Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anti-oxidant and Anticancerous Effect of Fomitopsis officinalis (Vill. ex Fr. Bond. et Sing) Mushroom on Hepatocellular Carcinoma Cells In Vitro through NF-kB Pathway

Author(s): Nyamsambuu Altannavch, Xi Zhou, Md. Asaduzzaman Khan, Ashfaque Ahmed, Shinen Naranmandakh, Jun-Jiang Fu and Han-Chun Chen*

Volume 22, Issue 8, 2022

Published on: 06 January, 2022

Page: [1561 - 1570] Pages: 10

DOI: 10.2174/1871520621666210608101152

Price: $65

Abstract

Background: Fomitopsis officinalis (Vill. ex Fr. Bond. et Sing) is a medicinal mushroom, commonly called ‘Agarikon’; it has traditionally been used to treat cough and asthma in the Mongolian population.

Objective: The objective of the study was to examine the significance of biological activity of F. officinalis and evaluation of the antioxidant activity and anticancer activity of six fractions of F. officinalis residues (Fo1-powder form dissolved in ethanol, Fo2-petroleum ether residue, Fo3-chloroformic, Fo4-ethylacetate, Fo5-buthanolic, and Fo6-waterethanolic) against hepatocellular carcinoma cells.

Methods: We performed in vitro studies of cell proliferation and viability assay, annexin V-FITC/Propidium Iodide assay, and NF-kB signaling pathway by immunoblot analysis.

Results: Our findings revealed that all six fractions/extracts have antioxidant activity, and somehow, they exert anticancerous effects against cancer cells. In cancerous cell lines (HepG2 and LO2), Fo3 chloroformic extract promoted the cancer cell apoptosis and cell viability, activated G2/M-phase cell cycle, and selectively induced NF-kB proteins, revealing as a novel antitumor extract.

Conclusion: This study reports that Fo3-chloroformic extract is rich in antitumor activity, which was previously not investigated in cancer. To develop the impact of F. officinalis among natural products to treat/prevent oxidative stress disorders or cancers, further examinations of F. officinalis are needed to develop new natural drugs to treat cancer. However, this study assessed only one extract, Fo3-chloroformic, which has a significant impact against cancer cell lines.

Keywords: Fomitopsis officinalis, antioxidant activity, apoptosis, anticancer, HepG2, NF-kB signaling pathway.

Graphical Abstract
[1]
Li, Y.L.; Zhang, J.; Min, D.; Hongyan, Z.; Lin, N.; Li, Q.S. Anticancer effects of 1, 3-dihydroxy-2-methylanthraquinone and the ethyl acetate fraction of hedyotis diffusa willd against HepG2 carcinoma cells mediated via apoptosis. PLoS One, 2016, 11(4)e0151502
[http://dx.doi.org/10.1371/journal.pone.0151502] [PMID: 27064569]
[2]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[4]
Huang, Y.H.; Park, B.V.; Chen, Y.F.; Gaba, R.C.; Guzman, G.; Lokken, R.P. Locoregional therapy of hepatocellular-cholangiocarcinoma versus hepatocellular carcinoma: A propensity score-matched study. J. Vasc. Interv. Radiol., 2019, 30(9), 1317-1324.
[http://dx.doi.org/10.1016/j.jvir.2019.03.024] [PMID: 31375450]
[5]
Bruix, J.; Sherman, M. American association for the study of liver, D. management of hepatocellular carcinoma: An update. Hepatol., 2011, 53(3), 1020-1022.
[http://dx.doi.org/10.1002/hep.24199] [PMID: 21374666]
[6]
Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatol., 2018, 67(1), 358-380.
[http://dx.doi.org/10.1002/hep.29086] [PMID: 28130846]
[7]
Kuhlmann, J.B.; Blum, H.E. Locoregional therapy for cholangiocarcinoma. Curr. Opin. Gastroenterol., 2013, 29(3), 324-328.
[http://dx.doi.org/10.1097/MOG.0b013e32835d9dea] [PMID: 23337933]
[8]
Jin, S.; Park, H-J.; Oh, Y.N.; Kwon, H.J.; Kim, J-H.; Choi, Y.H.; Kim, B.W. Anti-cancer activity of osmanthus matsumuranus extract by inducing G2/M arrest and apoptosis in human hepatocellular carcinoma Hep G2 cells. J. Cancer Prev., 2015, 20(4), 241-249.
[http://dx.doi.org/10.15430/JCP.2015.20.4.241] [PMID: 26734586]
[9]
Lee, J.I.; Kwak, M.K.; Park, H.Y.; Seo, Y. Cytotoxicity of meroterpenoids from Sargassum siliquastrum against human cancer cells. Nat. Prod. Commun., 2013, 8(4)
[http://dx.doi.org/10.1177/1934578X1300800403]]
[10]
Mary, J.S.; Vinotha, P.; Pradeep, A.M. Screening for in vitro cytotoxic activity of seaweed, Sargassum sp. against Hep-2 and MCF-7 cancer cell lines. Asian Pac. J. Cancer Prev., 2012, 13(12), 6073-6076.
[http://dx.doi.org/10.7314/APJCP.2012.13.12.6073] [PMID: 23464406]
[11]
Chen, N-H.; Zhong, J-J. Ganoderic acid Me induces G1 arrest in wild-type p53 human tumor cells while G1/S transition arrest in p53-null cells. Process Biochem., 2009, 44(8), 928-933.
[http://dx.doi.org/10.1016/j.procbio.2009.03.018]
[12]
Kong, C-S.; Um, Y.R. Im Lee, J.; Kim, Y. A.; Yea, S. S.; Seo, Y., Constituents isolated from Glehnia littoralis suppress proliferations of human cancer cells and MMP expression in HT1080 cells. Food Chem., 2010, 120(2), 385-394.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.096]
[13]
Stan, S.D.; Kar, S.; Stoner, G.D.; Singh, S.V. Bioactive food components and cancer risk reduction. J. Cell. Biochem., 2008, 104(1), 339-356.
[http://dx.doi.org/10.1002/jcb.21623] [PMID: 18092339]
[14]
Um, Y.R.; Kong, C-S. Im Lee, J.; Kim, Y. A.; Nam, T. J.; Seo, Y., Evaluation of chemical constituents from Glehnia littoralis for antiproliferative activity against HT-29 human colon cancer cells. Process Biochem., 2010, 45(1), 114-119.
[http://dx.doi.org/10.1016/j.procbio.2009.08.016]
[15]
Shamsabadi, F.T.; Khoddami, A.; Fard, S.G.; Abdullah, R.; Othman, H.H.; Mohamed, S. Comparison of tamoxifen with edible seaweed (Eucheuma cottonii L.) extract in suppressing breast tumor. Nutr. Cancer, 2013, 65(2), 255-262.
[http://dx.doi.org/10.1080/01635581.2013.756528] [PMID: 23441613]
[16]
Rubiolo, J.A.; López-Alonso, H.; Roel, M.; Vieytes, M.R.; Thomas, O.; Ternon, E.; Vega, F.V.; Botana, L.M. Mechanism of cytotoxic action of crambescidin-816 on human liver-derived tumour cells. Br. J. Pharmacol., 2014, 171(7), 1655-1667.
[http://dx.doi.org/10.1111/bph.12552] [PMID: 24328908]
[17]
Russo, G.L.; Russo, M.; Castellano, I.; Napolitano, A.; Palumbo, A. Ovothiol isolated from sea urchin oocytes induces autophagy in the Hep-G2 cell line. Mar. Drugs, 2014, 12(7), 4069-4085.
[http://dx.doi.org/10.3390/md12074069] [PMID: 25003791]
[18]
Kawee-Ai, A.; Kim, S.M. Application of microalgal fucoxanthin for the reduction of colon cancer risk: Inhibitory activity of fucoxanthin against beta-glucuronidase and DLD-1 cancer cells. Nat. Prod. Commun., 2014, 9(7), 921-924.
[PMID: 25230493]
[19]
Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci., 2016, 8(2), 83-91.
[http://dx.doi.org/10.4103/0975-7406.171700] [PMID: 27134458]
[20]
Gudiña, E.J.; Teixeira, J.A.; Rodrigues, L.R. Biosurfactants produced by marine microorganisms with therapeutic applications. Mar. Drugs, 2016, 14(2), 38.
[http://dx.doi.org/10.3390/md14020038] [PMID: 26901207]
[21]
Talero, E.; García-Mauriño, S.; Ávila-Román, J.; Rodríguez-Luna, A.; Alcaide, A.; Motilva, V. Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar. Drugs, 2015, 13(10), 6152-6209.
[http://dx.doi.org/10.3390/md13106152] [PMID: 26437418]
[22]
Li, R. Marinopyrroles: Unique drug discoveries based on marine natural products. Med. Res. Rev., 2016, 36(1), 169-189.
[http://dx.doi.org/10.1002/med.21359] [PMID: 26332654]
[23]
Han, M-L.; Chen, Y-Y.; Shen, L-L.; Song, J.; Vlasák, J.; Dai, Y-C.; Cui, B-K. Taxonomy and phylogeny of the brown-rot fungi: Fomitopsis and its related genera. Fungal Divers., 2016, 80(1), 343-373.
[http://dx.doi.org/10.1007/s13225-016-0364-y]
[24]
Stamets, P.E. Antiviral and antibacterial activity from medicinal mushrooms; Google Patents, 2014.
[25]
Hwang, C.H.; Jaki, B.U.; Klein, L.L.; Lankin, D.C.; McAlpine, J.B.; Napolitano, J.G.; Fryling, N.A.; Franzblau, S.G.; Cho, S.H.; Stamets, P.E.; Wang, Y.; Pauli, G.F. Chlorinated coumarins from the polypore mushroom Fomitopsis officinalis and their activity against Mycobacterium tuberculosis. J. Nat. Prod., 2013, 76(10), 1916-1922.
[http://dx.doi.org/10.1021/np400497f] [PMID: 24087924]
[26]
Grienke, U.; Zöll, M.; Peintner, U.; Rollinger, J.M. European medicinal polypores--a modern view on traditional uses. J. Ethnopharmacol., 2014, 154(3), 564-583.
[http://dx.doi.org/10.1016/j.jep.2014.04.030] [PMID: 24786572]
[27]
Wu, X.; Yang, J.; Zhou, L.; Dong, Y. New lanostane-type triterpenes from Fomes officinalis. Chem. Pharm. Bull. (Tokyo), 2004, 52(11), 1375-1377.
[http://dx.doi.org/10.1248/cpb.52.1375] [PMID: 15516768]
[28]
Golovchenko, V.V.; Khramova, D.S.; Shinen, N.; Jamsranjav, G.; Chizhov, A.O.; Shashkov, A.S. Structure characterization of the mannofucogalactan isolated from fruit bodies of Quinine conk Fomitopsis officinalis. Carbohydr. Polym., 2018, 199, 161-169.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.103] [PMID: 30143116]
[29]
Naranmandakh, S.; Murata, T.; Odonbayar, B.; Suganuma, K.; Batkhuu, J.; Sasaki, K. Lanostane triterpenoids from Fomitopsis officinalis and their trypanocidal activity. J. Nat. Med., 2018, 72(2), 523-529.
[http://dx.doi.org/10.1007/s11418-018-1182-1] [PMID: 29417466]
[30]
Wu, X.; Yang, J-S.; Yan, M. Four new triterpenes from fungus of Fomes officinalis. Chem. Pharm. Bull. (Tokyo), 2009, 57(2), 195-197.
[http://dx.doi.org/10.1248/cpb.57.195] [PMID: 19182411]
[31]
Mizuno, T.; Saito, H.; Nishitoba, T. KaWagishi, H., Antitumor‐active substances from mushrooms. Food Rev. Int., 1995, 11(1), 23-61.
[http://dx.doi.org/10.1080/87559129509541018]
[32]
Girometta, C. Antimicrobial properties of Fomitopsis officinalis in the light of its bioactive metabolites: A review. Mycol., 2018, 10(1), 32-39.
[http://dx.doi.org/10.1080/21501203.2018.1536680] [PMID: 30834150]
[33]
Wu, H.T.; Lu, F.H.; Su, Y.C.; Ou, H.Y.; Hung, H.C.; Wu, J.S.; Yang, Y.C.; Chang, C.J. In vivo and in vitro anti-tumor effects of fungal extracts. Molecules, 2014, 19(2), 2546-2556.
[http://dx.doi.org/10.3390/molecules19022546] [PMID: 24566320]
[34]
Han, J.; Li, L.; Zhong, J.; Tohtaton, Z.; Ren, Q.; Han, L.; Huang, X.; Yuan, T. Officimalonic acids A-H, lanostane triterpenes from the fruiting bodies of Fomes officinalis. Phytochemistry, 2016, 130, 193-200.
[http://dx.doi.org/10.1016/j.phytochem.2016.05.004] [PMID: 27216472]
[35]
Zhang, M.; Huang, J.; Xie, X.; Holman, C.D.A.J. Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int. J. Cancer, 2009, 124(6), 1404-1408.
[http://dx.doi.org/10.1002/ijc.24047] [PMID: 19048616]
[36]
Hara, M.; Hanaoka, T.; Kobayashi, M.; Otani, T.; Adachi, H.Y.; Montani, A.; Natsukawa, S.; Shaura, K.; Koizumi, Y.; Kasuga, Y.; Matsuzawa, T.; Ikekawa, T.; Sasaki, S.; Tsugane, S. Cruciferous vegetables, mushrooms, and gastrointestinal cancer risks in a multicenter, hospital-based case-control study in Japan. Nutr. Cancer, 2003, 46(2), 138-147.
[http://dx.doi.org/10.1207/S15327914NC4602_06] [PMID: 14690789]
[37]
Kim, H.J.; Chang, W.K.; Kim, M.K.; Lee, S.S.; Choi, B.Y. Dietary factors and gastric cancer in Korea: A case-control study. Int. J. Cancer, 2002, 97(4), 531-535.
[http://dx.doi.org/10.1002/ijc.10111] [PMID: 11802218]
[38]
Hong, S.A.; Kim, K.; Nam, S.J.; Kong, G.; Kim, M.K. A case-control study on the dietary intake of mushrooms and breast cancer risk among Korean women. Int. J. Cancer, 2008, 122(4), 919-923.
[http://dx.doi.org/10.1002/ijc.23134] [PMID: 17943725]
[39]
Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal., 2006, 19(6-7), 669-675.
[http://dx.doi.org/10.1016/j.jfca.2006.01.003]
[40]
van Tonder, A.; Joubert, A.M.; Cromarty, A.D. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res. Notes, 2015, 8, 47.
[http://dx.doi.org/10.1186/s13104-015-1000-8] [PMID: 25884200]
[41]
Tsai, T.H.; Yu, C.H.; Chang, Y.P.; Lin, Y.T.; Huang, C.J.; Kuo, Y.H.; Tsai, P.J. Protective Effect of Caffeic Acid Derivatives on tert-Butyl Hydroperoxide-Induced Oxidative Hepato-Toxicity and Mitochondrial Dysfunction in HepG2 Cells. Molecules, 2017, 22(5)E702
[http://dx.doi.org/10.3390/molecules22050702] [PMID: 28452956]
[42]
Nyamsambuu, A.; Ahmed, A.; Khusbu, F.Y.; Oidovsambuu, S.; Khan, M.A.; Zhou, X.; Fu, J.J.; Chen, H.C. Anti-oxidant and Antiproliferative Activities of Mongolian Medicinal Plant Extracts and Structure Isolation of Gnetin - H Compound. Med. Chem., 2020.
[http://dx.doi.org/10.2174/1573406416666201106110117] [PMID: 33155927]
[43]
Wallberg, F.; Tenev, T.; Meier, P. Analysis of Apoptosis and Necroptosis by Fluorescence-Activated Cell Sorting. Cold Spring Harb. Protoc., 2016, 2016(4)
[http://dx.doi.org/10.1101/pdb.prot087387]]
[44]
Karin, M.; Cao, Y.; Greten, F.R.; Li, Z.W. NF-kappaB in cancer: From innocent bystander to major culprit. Nat. Rev. Cancer, 2002, 2(4), 301-310.
[http://dx.doi.org/10.1038/nrc780] [PMID: 12001991]
[45]
Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-kB in development and progression of human cancer. Virchows Archiv. An Int. J. Pathol., 2005, 446(5), 475-482.
[46]
Zaidman, B-Z.; Yassin, M.; Mahajna, J.; Wasser, S.P. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl. Microbiol. Biotechnol., 2005, 67(4), 453-468.
[http://dx.doi.org/10.1007/s00253-004-1787-z] [PMID: 15726350]
[47]
Wasser, S.P. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed. J., 2014, 37(6), 345-356.
[http://dx.doi.org/10.4103/2319-4170.138318] [PMID: 25179726]
[48]
Wasser, S.P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotechnol., 2011, 89(5), 1323-1332.
[http://dx.doi.org/10.1007/s00253-010-3067-4] [PMID: 21190105]
[49]
Muszyńska, B.; Fijałkowska, A.; Sułkowska-Ziaja, K.; Włodarczyk, A.; Kaczmarczyk, P.; Nogaj, E.; Piętka, J. Fomitopsis officinalis: A species of arboreal mushroom with promising biological and medicinal properties. Chem. Biodivers., 2020, 17(6)e2000213
[http://dx.doi.org/10.1002/cbdv.202000213] [PMID: 32271491]
[50]
Kolac, U.K.; Ustuner, M.C.; Tekin, N.; Ustuner, D.; Colak, E.; Entok, E. The anti-inflammatory and antioxidant effects of salvia officinalis on lipopolysaccharide-induced inflammation in rats. J. Med. Food, 2017, 20(12), 1193-1200.
[http://dx.doi.org/10.1089/jmf.2017.0035] [PMID: 29131698]
[51]
Yui, L. Medicinal fungi in traditional Chinese medicine and modern biotechnology; Kirov, Russia: O-Kratkoye. Russian, 2009.
[52]
Kalinkevich, K.; Karandashov, V.; Ptitsyn, L. In vitro study of the anti-inflammatory activity of some medicinal and edible plants growing in Russia. Russ. J. Bioorganic Chem., 2014, 40(7), 752-761.
[http://dx.doi.org/10.1134/S106816201407005X]
[53]
Vedenicheva, N.; Al-Maali, G.; Mytropolska, N. Y.; Mykhaylova, O.; Bisko, N.; Kosakivska, I. Endogenous cytokinins in medicinal Basidiomycetes mycelial biomass. Biotechnologia Acta, 2016, 9(1)
[54]
Fijałkowska, A.; Muszyńska, B.; Sułkowska-Ziaja, K.; Kała, K.; Pawlik, A.; Stefaniuk, D.; Matuszewska, A.; Piska, K.; Pękala, E.; Kaczmarczyk, P.; Piętka, J.; Jaszek, M. Medicinal potential of mycelium and fruiting bodies of an arboreal mushroom Fomitopsis officinalis in therapy of lifestyle diseases. Sci. Rep., 2020, 10(1), 20081.
[http://dx.doi.org/10.1038/s41598-020-76899-1] [PMID: 33208786]
[55]
Bishop, K.S. Characterisation of Extracts and Anti-Cancer Activities of Fomitopsis pinicola. Nutrients, 2020, 12(3)E609
[http://dx.doi.org/10.3390/nu12030609] [PMID: 32110892]
[56]
Chen, Y.J.; Chen, C.C.; Huang, H.L. Induction of apoptosis by Armillaria mellea constituent armillarikin in human hepatocellular carcinoma. OncoTargets Ther., 2016, 9, 4773-4783.
[http://dx.doi.org/10.2147/OTT.S103940] [PMID: 27536140]
[57]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166.
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[58]
Zetterberg, A.; Larsson, O.; Wiman, K.G. What is the restriction point? Curr. Opin. Cell Biol., 1995, 7(6), 835-842.
[http://dx.doi.org/10.1016/0955-0674(95)80067-0] [PMID: 8608014]
[59]
Kim, K. H.; Sederstrom, J. M. Assaying cell cycle status using flow cytometrY. Current protocols in molecular biology, 2015, 111, 28.6.1-28.6.11.
[http://dx.doi.org/10.1002/0471142727.mb2806s111]
[60]
Hoffmann, A.; Leung, T.H.; Baltimore, D. Genetic analysis of NF-kappaB/Rel transcription factors defines functional specificities. EMBO J., 2003, 22(20), 5530-5539.
[http://dx.doi.org/10.1093/emboj/cdg534] [PMID: 14532125]
[61]
Leung, T.H.; Hoffmann, A.; Baltimore, D. One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell, 2004, 118(4), 453-464.
[http://dx.doi.org/10.1016/j.cell.2004.08.007] [PMID: 15315758]
[62]
Sanjabi, S.; Williams, K.J.; Saccani, S.; Zhou, L.; Hoffmann, A.; Ghosh, G.; Gerondakis, S.; Natoli, G.; Smale, S.T. A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation. Genes Dev., 2005, 19(18), 2138-2151.
[http://dx.doi.org/10.1101/gad.1329805] [PMID: 16166378]
[63]
Gilmore, T. Introduction to NF-kappaB: Players, pathways, perspectives. 771 Oncogene, 2006, 25, 6680-6684. 2006.
[64]
Hayden, M.S.; Ghosh, S. Shared principles in NF-kappaB signaling. Cell, 2008, 132(3), 344-362.
[http://dx.doi.org/10.1016/j.cell.2008.01.020] [PMID: 18267068]
[65]
Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 227-241.
[http://dx.doi.org/10.1002/wsbm.1331] [PMID: 26990581]
[66]
Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature, 2006, 441(7092), 431-436.
[http://dx.doi.org/10.1038/nature04870] [PMID: 16724054]
[67]
Watanabe, M.; Sugawara, A.; Noguchi, Y.; Hirose, T.; Ōmura, S.; Sunazuka, T.; Horie, R. Jietacins, azoxy natural products, as novel NF-κB inhibitors: Discovery, synthesis, biological activity, and mode of action. Eur. J. Med. Chem., 2019, 178, 636-647.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.079] [PMID: 31226655]
[68]
Zeligs, K.P.; Neuman, M.K.; Annunziata, C.M. Molecular pathways: The balance between cancer and the immune system challenges the therapeutic specificity of targeting nuclear factor-κB signaling for cancer treatment. Clin. Cancer Res., 2016, 22(17), 4302-4308.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1374] [PMID: 27422962]
[69]
Bassères, D.S.; Baldwin, A.S. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene, 2006, 25(51), 6817-6830.
[http://dx.doi.org/10.1038/sj.onc.1209942] [PMID: 17072330]
[70]
Scheidereit, C. IkappaB kinase complexes: Gateways to NF-kappaB activation and transcription. Oncogene, 2006, 25(51), 6685-6705.
[http://dx.doi.org/10.1038/sj.onc.1209934] [PMID: 17072322]
[71]
Xiao, G.; Sun, S-C. Negative regulation of the nuclear factor κ B-inducing kinase by a cis-acting domain. J. Biol. Chem., 2000, 275(28), 21081-21085.
[http://dx.doi.org/10.1074/jbc.M002552200] [PMID: 10887201]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy