Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Valorisation of Fruit & Vegetable Wastes: A Review

Author(s): Anila Zahid and Renu Khedkar*

Volume 18, Issue 3, 2022

Published on: 13 January, 2022

Page: [315 - 328] Pages: 14

DOI: 10.2174/1573401317666210913095237

Price: $65

Abstract

Fruits and vegetables play an important part in the diets of global human population. During processing, the unused residues, such as peels, stalks, rinds, stem, leaves etc., come out as waste. Due to the high moisture content of these perishable wastes, they undergo rapid decomposition that leads to foul odour and growth of pathogens. Almost 30% of the loss occurs at the supply, retail, consumer, post-harvest and processing level. The perishable waste like peels, pomace, seeds etc., act as threat to the environment and degrade pollution-free model. The wastes are rich in protein, carbohydrates, minerals, vitamins and other phytochemicals and bioactive compounds, such as pigments, dietary fibre, essential oils, etc. Recent researches have shown that there is an increase in the utilization of these wastes for the extraction of value- added products, such as bioactive compounds, bio-colorants, organic acids, single cell protein (SCP), organic minerals, enzymes and others. The present review paper deals with the recent studies conducted on the valorisation of the fruit & vegetable waste.

Keywords: Fruit and vegetable wastes, valorisation, bioactive compounds, SCP, enzymes, organic minerals.

Graphical Abstract
[1]
Thakur M, Modi VK, Khedkar R, Singh K. Sustainable food waste management: concepts and innovations. USA: Springer Nature 2020.
[http://dx.doi.org/10.1007/978-981-15-8967-6]
[2]
Verma N, Bansal NC, Kumar V. Pea peel waste: a lignocellulosic waste and its utility in cellulose production by Trichoderma reesei under solid state cultivation. BioResources 2011; 6: 1505-19.
[http://dx.doi.org/10.15376/biores.6.2.1505-1519]
[3]
Sharma R, Oberoi HS, Dhillon GS. Fruit and vegetable processing waste: Renewable feed stocks for enzyme production Agro-industrial wastes as feedstock for enzyme production: Apply and exploit the emerging and valuable use options of waste biomass. London, UK: Academic Press Elsevier 2016; pp. 23-59.
[http://dx.doi.org/10.1016/B978-0-12-802392-1.00002-2]
[4]
Singh A, Kuila A, Adak S, Bishai M, Banerjee R. Use of fermentation technology on vegetable residues for value added product development: A concept of zero waste utilization. Int J Fd Ferm Technol 2011; 1(2): 173-84.
[5]
Thakur M, Modi VK. Emerging technologies in food science- focus on the developing world. USA: Springer Nat 2020; p. 294.
[http://dx.doi.org/10.1007/978-981-15-2556-8]
[6]
Ngoc NU, Schnitzer H. Waste management towards zero emissions approach in the fruit juice processing industry. In: Malta Sokolov V, Ed. 1st WSEAS international conference on environmental and geological science and engineering. September. 11-3. 2008.
[7]
Khedkar RD, Singh K. Food industry waste: a panacea or pollution hazard. In: Paradigms in pollution prevention Springer Briefs in Environmental Science. Jindal Tanu, Ed. Paradigms in pollution prevention Springer Briefs in Environmental Science. USA: Springer. 2018; pp. 35-48.
[http://dx.doi.org/10.1007/978-3-319-58415-7_3]
[8]
Joshi VK, Pandey A, Sandhu DK. Fermentation technology for food industry waste utilization. In: Joshi VK, Ashok P, Eds. Biotechnology: food fermentation, microbiology, biochemistry and technology. New Delhi: Educational Publishers and Distributors 1999; II:. 1291-348.
[9]
Maini SB, Sethi V. Utilization of fruits and vegetables processing waste. In: Verma LR, Joshi VK, Eds Post-harvest Technology of Fruits and Vegetables: Handling processing fermentation and waste management. New Delhi: Indus Publishing Co.. 2000; 2: p. 1006.
[10]
Afifi MM. Enhancement of lactic acid production by utilizing liquid potato wastes. Int J Biol Chem 2011; 5: 91-102.
[http://dx.doi.org/10.3923/ijbc.2011.91.102]
[11]
Barth C, Powers T. Agricultural waste characteristics. In: Agricultural waste management field handbook. South Carolina: United States Department of Agriculture 2008; pp. 1-32.
[12]
Benítez V, Mollá E, Martín-Cabrejas MA, et al. Characterization of industrial onion wastes (Allium cepa L.): Dietary fibre and bioactive compounds. Plant Foods Hum Nutr 2011; 66(1): 48-57.
[http://dx.doi.org/10.1007/s11130-011-0212-x] [PMID: 21318305]
[13]
Fallon E, Tremblay N, Desjardins V. Relationships among growing degree-days, tenderness, other harvest attributes and market value of processing pea (Pisum sativum L.) cultivars grown in Quebec. Can J Plant Sci 2006; 86: 525-37.
[http://dx.doi.org/10.4141/P04-144]
[14]
Hampannavar US, Shivayogimath CB. Anaerobic treatment of sugar industry wastewater by upflow anaerobic sludge blanket reactor at ambient temperature. Int J Environ Sci 2010; 1: 631-9.
[15]
Mojtahedi M, Mesgaran MD. Variability in the chemical composition and in situ ruminal degradability of sugar beet pulp produced in North-East Iran. Res J Biol Sci 2009; 4: 1262-6.
[http://dx.doi.org/10.3923/rjbsci.2009.1262.1266]
[16]
Lenihan P, Orozco A, Neill EO, et al. Kinetic modelling of dilute acid hydrolysis of lignocellulosic biomass. In: Biofuel production-recent developments and prospects Croatia: In Tech. Bernardes MAS, Ed.. 2011; pp. 293-308.
[http://dx.doi.org/10.5772/17129]
[17]
Rizal Y, Mahata ME, Andriani M, Wu G. Utilization juice wastes as corn replacement in the broiler diet. WASET 2010; 68: 1449-52.
[http://dx.doi.org/10.3923/ijps.2010.886.889]
[18]
Sharma KD, Karki S, Thakur NS, Attri S. Chemical composition, functional properties and processing of carrot-a review. J Food Sci Technol 2012; 49(1): 22-32.
[http://dx.doi.org/10.1007/s13197-011-0310-7] [PMID: 23572822]
[19]
Dalal N, Neeraj Bisht V. Value added products from Ber. Int J Curr Microbiol Appl Sci 2019; 8(1): 1603-15.
[http://dx.doi.org/10.20546/ijcmas.2019.801.169]
[20]
Tengerdy RP, Szakacs G. Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng 2003; 13: 169-79.
[http://dx.doi.org/10.1016/S1369-703X(02)00129-8]
[21]
Mtui G. Trends in industrial and environmental biotechnology research in Tanzania. Afr J Biotechnol 2007; 6: 2860-7.
[http://dx.doi.org/10.5897/AJB2007.000-2456]
[22]
Ubalua AU. Cassava wastes: Treatment options and value addition alternatives. Afr J Biotechnol 2007; 6: 2065-73.
[http://dx.doi.org/10.5897/AJB2007.000-2319]
[23]
Demirbas A. Products from lignocellulosic materials via degradation processes. Energy Sources A Recovery Util Environ Effects 2008; 30: 27-37.
[http://dx.doi.org/10.1080/00908310600626705]
[24]
De Felice LS. The nutraceuticals revolution, its impact on food industry. Trends Food Sci Technol 1995; 6: 59-61.
[http://dx.doi.org/10.1016/S0924-2244(00)88944-X]
[25]
Kalia AN. Textbook of industrial pharmacology. New Delhi: CBS Publisher and Distributor 2005.
[26]
Das L, Bhaumik E, Raychaudhuri U, Chakraborty R. Role of nutraceuticals in human health. J Food Sci Technol 2012; 49(2): 173-83.
[http://dx.doi.org/10.1007/s13197-011-0269-4] [PMID: 23572839]
[27]
Thakur M, Singh K, Khedkar R. Phytochemicals: Extraction process, safety assessment, toxicological evaluations and regulatory issues. In: A handbook on functional and preservative properties of phytochemicals. Academic Press 2020; pp. 341-56.
[28]
[29]
Kaur C, Kapoor HC. Antioxidants in fruits and vegetables – the millennium’s health. Int J Food Sci Technol 2001; 36: 703-72.
[http://dx.doi.org/10.1046/j.1365-2621.2001.00513.x]
[30]
Makris DP, Boskou G, Andrikopoulos NK. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Compos Anal 2007; 20: 125-32.
[http://dx.doi.org/10.1016/j.jfca.2006.04.010]
[31]
Rice-Evans C, Crankshaw C. Flavonoid antioxidants. Curr Med Chem 2001; 8(7): 797-807.
[http://dx.doi.org/10.2174/0929867013373011] [PMID: 11375750]
[32]
Lurton L. Grape polyphenols: New powerful health ingredients. Innovat Food Technol 2003; 18: 28-30.
[33]
Nithitanakool S, Pithayanukul P, Bavovada R. Antioxidant and hepatoprotective activities of thai mango seed kernel extract. Planta Med 2009; 75(10): 1118-23.
[http://dx.doi.org/10.1055/s-0029-1185507] [PMID: 19326325]
[34]
Jiang LY, He S, Pan YJ, Sun CR. Bioassay-guided isolation and EPR-assisted antioxidant evaluation of two valuable compounds from mango peels. Food Chem 2010; 119: 1285-92.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.005]
[35]
Gorinstein O, Martin-Belloso , Park YS, et al. Comparison of some biochemical characteristics of different citrus fruits. Food Chem 2001; 74: 309-15.
[http://dx.doi.org/10.1016/S0308-8146(01)00157-1]
[36]
Someya S, Yoshiki Y, Okubo K. Antioxidant compounds from bananas (Musa cavendish). J Food Chem 2002; 79: 351-4.
[http://dx.doi.org/10.1016/S0308-8146(02)00186-3]
[37]
Sancho SO, da Silva ARA, de Sousa Dantas AN, Magalhaes TA, Lopes GS, Rodrigues S. Characterization of the industrial residues of seven fruits and prospection of their potential application as food supplements. J Chem 2015; 2015: Article ID: 264284.
[http://dx.doi.org/10.1155/2015/264284]
[38]
Sudha ML, Baskaran V, Leelavathi K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem 2007; 104: 686-92.
[http://dx.doi.org/10.1016/j.foodchem.2006.12.016]
[39]
Schieber A, Ullrich W, Carle R. Characterization of polyphenols in mango puree concentrate by HPLC with diode array and mass spectrometric detection. Innov Food Sci Emerg Technol 2000; 1: 161-6.
[http://dx.doi.org/10.1016/S1466-8564(00)00015-1]
[40]
Marie-Magdeleine C, Boval M, Hilibert LP, Borde A, Archimede H. Effect of banana foliage (Musa paradisiaca) on nutrition, parasite infection and growth of lambs. Livest Sci 2010; 131: 234-9.
[http://dx.doi.org/10.1016/j.livsci.2010.04.006]
[41]
Babbar N, Oberoi HS, Uppal DS, Patil RT. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res Int 2011; 44: 391-6.
[http://dx.doi.org/10.1016/j.foodres.2010.10.001]
[42]
Holtung L, Grimmer S, Aaby K. Effect of processing of black currant press-residue on polyphenol composition and cell proliferation. J Agric Food Chem 2011; 59(8): 3632-40.
[http://dx.doi.org/10.1021/jf104427r] [PMID: 21401036]
[43]
Sivagurunathan P, Muthukkaruppan SM. Characterization of cashew apple (Anarcadium occidentale L.) fruits collected from Ariyalur District. J Biosci Res 2010; 1: 101-7.
[44]
Rudra SG, Nishad J, Jakhar N, Kaur C. Food industry waste: Mine of nutraceuticals. Int J Sci Environ Technol 2015; 4: 205-29.
[45]
Al-Farsi MA, Lee CY. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem 2008; 108(3): 977-85.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.009] [PMID: 26065761]
[46]
Suresh S, Guizani N, Al-Ruzeiki M, Al-Hadhrami A, Al-Dohani H, Al-Kindi I. Thermal characteristics, chemical composition and polyphenol contents of date–pits powder. J Food Eng 2013; 119: 668-79.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.06.026]
[47]
Jayaprakash GK, Singh RP, Sakariah KK. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem 2001; 73: 285-90.
[http://dx.doi.org/10.1016/S0308-8146(00)00298-3]
[48]
Yunfeng L, Changjiang G, Jijun Y, Jingyu W, Jing X, Shuang C. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem 2006; 96: 254-60.
[http://dx.doi.org/10.1016/j.foodchem.2005.02.033]
[49]
Poltanov EA, Shikov AN, Dorman HJ, et al. Chemical and antioxidant evaluation of Indian gooseberry (Emblica officinalis Gaertn., syn. Phyllanthus emblica L.) supplements. Phytother Res 2009; 23(9): 1309-15.
[http://dx.doi.org/10.1002/ptr.2775] [PMID: 19172666]
[50]
Chitturi S, Gopichand V. Talatam Vuppu. Studies on protein content, protease activity, antioxidants potential, melanin composition, glucosinolate and pectin constitution with brief statistical analysis in some medicinally significant fruit peels. Pharm Lett 2013; 5: 13-23.
[51]
Jiménez-Escrig A, Rincón M, Pulido R, Saura-Calixto F. Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J Agric Food Chem 2001; 49(11): 5489-93.
[http://dx.doi.org/10.1021/jf010147p] [PMID: 11714349]
[52]
Duan XW, Jiang YM, Su XG, Zhang ZQ, Shi J. Antioxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chem 2007; 101: 1365-71.
[http://dx.doi.org/10.1016/j.foodchem.2005.06.057]
[53]
Li W, Liang H, Zhang MW, et al. Phenolic profiles and antioxidant activity of litchi (Litchi Chinensis Sonn.) fruit pericarp from different commercially available cultivars. Molecules 2012; 17(12): 14954-67.
[http://dx.doi.org/10.3390/molecules171214954] [PMID: 23247368]
[54]
Jiang G, Lin S, Wen L, et al. Identification of a novel phenolic compound in litchi (Litchi chinensis Sonn.) pericarp and bioactivity evaluation. Food Chem 2013; 136(2): 563-8.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.089] [PMID: 23122098]
[55]
Zhang Z, Xuequn P, Yang C, Ji Z, Jiang Y. Purification and structural analysis of anthocyanins from litchi pericarp. Food Chem 2004; 84: 601-4.
[http://dx.doi.org/10.1016/j.foodchem.2003.05.002]
[56]
Prasad KN, Yang B, Yang SY, Chen YL, Zhao MM, Ashraf M. Identification of phenolic compounds and appraisal of antioxidant and anti-tyrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chemistry 2009; 116(1): 1-7.
[http://dx.doi.org/10.1016/j.foodchem., 01.079]
[57]
Xu X, Xie H, Xu L, Wei X. A novel cyclopropyl-containing fatty acid glucoside from the seeds of Litchi chinensis. Fitoterapia 2011; 82(3): 485-8.
[http://dx.doi.org/10.1016/j.fitote.2011.01.001] [PMID: 21238546]
[58]
Singh JP, Satish KS, Ruchika C, Bishwambhar M, Suneetha V. Evaluation of antimicrobial and antioxidant property of lychee’s seed for therapeutic purpose. Int J Pharm Sci Rev Res 2013; 19: 72-6.
[59]
Queiroz ER, de Abreu CMP, Oliveira KS, Ramos OV, Fraguas RM. Bioactive phytochemicals and antioxidant activity in fresh and dried lychee fractions. Rev Cienc Agron 2015; 46: 163-9.
[http://dx.doi.org/10.1590/S1806-66902015000100019]
[60]
Queiroz ER, Abreu CMP, Oliveira KS. Constituintes quı’micos das frac¸o˜es de lichia in natura e submetidas a secagem: potencial nutricional dos subprodutos. Rev Bras Frutic 2012; 34: 1174-9.
[http://dx.doi.org/10.1590/S0100-29452012000400026]
[61]
Panyathepa A, Chewonarina T, Taneyhillb K, Vinitketkumnuen U. Antioxidant and anti-matrix metalloproteinases activities of dried longan (Euphoria longana) seed extract. Sci Asia 2013; 39: 12-8.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2013.39.012]
[62]
Ajila CM, Naidu KA, Bhat SG, Prasada-Rao UJS. Bioactive compounds and antioxidant potential of mango peel extract. Food Chem 2007; 105: 982-8.
[http://dx.doi.org/10.1016/j.foodchem.2007.04.052]
[63]
Berardini N, Knodler M, Schieber A, Carle R. Utilization of mango peels as a source of pectin and polyphenolics. Innov Food Sci Emerg 2005; 6: 442-52.
[http://dx.doi.org/10.1016/j.ifset.2005.06.004]
[64]
Puravankara D, Boghra V, Sharma RS. Effect of antioxidant principles isolated from mango (Mangifera indica L.) seed kernels on oxidative stability of buffalo ghee (butter-fat). J Sci Food Agric 2000; 80: 522-6.
[http://dx.doi.org/10.1002/(SICI)1097-0010(200003)80:4<522:AID-JSFA560>3.0.CO;2-R]
[65]
Chen JP, Tai CY, Chen BH. Improved liquid chromatographic method for determination of carotenoids in Taiwanese mango (Mangifera indica L.). J Chromatogr A 2004; 1054(1-2): 261-8.
[http://dx.doi.org/10.1016/S0021-9673(04)01406-2] [PMID: 15553152]
[66]
Varakumar S, Kumar YS, Reddy OVS. Carotenoid composition of mango (Mangifera indica L.) wine and its antioxidant activity. J Food Biochem 2010; 35: 1538-47.
[http://dx.doi.org/10.1111/j.1745-4514.2010.00476.x]
[67]
Suzuki T, Someya S, Hu F, Tanokura M. Comparative study of catechin compositions in five Japanese persimmons (Diospyros kaki). Food Chem 2005; 93: 149-52.
[http://dx.doi.org/10.1016/j.foodchem.2004.10.017]
[68]
Bubba MD, Giordani E, Pippucci L, Cincinelli A, Checchini L, Galvan P. Changes in tannins ascorbic acid and sugar contents in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J Food Compos Anal 2009; 22: 668-77.
[http://dx.doi.org/10.1016/j.jfca.2009.02.015]
[69]
Kalogeropoulos N, Chiou A, Pyriochou V, Peristeraki A, Karathanos VT. Bioactive phytochemicals in industrial tomatoes and their processing byproducts. Lebensm Wiss Technol 2012; 49: 213-6.
[http://dx.doi.org/10.1016/j.lwt.2011.12.036]
[70]
Palanisamy U, Cheng HM, Masilamani T, Subramaniam T, Ling LT, Radhakrishnan AK. Rind of the rambutan, Nephelium lappaceum, a potential source of natural antioxidants. Food Chem 2008; 109(1): 54-63.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.018] [PMID: 26054264]
[71]
Thitilertdecha N, Teerawutgulrag A, Kilburn JD, Rakariyatham N. Identification of major phenolic compounds from Nephelium lappaceum L. and their antioxidant activities. Molecules 2010; 15(3): 1453-65.
[http://dx.doi.org/10.3390/molecules15031453] [PMID: 20335993]
[72]
Hertog MGL, Hollman PCH, Katan MB. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J Agric Food Chem 1992; 40: 2379-83.
[http://dx.doi.org/10.1021/jf00024a011]
[73]
Nuutila AM, Puupponen-Pimia R, Aarni M, Oksman Caldentey KM. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem 2003; 81: 485-93.
[http://dx.doi.org/10.1016/S0308-8146(02)00476-4]
[74]
Kim SJ, Kim GH. Quantification of quercetin in different parts of onion and its DPPH radical scavenging and antibacterial activity. Food Sci Biotechnol 2006; 15: 39-43.
[75]
Anonymous, broccoli, cauliflower and genetic cancer. Science daily.. 2006. Available from: www.sciencedaily.com/releases/2006/05/060517185953.htm
[76]
Domínguez-Perles R, Martínez-Ballesta MC, Carvajal M, García-Viguera C, Moreno DA. Broccoli-derived by-products-a promising source of bioactive ingredients. J Food Sci 2010; 75(4): C383-92.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01606.x] [PMID: 20546399]
[77]
Domınguez-Perles R, Moreno DA, Carvajal M, Garcia Viguera C. Composition and antioxidant capacity of a novel beverage produced with green tea and minimally-processed byproducts of broccoli. Innov Food Sci Emerg Technol 2011; 12: 361-8.
[http://dx.doi.org/10.1016/j.ifset.2011.04.005]
[78]
Papaioannou EH, Liakopoulou-Kyriakides M. Agro-food wastes utilization by Blakeslea trispora for carotenoids production. Acta Biochim Pol 2012; 59(1): 151-3.
[http://dx.doi.org/10.18388/abp.2012_2194] [PMID: 22428133]
[79]
Zhang D, Hamauzu Y. Phenolic compounds and their antioxidant properties in different tissues of carrots. Food Agric Environ 2004; 2: 95-100.
[80]
Canadanovic-Brunet JM, Savatovic SS, Cetkovic GS, Vulic JJ, Djilas SM, Markov SL. Antioxidant and antimicrobial activities of beet root pomace extracts. Czech J Food Sci 2011; 29: 575-85.
[http://dx.doi.org/10.17221/210/2010-CJFS]
[81]
Schwartz SE, Levine RA, Weinstock RS, Petokas S, Mills CA, Thomas FD. Sustained pectin ingestion: effect on gastric emptying and glucose tolerance in non-insulin-dependent diabetic patients. Am J Clin Nutr 1988; 48(6): 1413-7.
[http://dx.doi.org/10.1093/ajcn/48.6.1413] [PMID: 2849298]
[82]
Larrauri JA, Borroto B, Crespo AR. Water recycling in processing orange peel to a high dietary fibre powder. Int J Food Sci Technol 1997; 32: 73-6.
[http://dx.doi.org/10.1046/j.1365-2621.1997.00383.x]
[83]
Fernandez ML, Sun DM, Tosca MA, McNamara DJ. Citrus pectin and cholesterol interact to regulate hepatic cholesterol homeostasis and lipoprotein metabolism: a dose-response study in Guinea pigs. Am J Clin Nutr 1994; 59(4): 869-78.
[http://dx.doi.org/10.1093/ajcn/59.4.869] [PMID: 8147332]
[84]
Anonymous . Dietary fiber market market 2020. Available from: https://www.reportsanddata.com/report-detail/dietary-fibers-market [on 25th Feb., 2021]
[85]
Mirhosseini H, Amid BT. Influence of chemical extraction conditions on the physicochemical and functional properties of polysaccharide gum from durian (Durio zibethinus) seed. Molecules 2012; 17(6): 6465-80.
[http://dx.doi.org/10.3390/molecules17066465] [PMID: 22643356]
[86]
Ibanez MC, Ferrero C. Extraction and characterization of the hydrocolloid from Prosopis flexuosa DC seeds. Food Res Int 2003; 36: 455-60.
[http://dx.doi.org/10.1016/S0963-9969(02)00192-8]
[87]
Vardhanabhuti B, Ikeda S. Isolation and characterization of hydrocolloids from monoi (Cissampelos pareira) leaves. Food Hydrocoll 2006; 20: 885-91.
[http://dx.doi.org/10.1016/j.foodhyd.2005.09.002]
[88]
Watt DK, Brasch DJ, Larsen DS, Melton LD. Isolation, characterization and NMR study of xyloglucon from en-zymatically depectinised and non-depectinised apple pomace. Carbohydr Polym 1999; 39: 165-80.
[http://dx.doi.org/10.1016/S0144-8617(99)00002-8]
[89]
Rana V, Rai P, Tiwary AK, Singh RS, Kennedy JF, Knill CJ. Modified gums: approaches and applications in drug delivery. Carbohydr Polym 2011; 83: 1031-47.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.010]
[90]
Baiano A. Recovery of biomolecules from food wastes-a review. Molecules 2014; 19(9): 14821-42.
[http://dx.doi.org/10.3390/molecules190914821] [PMID: 25232705]
[91]
Rehman ZU, Salariya AM, Habib F, Shah WH. Utilization of mango peels as a source of pectin. J Chem Soc Pak 2004; 26: 73-6.
[92]
Kumar D, Ashfaque M, Muthukumar M, Singh M, Garg N. Production and characterization of carboxymethyl cellulase from Paenibacillus polymyxa using mango peel as substrate. J Environ Biol 2012; 33(1): 81-4.
[PMID: 23033647]
[93]
Koubala BB, Kansci G, Garnier C, Thibault JF, Ralet MC. Physicochemical properties of dietary fibres prepared from ambarella (Spondias cytherea) and mango (Mangifera indica) peels. Food Bioprocess Technol 2013; 6: 591-7.
[http://dx.doi.org/10.1007/s11947-011-0660-1]
[94]
Moreno J. Lopez, Vargas-Garcıa C, Vazquez R. Use of agricultural wastes for xanthan production by Xanthomonas campestris. J Ind Microbiol Biotechnol 1988; 21: 242-6.
[http://dx.doi.org/10.1038/sj.jim.2900582]
[95]
Kaur M, Mann Hira SK, Bajaj S. Effect of muskmelon (Cucumis melo) seed supplementation on the nutritive value of wheat chapatti. J Food Sci Technol 1988; 25: 263-6.
[96]
Boland M. Kiwifruit proteins and enzymes: Actinidin and other significant proteins. Adv Food Nutr Res 2013; 68: 59-80.
[http://dx.doi.org/10.1016/B978-0-12-394294-4.00004-3] [PMID: 23394982]
[97]
Devalaraja S, Jain S, Yadav H. Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Res Int 2011; 44(7): 1856-65.
[http://dx.doi.org/10.1016/j.foodres.2011.04.008] [PMID: 21857774]
[98]
Wani AA, Kaur D, Ahmed I, Sogi DS. Extraction optimization of watermelon seed protein using response surface methodology. Lebensm Wiss Technol 2008; 41: 1514-20.
[http://dx.doi.org/10.1016/j.lwt.2007.10.001]
[99]
Lerma-García MJ, D’Amato A, Simó-Alfonso EF, Righetti PG, Fasoli E. Orange proteomic fingerprinting: From fruit to commercial juices. Food Chem 2016; 196: 739-49.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.009] [PMID: 26593549]
[100]
Kumari R, Meghwal M. Benefits of food colours and safety in usage. Regulation, Food ingredients south. Asia 2016; 1(12): 22-5.
[101]
Sayeed R, Thakur M, Gani A. Celosia cristata Linn. flowers as a new source of nutraceuticals- A study on nutritional composition, chemical characterization and in vitro antioxidant capacity. Heliyon 2020; 6(12)e05792
[http://dx.doi.org/10.1016/j.heliyon.2020.e05792] [PMID: 33426325]
[102]
Thakur M, Sayeed R, Naaz N. Celosia cristata: A potential biocolorant. Int J Sci Technol Manag 2020; 11(2): 1-12.
[103]
Arikan EB, Canli O, Caro Y, Dufossé L, Dizge N. Production of bio-based pigments from food processing industry by-products (apple, pomegranate, black carrot, red beet pulps) using Aspergillus carbonarius. J Fungi (Basel) 2020; 6(4): 240.
[http://dx.doi.org/10.3390/jof6040240] [PMID: 33105686]
[104]
Panesar R. Bioutilization of kinnow waste for the production of biopigments using submerged fermentation. Int J Food Nutr Sci 2014; 3: 9-13.
[105]
Gautam HR, Guleria SPS. Fruit and vegetable waste utilization. Science Technology Entrepreneur 2007. AQ10 online E-magazine
[106]
Vallilo MI, Lamardo LCA, Gaberlotti ML, Oliveira ED, Moreno PRH. Chemical composition of the fruits of Campomanesia adamantium (Cambesse’des) O. Berg fruits. Food Sci Technol (Campinas) 2006; 26: 805-10.
[http://dx.doi.org/10.1590/S0101-20612006000400015]
[107]
Viuda-Martos M, Ruiz-Navajas Y. Martin-S anchez A. Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder coproduct. J Food Eng 2012; 110: 220-4.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.05.029]
[108]
Emaga TH, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M. Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem 2007; 103: 590-600.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.006]
[109]
Chahoud G, Aude YW, Mehta JL. Dietary recommendations in the prevention and treatment of coronary heart disease: Do we have the ideal diet yet? Am J Cardiol 2004; 94(10): 1260-7.
[http://dx.doi.org/10.1016/j.amjcard.2004.07.109] [PMID: 15541241]
[110]
Sirisompong W, Jirapakkul W, Klinkesorn U. Response surface optimization and characteristics of rambutan (Nephelium lappaceum) kernel fat by hexane extraction. Lebensm Wiss Technol 2011; 44: 1946-51.
[http://dx.doi.org/10.1016/j.lwt.2011.04.011]
[111]
Harahap S, Ramli N, Vafaei N, Said M. Physico-chemical and nutritional composition of rambutan anak sekolah (Nephelium lappaceum) seed and seed oil. Pak J Nutr 2012; 11: 1073-7.
[http://dx.doi.org/10.3923/pjn.2012.1073.1077]
[112]
Solís-Fuentes JA, Camey-Ortíz G, Hernández-Medel Mdel R, Pérez-Mendoza F, Durán-de-Bazúa C. Composition, phase behavior and thermal stability of natural edible fat from rambutan (Nephelium lappaceum L.) seed. Bioresour Technol 2010; 101(2): 799-803.
[http://dx.doi.org/10.1016/j.biortech.2009.08.031] [PMID: 19748264]
[113]
Adsule RN, Kadam SS. Guava. In: Handbook of fruit science and technology In: Salunkhe. Salunkhe , Kadam SS, Eds. New York, Basel, Hong Kong: Marcel Dekker. 1995; pp. 419-33.
[114]
Ryan L, Mestrallet MG, Nepote V, Conci S, Grosso NR. Composition, stability and acceptability of different vegetable oils used for frying peanuts. Int J Food Sci Technol 2008; 43: 193-9.
[http://dx.doi.org/10.1111/j.1365-2621.2006.01288.x]
[115]
Sethi V, Maini SB. Production of organic acids. In: Joshi VK, Pandey Ashok, Eds Biotechnology: Food fermentaton, microbiology, biochemistry and technology. New Delhi: Educational Publishers and Distributors. 1999; II: pp. 1259-90.
[116]
Dessie W, Zhang W, Xin F, et al. Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation. Bioresour Technol 2018; 247: 1177-80.
[http://dx.doi.org/10.1016/j.biortech.2017.08.171] [PMID: 28941663]
[117]
Soccol CR, Vandenberghe LPS, Rodrigues C, Pandey A. New perspectives for citric acid production and application. Food Technol Biotechnol 2006; 44: 141-9.
[118]
Hamelin L, Thomsen M, Teigiserova DA. Review of high value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour Conserv Recycling 2019; 149: 413-29.
[http://dx.doi.org/10.1016/j.resconrec.2019.05.003]
[119]
Bhalla TC, Gajju H, Agrawal HO. Production of single cell proteins. In: KJoshi V, Ashok Pandey, Eds Biotechnology: Food fermentation, microbiology, biochemistry and technology. New Delhi: Educational Publishers and Distributors. 1999; II: pp. 1003-22.
[120]
Anonymous . Single cell protein market 2020. Available from: https://www.persistencemarketresearch.com/market-research/single-cell-protein-market.asp [on 18th Jan., 2021]
[121]
Devarajan A, Joshi VK, Gupta K. Evaluation of apple pomace based reconstituted feed in rats after solid state fermentation and ethanol recovery. Braz Arch Biol Technol 2004; 47: 93-106.
[http://dx.doi.org/10.1590/S1516-89132004000100013]
[122]
Vendruscolo F, Albuquerque PM, Streit F, Esposito E, Ninow JL. Apple pomace: A versatile substrate for biotechnological applications. Crit Rev Biotechnol 2008; 28(1): 1-12.
[http://dx.doi.org/10.1080/07388550801913840] [PMID: 18322854]
[123]
Villas-Boas SG, Esposito E, Matos de Mendonca M. Bioconversion of apple pomace into a nutritionally enriched substrate by Candida utilis and Pleurotus ostreatus. World J Microbiol Biotechnol 2003; 19: 461-7.
[http://dx.doi.org/10.1023/A:1025105506004]
[124]
Uchakalwar PR, Chandak AM. Production of single cell protein from fruits waste by using Saccharomyces cerevisiae. Int J Adv Biotechnol Res 2014; 5: 770-6.
[125]
Oboh G, Ademosun AO, Lajide L. Improvement of the nutritive value and antioxidant properties of citrus peels through Saccharomyces cerevisae solid substrate fermentation for utilization in livestock feed. Livestock research for rural development 2012; 24(1) Available from: http://www.lrrd.org/lrrd24/1/oboh24009.htm
[126]
Mondal AK, Sengupta S, Bhowal J, Bhattacharya DK. Utilization of fruit wastes in producing single cell protein. Int J Sci Environ Technol 2012; 1: 430-8.
[127]
Njoroge SM, Koaze H, Karanja PN, Sawamura M. Volatile constituents of redblush grapefruit (Citrus paradisi) and pummelo (Citrus grandis) peel essential oils from Kenya. J Agric Food Chem 2005; 53(25): 9790-4.
[http://dx.doi.org/10.1021/jf051373s] [PMID: 16332132]
[128]
Lanciotti R, Gianotti A, Patrignani F, Belletti N, Guerzoni ME, Gardini F. Use of natural aroma compounds to improve shelf life and safety of minimally processed fruits. Trends Food Sci Technol 2004; 15: 201-8.
[http://dx.doi.org/10.1016/j.tifs.2003.10.004]
[129]
Sharon F. Lemon essential oil, the uses and properties of lemon oil in aroma therapy. Nat Med 2008. AQ12 Suite 101
[130]
Wadhwa M, Bakshi Mohinder PS, Makkar Harinder PS. Waste to worth: fruit wastes and by-products as animal feed. Commonwealth Agriculture Bureau Rev 2015; 10: 031.
[131]
Kokab S, Asghar M, Rehman K, Asad MJ, Adedyo O. Bioprocessing of banana peel for alpha amylase production by Bacillus subtilis. Int J Agric Biol 2003; 5: 36-9.
[132]
Vivekanand V, Dwivedi P, Pareek N, Singh RP. Banana peel: a potential substrate for laccase production by Aspergillus fumigatus VkJ2.4.5 in solid-state fermentation. Appl Biochem Biotechnol 2011; 165(1): 204-20.
[http://dx.doi.org/10.1007/s12010-011-9244-9] [PMID: 21487735]
[133]
Patil VS, Deshmukh HV. A review on co-digestion of vegetable waste with organic wastes for energy generation. Int Res J Biol Sci 2015; 4(6): 83-6.
[134]
Dhillon SS, Gill RK, Gill SS, Singh M. Studies on the utilization of citrus peel for pectinase production using fungus Aspergillus niger. Int J Environ Stud 2004; 61: 199-210.
[http://dx.doi.org/10.1080/0020723032000143346]
[135]
Tao N, Si W, Liu Y, Huang S. Production of feed enzymes from citrus processing waste by solid state fermentation with Eupenicillium javanicum. Int J Food Sci Technol 2011; 46: 1073-9.
[http://dx.doi.org/10.1111/j.1365-2621.2011.02587.x]
[136]
Spier MR, Fendrich RC, Almeida PC, Noseda M, Greiner R, Konietzny U. Phytase produced on citric byproducts: purification and characterization. World J Microbiol Biotechnol 2010; 27: 267-74.
[http://dx.doi.org/10.1007/s11274-010-0455-y]
[137]
Panagiotou G, Kekos G, Macris BJ, Christakopoulos P. Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crops Prod 2003; 18: 37-45.
[http://dx.doi.org/10.1016/S0926-6690(03)00018-9]
[138]
Qureshi AS, Bhutto MA, Chisti Y, Khushk I, Dahot MU, Bano S. Production of pectinase by Bacillus subtilis EFRL 01 in a date syrup medium. Afr J Biotechnol 2012; 11: 12563-70.
[139]
Bari MR, Alizadeh M, Farbeh F. Optimizing endo-pectinase production from date pomace by Aspergillus niger PC5 using response surface methodology. Food Bioprod Process 2010; 88: 67-72.
[http://dx.doi.org/10.1016/j.fbp.2009.03.004]
[140]
Acourene S, Ammouche A. Optimization of ethanol, citric acid, and α-amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and Candida guilliermondii. J Ind Microbiol Biotechnol 2012; 39(5): 759-66.
[http://dx.doi.org/10.1007/s10295-011-1070-0] [PMID: 22193823]
[141]
Rao PVVP, Satya CHV, Sri Rami Reddy D. Jack fruit waste: A potential substrate for pectinase production. Indian J Sci Res 2014; 9: 58-62.
[142]
Shukla J, Kar R. Potato peel as a solid-state substrate for thermostable alpha amylase production by thermophilic Bacillus asolate. WJ Microbiology Technology 2006; 22: 417-22.
[143]
Saravanan P, Muthuvelayudham R, Viruthagiri T. Application of statistical design for the production of cellulase by Trichoderma reesei using mango peel. Enzyme Res 2012; 157643: 7.
[144]
Khedkar R, Zahid A. Biobased packaging from food industry waste. In: Sustainable food waste management: concepts and innovations. NY: Springer 2020; pp. 241-65.
[145]
Afreen SS, Lokeshappa B. Production of bacterial cellulose from Acetobacter Xylinum using fruits wastes as substrate. Int J Sci Technol 2014; 2: 57-64.
[146]
Carucci A, Dionisi D, Majone M, Rolle E, Smurra P. Aerobic storage by activated sludge on real wastewater. Water Res 2001; 35(16): 3833-44.
[http://dx.doi.org/10.1016/S0043-1354(01)00108-7] [PMID: 12230166]
[147]
Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol 2017; 37(Pt A): 24-38.
[http://dx.doi.org/10.1016/j.nbt.2016.05.001] [PMID: 27184617]
[148]
Gouda MK, Swellam AE, Omar SH. Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 2001; 156(3): 201-7.
[http://dx.doi.org/10.1078/0944-5013-00104] [PMID: 11716209]
[149]
Reddy CSK, Ghai R, Rashmi Kalia VC. Polyhydroxyalkanoates: An overview. Bioresour Technol 2003; 87(2): 137-46.
[http://dx.doi.org/10.1016/S0960-8524(02)00212-2] [PMID: 12765352]
[150]
Chen GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 2009; 38(8): 2434-46.
[http://dx.doi.org/10.1039/b812677c] [PMID: 19623359]
[151]
Ahmed T, Shahid M, Azeem F, et al. Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environ Sci Pollut 2018; 1-12.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy