Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

New Formulation and Evaluation of Camptothecin Encapsulated and/or Dispersed Suppository

Author(s): Sofiane Fatmi*, Lamia Taouzinet, Malika Lahiani-Skiba, Mohamed Skiba and Mokrane Iguer-Ouada

Volume 21, Issue 9, 2021

Published on: 03 September, 2020

Page: [1183 - 1190] Pages: 8

DOI: 10.2174/1871520620666200903150635

Price: $65

Abstract

Background: Camptothecin is known for its potent anticancer activity. However, its optimal activity is reduced due to its low solubility and stability in biological media.

Objective: The aim of the present study is to design and characterize a Camptothecin (CPT) suppository formulation.

Methods: Rectal suppositories of camptothecin alone, encapsulated with Cyclodextrin (CD) and in the ternary system (CPT encapsulated with cyclodextrin and dispersed in Polyethylene Glycol (PEG) 6000) were prepared using various hydrophobic and hydrophilic polymeric bases as semi-synthetic glyceride (Suppocire® AM Pellets) and Polyethylene Glycols (PEGs) mixtures. Formulations were evaluated by various parameters like weight variation, drug content, hardness and liquefaction time. In vitro release study was performed in USP type I apparatus using phosphate buffer pH 7.2 as dissolution media.

Results: Suppositories were within the permissible range of all physical parameters. In vitro drug released from water soluble base (PEG) was greater than that from oil soluble base with ninety percent (90%) of drug dissolution. It was also established that drug release from various formulations was by diffusion mechanism, according to the Higuchi’s equation.

Conclusion: This new formulation offers a new approach to colorectal cancer treatment by offering an alternative and simple drug administration route.

Keywords: Camptothecin, colorectal cancer, cyclodextrin, kinetic model, polyethylene glycol, suppository.

Graphical Abstract
[1]
Haggar, F.A.; Boushey, R.P. Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg., 2009, 22(4), 191-197.
[http://dx.doi.org/10.1055/s-0029-1242458] [PMID: 21037809]
[2]
João, C.; Noam, S.; Artzi, N. Cancer therapy, biomaterials for abrogating metastasis, bridging the gap between basic and translational research. Adv. Healthc. Mater., 2016, 18, 2452.
[3]
Wolinsky, J.B.; Colson, Y.L.; Grinstaff, M.W. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release, 2012, 159(1), 14-26.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.031] [PMID: 22154931]
[4]
Christ, A.P.; Biscaino, P.T.; Lourenco, R.L.; Bitencourt de Souza, A.; Zimmermann, E.S.; Horn Adams, A.I. Development of doxycycline hyclate suppositories and pharmacokinetic study in rabbits. Eur. J. Pharm. Sci., 2019, 19, 30414-30426.
[PMID: 31706017]
[5]
van Hoogdalem, E.; de Boer, A.G.; Breimer, D.D. Pharmacokinetics of rectal drug administration, Part I. General considerations and clinical applications of centrally acting drugs. Clin. Pharmacokinet., 1991, 21(1), 11-26.
[http://dx.doi.org/10.2165/00003088-199121010-00002] [PMID: 1717195]
[6]
Sajitha, T.P.; Manjunatha, B.L.; Siva, R.; Gogna, N.; Dorai, K.; Ravikanth, G.S.; Uma, R. Mechanism of resistance to camptothecin, a cytotoxic plant secondary metabolite, by Lymantria sp. Larvae. J. Chem. Ecol., 2018, 44, 611-620.
[http://dx.doi.org/10.1007/s10886-018-0960-2] [PMID: 29797164]
[7]
Assali, M.; Kittana, N.; Qasem, S.A.; Adas, R.; Saleh, D.; Arar, A.; Zohu, O. Combretastatin A4-camptothecin micelles as combination therapy for effective anticanceractivity. RSC, 2019, 9, 1055-1061.
[8]
Du, Y.; Ling, L.; Ismail, M.; He, W.; Xia, Q.; Zhou, W.; Yao, C.; Li, X. Redox sensitive lipidcamptothecin conjugate encapsulated solid lipid nanoparticles for oral delivery. Int. J. Pharm., 2018, 549, 352-362.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.010] [PMID: 30099214]
[9]
Venditto, V.J.; Simanek, E.E. Cancer therapies utilizing the camptothecins: A review of the in vivo literature. Mol. Pharm., 2010, 7(2), 307-349.
[http://dx.doi.org/10.1021/mp900243b] [PMID: 20108971]
[10]
Ma, M.; Shang, W.; Jia, R.; Chen, R.; Zhao, M.; Wang, C.; Mingyan, T.; Shulei, Y.; Aiyou, H. A novel folic acid hydrogel loading β cyclodextrin/camptothecininclusion complex with effective antitumor activity. J. Incl. Phenom. Macro., 2020, 96, 169-179.
[11]
Fatmi, S.; Bournine, L.; Iguer-Ouada, M.; Lahiani-Skiba, M.; Bouchal, F.; Skiba, M. Amorphous solid dispersion studies of camptothecin-cyclodextrin inclusion complexes in PEG 6000. Acta Pol. Pharm., 2015, 72(1), 179-192.
[PMID: 25850214]
[12]
Follmann, H.D.M.; Oliveira, O.N., Jr; Martins, A.C.; Lazarin-Bidóia, D.; Nakamura, C.V.; Rubira, A.F.; Silva, R.; Asefa, T. Nanofibrous silica microparticles/polymer hybrid aerogels for sustained delivery of poorly water-soluble camptothecin. J. Colloid Interface Sci., 2020, 567, 92-102.
[http://dx.doi.org/10.1016/j.jcis.2020.01.110] [PMID: 32036118]
[13]
Posey, J.A., III; Saif, M.W.; Carlisle, R.; Goetz, A.; Rizzo, J.; Stevenson, S.; Rudoltz, M.S.; Kwiatek, J.; Simmons, P.; Rowinsky, E.K.; Takimoto, C.H.; Tolcher, A.W. Phase 1 study of weekly polyethylene glycol-camptothecin in patients with advanced solid tumors and lymphomas. Clin. Cancer Res., 2005, 11(21), 7866-7871.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0783] [PMID: 16278410]
[14]
D’souza, A.A.; Shegokar, R. Polyethylene Glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv., 2016, 13(9), 1257-1275.
[http://dx.doi.org/10.1080/17425247.2016.1182485] [PMID: 27116988]
[15]
Rai, V.K.; Dwivedi, H.; Yadav, N.P.; Chanotiya, C.S.; Saraf, S.A. Solubility enhancement of miconazole nitrate: Binary and ternary mixture approach. Drug Dev. Ind. Pharm., 2014, 40(8), 1021-1029.
[http://dx.doi.org/10.3109/03639045.2013.801487] [PMID: 23781847]
[16]
Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev., 1998, 98(5), 1743-1754.
[http://dx.doi.org/10.1021/cr970022c] [PMID: 11848947]
[17]
Shi, X.; Ma, X.; Hou, M.; Gao, Y.E.; Bai, S.; Xiao, B.; Xue, P.; Kang, Y.; Xu, Z.; Li, C.M. pH-Responsive unimolecular micelles based on amphiphilic star-like copolymers with high drug loading for effective drug delivery and cellular imaging. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(33), 6847-6859.
[http://dx.doi.org/10.1039/C7TB01477E] [PMID: 32264334]
[18]
Baba, S.; Wada, K.; Maseki, T.; Murai, K.; Kinoshita, H.; Yokota, A.; Tsukiyama, M.; Hondoh, J.; Hashiba, M.; Fukuoka, Y. Therapeutic evaluation of an ampicillin suppository (KS-R1) used against acute suppurative otitis media in children: A comparison with an oral preparation. Jpn. J. Antibiot., 1983, 36(7), 1973-1994.
[PMID: 6361321]
[19]
Miyake, M.; Minami, T.; Oka, Y.; Kamada, N.; Yamazaki, H.; Kato, Y.; Mukai, T.; Toguchi, H.; Odomi, M.; Ogawara, K.; Higaki, K.; Kimura, T. Optimization of suppository preparation containing sodium laurate and taurine that can safely improve rectal absorption of rebamipide. Biol. Pharm. Bull., 2006, 29(2), 330-335.
[http://dx.doi.org/10.1248/bpb.29.330] [PMID: 16462041]
[20]
Watanabe, Y.; Tone, Y.; Nishihara, S.; Matsumoto, M. Pharmaceutical evaluation of hollow type suppositories. V. Preparation of valproic acid suppository and rectal absorption of valproic acid in rabbits. J. Pharmacobiodyn., 1986, 9(12), 953-961.
[http://dx.doi.org/10.1248/bpb1978.9.953] [PMID: 3106614]
[21]
Takahashi, A.I.; Veiga, F.G.B.; Ferraz, H.G. A literature review of cyclodextrin inclusion complexes characterization-Part I, Phase solubility diagram, dissolution and scanning electron microscopy. Int. J. Pharma Sci., 2012, 12, 8-15.
[22]
Muthu, M.S.; Singh, S. Poly (D, L-lactide) nanosuspensions of risperidone for parenteral delivery: Formulation and in vitro evaluation. Curr. Drug Deliv., 2009, 6(1), 62-68.
[http://dx.doi.org/10.2174/156720109787048302] [PMID: 19418957]
[23]
Dredin, J.; Antal, I.; Racz, I. Evaluation of mathematical models describing drug release from Lipophilic matrices. Int. J. Pharm., 1996, 145, 61-64.
[http://dx.doi.org/10.1016/S0378-5173(96)04725-4]
[24]
British Pharmacopoeia. The Stationery Office on behalf of the Medicines and Healthcare Products Regulatory Agency (MHRA)., London, BP, 2013.
[25]
Mohammed, D.F.M.; Mahmoud, O.A.E.; Fergany, A.M. Preparation and evaluation of ketotifen suppositories. JABPS, 2020, 10, 22.
[26]
Beck, D.C., Ed.; European Pharmacopoeia 6th Ed; Strasbourg: France, Concil of Europe, 2008.
[27]
Alsamman, A.; Othman, M. Preparation and in vitro evaluation of fast release diazepam suppositories for febrile seizures. AJPCR, 2017, 9, 224-230.
[28]
Ghorab, D.; Refai, H.; Tag, R. Preparation and evaluation of fenoterol hydrobromide suppositories. Drug Discov. Ther., 2011, 5(6), 311-318.
[http://dx.doi.org/10.5582/ddt.2011.v5.6.311] [PMID: 22466443]
[29]
Shegokar, R.; Singh, K. In vitro release of paracetamol from suppocire suppositories, role of additives. Malays. J. Pharm. Sci., 2010, 1, 57-71.
[30]
Suhagia, B.N.; Patel, H.M.; Shah, S.A.; Rathod, I.; Parmar, V.K. Preparation and characterization of etoricoxib-polyethylene glycol 4000 plus polyvinylpyrrolidone K30 solid dispersions. Acta Pharm., 2006, 56(3), 285-298.
[PMID: 19831278]
[31]
Henning, T. Polyethyleneglycols (PEGs) and the pharmaceutical industry. Fine, specialty and performance chemicals. Pharma Chemical., 2002, 1, 57-59.
[32]
Zia, H.; Rashed, S.F.; Quadir, M.; Needham, T.E.; Squillante, E. Ketorolac tromethamine and ketoprofen suppositories: Release profiles and bioavailability of a cocoa butter base formula in rabbits. Int. J. Pharm. Compd., 1998, 2(5), 390-393.
[PMID: 23989705]
[33]
United State Pharmacopoeia USP; NF, 2006, p. 25.
[34]
Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13(2), 123-133.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]
[35]
Zhang, X.; Zhang, X.; Wu, Z.; Gao, X.; Cheng, C.; Wang, Z.; Li, C. A hydrotropic β-cyclodextrin grafted hyperbranched polyglycerol co-polymer for hydrophobic drug delivery. Acta Biomater., 2011, 7(2), 585-592.
[http://dx.doi.org/10.1016/j.actbio.2010.08.029] [PMID: 20813209]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy