Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Acid-functionalized Mesoporous Silicate (KIT-5-Pr-SO3H) Synthesized as an Efficient and Nanocatalyst for Green Multicomponent

Author(s): Mansoureh Daraie, Razieh Mirsafaei and Majid M. Heravi*

Volume 16, Issue 1, 2019

Page: [145 - 153] Pages: 9

DOI: 10.2174/1570179415666181005110543

Price: $65

Abstract

Aim and Objective: KIT-5 nanoporous silica was functionalized with sulfonic acid and SO3H group has been immobilized on nanoporous KIT-5 silica support via in situ method to produce novel nanocatalyst as “KIT-5-Pr-SO3H”. The catalyst was fully characterized by FT-IR, SEM, EDXs, TEM, BET and TGA techniques. The surface morphology images approved that the nanocatalyst particle sizes are around 7-15 nm. The prepared catalyst was efficiently used in the synthesis of benzimidazolo quinazolinones, imidazo[1,2- a]chromeno[4,3-d]pyrimidinone and imidazo[1,2-a]pyrimidine via a multicomponent reaction under green conditions. The easy synthesis condition, environmental compatibility, high specific surface area, reusability for 5 run without loses in any activity, high selectivity, availability of raw material, are the remarkable properties for this new catalyst.

Materials and Methods: All reagents were purchased from Aldrich and Merck with high-grade quality and used as received. The structural characteristics of the KIT-5 which was obtained, using three-dimensional large cage type face-centered cubic Fm3m mesoporous silica materials (KIT-5) nanocages were obtained according to the procedure described by Kleitz et al.

Results: The purpose of this study is developing a new acid-functionalized mesoporous catalyst. Initially, (KIT-5) nanocages were obtained according to the procedure described by Kleitz et al. Then, KIT-5-Pr-SH was prepared by Mercaptopropyltriethoxysilane as illustrated in Scheme 1. In the next step, the solid product was oxidized with H2O2.

The full characterization for proving the structure of the nano-size particles was achieved using FT-IR, TGA, TEM, SEM, and EDX analysis.

Conclusion: Acid-functionalized mesoporous silica has been proved to act as an effective catalyst in various organic reactions. In this project, for the first time, KIT-5 was functionalized by propyl-sulfonic acid as a heterogeneous solid acid catalyst. Sulfonic acid functionalized KIT-5 (KIT-5-Pr-SO3H) performs as an organicinorganic hybrid catalyst, whereas Brønsted acid sites have been selectively generated. In this regard, the catalytic activities of this novel heterogeneous catalyst were successfully examined by the one-pot multicomponent reaction.

Keywords: Mesoporous supporter, heterogeneous nanocatalyst, acid-functionalized catalyst, multi-component reaction, green chemistry.

Graphical Abstract
[1]
Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Micropor Mesopor Mater., 2005, 77(1), 1-45.
[2]
Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; Higgins, J.B. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114(27), 10834-10843.
[3]
Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull. Chem. Soc. Japan., 1990, 63(4), 988-992.
[4]
Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397), 710-712.
[5]
Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev., 1997, 97(6), 2373-2420.
[6]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350), 548-552.
[7]
Srinivasu, P.; Alam, S.; Balasubramanian, V.V.; Velmathi, S.; Sawant, D.P.; Böhlmann, W.; Mirajkar, S.P.; Ariga, K.; Halligudi, S.B.; Vinu, A. Novel three dimensional cubic Fm3m mesoporous aluminosilicates with tailored cage type pore structure and high aluminum content. Adv. Funct. Mater., 2008, 18(4), 640-651.
[8]
Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Micropor. Mesopor Mater., 2005, 77(1), 1-45.
[9]
Huo, Q.; Margolese, D.I.; Ciesla, U.; Demuth, D.G.; Feng, P.; Gier, T.E.; Sieger, P.; Firouzi, A.; Chmelka, B.F. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater., 1994, 6(8), 1176-1191.
[10]
Deka, J.R.; Lin, Y.H.; Kao, H.M. Ordered cubic mesoporous silica KIT-5 functionalized with carboxylic acid groups for dye removal. RSC Adv, 2014, 4(90), 49061-49069.
[11]
Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D. Superparamagnetic high-magnetization microspheres with an Fe3O4@ SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc., 2008, 130(1), 28-29.
[12]
Kleitz, F.; Liu, D.; Anilkumar, G.M.; Park, I.S.; Solovyov, L.A.; Shmakov, A.N.; Ryoo, R. Large cage face-centered-cubic Fm3m mesoporous silica: synthesis and structure. J. Phys. Chem. B, 2003, 107(51), 14296-14300.
[13]
Fan, J.; Yu, C.; Lei, J.; Zhang, Q.; Li, T.; Tu, B.; Zhou, W.; Zhao, D. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J. Am. Chem. Soc., 2005, 127(31), 10794-10795.
[14]
Melero, J.A.; van Grieken, R.; Morales, G. Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials. Chem. Rev., 2006, 106(9), 3790-3812.
[15]
Stein, A.; Melde, B.J.; Schroden, R.C. Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age. Adv. Mat., 2000, 12(19), 1403-1419.
[16]
Sayari, A.; Hamoudi, S. Periodic Mesoporous Silica-Based Organic− Inorganic Nanocomposite Materials. Chem. Mat., 2001, 13(10), 3151-3168.
[17]
Hsu, Y.T.; Chen, W.L.; Yang, C.M. Co-condensation synthesis of aminopropyl-functionalized KIT-5 mesophases using carboxy-terminated triblock copolymer. J. Phys. Chem. C, 2009, 113(7), 2777-2783.
[18]
Agirrezabal-Telleria, I.; Gandarias, I.; Arias, P.L. Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrates: a review. Catal. Today, 2014, 234, 42-58.
[19]
Gu, Y.; Karam, A.; Jérôme, F.; Barrault, J. Selectivity enhancement of silica-supported sulfonic acid catalysts in water by coating of ionic liquid. Org. Lett., 2007, 9(16), 3145-3148.
[20]
de AA Soler-Illia G.J.; Crepaldi, E.L.; Grosso, D.; Sanchez, C. Block copolymer-templated mesoporous oxides. Curr. Opin. Colloid Interface Sci., 2003, 8(1), 109-126.
[21]
Chang, W.C.; Deka, J.R.; Wu, H.Y.; Shieh, F.K.; Huang, S.Y.; Kao, H.M. Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents. Appl. Catal. B Environ, 2013, 142, 817-827.
[22]
Bamoharram, F.F.; Heravi, M.M.; Roshani, M.; Jahangir, M.; Gharib, A. Effective direct esterification of butanol by eco-friendly Preyssler catalyst, [NaP5W30O110]14. J. Mol. Catal.A: Chem., 2007, 271(1), 126-130.
[23]
Heravi, M.M.; Rajabzadeh, G.; Bamoharram, F.F.; Seifi, N. An eco-friendly catalytic route for synthesis of 4-amino-pyrazolo [3, 4-d]pyrimidine derivatives by Keggin heteropolyacids under classical heating and microwave irradiation. J. Mol. Catalysis A: Chem., 2006, 256(1), 238-241.
[24]
Heravi, M.M.; Bakhtiari, K.; Fatehi, A.; Bamoharram, F.F. A convenient synthesis of bis(indolyl)methanes catalyzed by diphosphooctadecatungstic acid. Catal. Commun., 2008, 9(2), 289-292.
[25]
Heravi, M.M.; Khorasani, M.; Derikvand, F.; Oskooie, H.A.; Bamoharram, F.F. Highly efficient synthesis of coumarin derivatives in the presence of H 14 [NaP 5 W 30 O 110] as a green and reusable catalyst. Catal. Commun., 2007, 8(12), 1886-1890.
[26]
Heravi, M.M.; Zadsirjan, V.; Bakhtiari, K.; Oskooie, H.A.; Bamoharram, F.F. Green and reusable heteropolyacid catalyzed oxidation of benzylic, allylic and aliphatic alcohols to carbonyl compounds. Catal. Commun., 2007, 8(3), 315-318.
[27]
Sadjadi, S.; Heravi, M.M.; Daraie, M. A novel hybrid catalytic system based on immobilization of phosphomolybdic acid on ionic liquid decorated cyclodextrin-nanosponges: Efficient catalyst for the green synthesis of benzochromeno-pyrazole through cascade reaction: Triply green. J. Mol. Liquids., 2017, 231, 98-105.
[28]
Sadjadi, S.; Heravi, M.M.; Daraie, M. Cyclodextrin nanosponges: a potential catalyst and catalyst support for synthesis of xanthenes. Res. Chem. Intermed., 2017, 43(2), 843-857.
[29]
Sadjadi, S.; Heravi, M.M.; Daraie, M. Heteropolyacid supported on amine-functionalized halloysite nano clay as an efficient catalyst for the synthesis of pyrazolopyranopyrimidines via four-component domino reaction. Res. Chem. Intermed., 2017, 43(4), 2201-2214.
[30]
Kleitz, F.; Choi, S.H.; Ryoo, R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. , 2003, (17), 2136-2137.
[31]
O’Hagan, D. Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Nat. Prod. Rep., 2000, 17(5), 435-446.
[32]
Abdelhamid, A.O.; Abdelall, E.K.; Zaki, Y.H. Reactions with hydrazonoyl halides 62: Synthesis and antimicrobial evaluation of some new imidazo[1,2‐a]pyrimidine, imidazo[1,2‐a]pyridine, imdazo[1,2‐b]pyrazole, and quinoxaline derivatives. J. Heterocycl. Chem., 2010, 47(2), 477-482.
[33]
Shaabani, A.; Seyyedhamzeh, M.; Ganji, N.; Ng, S.W. Catalyst-free rapid synthesis of benzo[4,5]imidazo[1,2-a]-pyrimidine-3-carboxamides via four-component coupling in one pot. J. Iran Chem. Soc., 2014, 11(2), 481-487.
[34]
Sadjadi, S.; Heravi, M.M.; Daraie, M. A novel hybrid catalytic system based on immobilization of phosphomolybdic acid on ionic liquid decorated cyclodextrin-nanosponges: Efficient catalyst for the green synthesis of benzochromeno-pyrazole through cascade reaction: Triply green. J. Mol. Liquids., 2017, 231, 98-105.
[35]
Abignente, E. Etudes d’imidazo [1,2-a] pyridines et d’analogues douées d’activité anti-inflammatoire. Actualités de Chimie Thérapeutique, 1991, 18, 193-214.
[36]
Heravi, M.M.; Derikvand, F.; Ranjbar, L. Sulfamic acid–catalyzed, three-component, one-pot synthesis of [1,2,4] triazolo/benzimidazolo quinazolinone derivatives. Synth. Commun., 2010, 40(5), 677-685.
[37]
Amoozadeh, A.; Rahmani, S. Nano-WO3-supported sulfonic acid: New, efficient and high reusable heterogeneous nano catalyst. J. Mol. Catal. A: Chem., 2015, 396, 96.
[38]
Heravi, M.M.; Saeedi, M.; Beheshtiha, Y.S.; Oskooie, H.A. One-pot chemoselective synthesis of novel fused pyrimidine derivatives. Chem. Heterocycl. Comp., 2011, 47(6), 737.
[38]
Sadjadi, S.; Nahavandi, F.; Heravi, M. Efficient synthesis of novel imidazo[1,2-a]pyrimidine derivatives via one-pot three-component procedure. J. Iran Chem. Soc., 2015, 12(6), 1049-1052.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy