. Appl Phys Lett 2006; 88(8): 083502-12.
[http://dx.doi.org/10.1063/1.2178213]
[135]
Asim N, Sopian K. Perspective of Nanomaterials in Solar Cell. Int J Nanosci 2011; 10(6): 1197-208.
[http://dx.doi.org/10.1142/S0219581X1100840X]
[136]
Matsui I. Nanoparticles for electronic device applications: a brief review. Chem Eng J 2005; 38(8): 535-46.
[http://dx.doi.org/10.1252/jcej.38.535]
[137]
Weiss P. Quantum-dot leap. Sci News Online 2006; 169(22): 344-8.
[http://dx.doi.org/10.2307/4019198]
[138]
Endo M, Hayashi T, Kim YA, Muramatsu H. Development and application of carbon nanotubes. Jpn J Appl Phys 2006; 45(6A): 4883-92.
[http://dx.doi.org/10.1143/JJAP.45.4883]
[139]
Ball P. Nano lasers grown like snowflakes. Nat Mater 2003; 1: 1-10.
[141]
Simonite T. Paint-on laser brings optical computing closer 2006.https://www.newscientist.com/article/dn9017-paint-on-laser-brings-optical-computing-closer
[143]
Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110): 920-6.
[http://dx.doi.org/10.1126/science.8493529] [PMID: 8493529]
[144]
Langer R, Vacanti JP. Artificial organs. Sci Am 1995; 273(3): 130-3.
[PMID: 7652530]
[145]
Mirfakhrai T, Madden JDW, Baughman RH. Nanoelectronics and material development. Mater Today 2007; 10: 308-16.
[146]
Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. A rubberlike stretchable active matrix using elastic conductors. Science 2008; 321(5895): 1468-72.
[http://dx.doi.org/10.1126/science.1160309] [PMID: 18687922]
[147]
Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci USA 2004; 101(27): 9966-70.
[http://dx.doi.org/10.1073/pnas.0401918101] [PMID: 15226508]
[148]
Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 2005; 102(35): 12321-5.
[http://dx.doi.org/10.1073/pnas.0502392102] [PMID: 16107541]
[149]
Lea R. Turning single atoms into atomic machines: The future of fuel cells https://www.azonano.com/article.aspx?ArticleID=5497
[150]
Nanoveu Nanoveu's antiviral nanotechnology for smartphones https://www.azonano. com/article.aspx?ArticleID=5495
[151]
Ben P. Can doping with nanoparticles be more beneficial insensors? https://www.azonano.com/article.aspx?ArticleID=5478
[152]
Sarah M. Treating side effects in cancer using sugar-coated nanoparticles https://www.azonano.com/article.aspx?ArticleID=5447
[153]
Sarah M. Circuit boards by nano dimension https://www.azonano.com/article.aspx?ArticleID=5394
[154]
Improving image resolution in atomic force microscopy for semiconductor applications https://www.azonano.com/article.aspx?ArticleID=5415
[155]
Using nanoimprinting for optics applications https://www.azonano.com/article.aspx? ArticleID=5414
[156]
Lea R. Controlling electromagnetic properties in ‘space metal’ for spintronic computing https://www.azonano.com/article.aspx?ArticleID=5489
[157]
Bose P. The role of nanotechnology in virus detection https://www.azonano.com/article.aspx?ArticleID=5488
[158]
Critchley L. How could cellulose nanomaterials improve capacity for renewable energy storage? https://www.azonano.com/article.aspx?ArticleID=5458
[159]
Sarah M. Quantum dot for nano fluorescent semiconductors https://www.azonano.com/article.aspx?ArticleID=5388
[160]
Sarah M. Photovoltaic nanostructures for optoelectronics https://www.azonano.com/article.aspx?ArticleID=5391
[161]
Gusev EE, Dyuzhev NA. X-ray source RU196038U1, 2020.
[162]
Mikaeva SA, Mikaeva AS, Boychuk MI, Petrenko YP, Komarov VA. Solarradiation simulator RU2713914C1, 2020.
[163]
Klimin VS, Rezvan AA. Gas-sensitive sensor based on carbon nanostructures RU196523U1 2020.
[164]
Minin IV. A device for nanostructuring the surface of a dielectric substrate using near-field lithography RU195551U1, 2020.
[165]
Lihua J, Tao W, Yu P, et al. Silicon quantum dot-containing multilayer film and preparation method thereof CN108461386B, 2020.
[166]
Chen W, Wei W. Frequency-tunable high-sensitivity carbon nanotube quantum dot THz detector CN209766453U, 2019.
[167]
Varadan V, Rai P, Mathur G. Methods and apparatus for high throughput SEM and AFM for characterization of nanostructured surfaces US10438772B2, 2019.
[168]
Seong-Geun Y. Manufacturing method of single silicon nanowire device based-on standard photolithography KR102035505B1, 2019.
[169]
Zhang J, Wei Y, Jiang K, Shoushan S. Semiconductor structure and semiconductor parts JP6621498B2, 2019.
[170]
Zhang J, Wei Y, Jiang K, Shoushan S. Semiconductor element and semiconductor component JP6621499B2, 2019.
[171]
Kizner VG, Streltsov MV, Novopashin SA. Method of synthesis of metal nanoparticles by deposition on a porous carbon material RU2685564C1, 2019.
[172]
Zhigunov MA, Kamensky IA, Popov AA. Method for forming an ordered array of silicon nanocrystals or nanoclusters in a dielectric matrix RU2692406C2, 2019.
[173]
Jixian L, Yuanmeng L, Yao W, Jianguo T, Yanwei L. A kind of measuring method of silver nano material particle size and its content CN107860689B 2019.
[174]
Deyuan X. A nano tube field effect transistor array and the method for preparing the sameTWI657041B, 2019.
[175]
Jin Z, Kaili J, Shoushan F. The semiconductor elementTWI650808B, 2019.
[176]
Ha T. High performance solution-processed zinc-tin-oxide thinfilm transistors employing ferroelectric copolymers KR102016157B1, 2019.
[177]
Busta HH, Gorski RM, Mankin MN, Pan TS. Devices and methods for enhancing the collection of electrons US1US10176960B2, 2019.
[178]
Sergeevich V, Napolsky KS, Sergeevich B, Nikolaevich S. Apparatus for electrochemical production of layered metal nanowires RU2704363C1, 2019.
[179]
Zhang J, Wei Y, Jiang K-L, Fan S-S. Semiconductor device US10224400B2 2019.
[180]
Dong-Ha K, Roh Y, Wang J, Lim J. Photodetector device using surface plasmon effect, and photodetector device array containing configuration of the photodetector devices KR101885064B1, 2018.
[181]
Jianlu W, Yan C, Xudong W, et al. A kind of two-dimension Van der Waals heterojunction photoelectric detector CN207529954U, 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy