Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

The Role of LMP1 in Epstein-Barr Virus-associated Gastric Cancer

Author(s): Xinqi Huang, Meilan Zhang and Zhiwei Zhang*

Volume 24, Issue 2, 2024

Published on: 13 June, 2023

Page: [127 - 141] Pages: 15

DOI: 10.2174/1568009623666230512153741

Price: $65

Abstract

EBV promotes many cancers such as lymphoma, nasopharyngeal carcinoma, and gastric; Latent Membrane Protein 1 (LMP1) is considered to be a major oncogenic protein encoded by Epstein– Barr virus (EBV). LMP1 functions as a carcinogen in lymphoma and nasopharyngeal carcinoma, and LMP1 may also promote gastric cancer. The expression level of LMP1 in host cells is a key determinant in tumorigenesis and maintenance of virus specificity. By promoting cell immortalization and cell transformation, promoting cell proliferation, affecting immunity, and regulating cell apoptosis, LMP1 plays a crucial tumorigenic role in epithelial cancers. However, very little is currently known about LMP1 in Epstein-Barr virus-associated gastric cancer (EBVaGC); the main reason is that the expression level of LMP1 in EBVaGC is comparatively lower than other EBV-encoded proteins, such as The Latent Membrane Protein 2A (LMP2A), Epstein-Barr nuclear antigen 1 (EBNA1) and BamHI-A rightward frame 1 (BARF1), to date, there are few studies related to LMP1 in EBVaGC. Recent studies have demonstrated that LMP1 promotes EBVaGC by affecting The phosphatidylinositol 3-kinase- Akt (PI3K-Akt), Nuclear factor-kappa B (NF-κB), and other signaling pathways to regulate many downstream targets such as Forkhead box class O (FOXO), C-X-C-motif chemokine receptor (CXCR), COX-2 (Cyclooxygenase-2); moreover, the gene methylation induced by LMP1 in EBVaGC has become one of the characteristics that distinguish this gastric cancer (GC) from other types of gastric cancer and LMP1 also promotes the formation of the tumor microenvironment (TME) of EBVaGC in several ways. This review synthesizes previous relevant literature, aiming to highlight the latest findings on the mechanism of action of LMP1 in EBVaGC, summarize the function of LMP1 in EBVaGC, lay the theoretical foundation for subsequent new research on LMP1 in EBVaGC, and contribute to the development of novel LMP1-targeted drugs.

Keywords: The latent membrane protein 1 (LMP1), Epstein–barr virus-associated gastric cancer (EBVaGC), apoptosis, signaling pathway, methylation, tumor microenvironment.

Next »
Graphical Abstract
[1]
Burke, A.P.; Yen, T.S.; Shekitka, K.M.; Sobin, L.H. Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Modern pathology: An official journal of the United States and Canadian Academy of Pathology. Inc, 1990, 3(3), 377-380.
[2]
Suh, Y.S.; Na, D.; Lee, J.S.; Chae, J.; Kim, E.; Jang, G.; Lee, J.; Min, J.; Ock, C.Y.; Kong, S.H.; George, J.; Zhang, C.; Lee, H.J.; Kim, J.I.; Kim, S.J.; Kim, W.H.; Lee, C.; Yang, H.K. Comprehensive molecular characterization of adenocarcinoma of the gastroesophageal junction between esophageal and gastric adenocarcinomas. Ann. Surg., 2022, 275(4), 706-717.
[http://dx.doi.org/10.1097/SLA.0000000000004303] [PMID: 33086305]
[3]
Borozan, I.; Zapatka, M.; Frappier, L.; Ferretti, V. Analysis of epstein-barr virus genomes and expression profiles in gastric adenocarcinoma. J. Virol., 2018, 92(2), e01239-17.
[http://dx.doi.org/10.1128/JVI.01239-17] [PMID: 29093097]
[4]
Nishikawa, J.; Iizasa, H.; Yoshiyama, H.; Shimokuri, K.; Kobayashi, Y.; Sasaki, S.; Nakamura, M.; Yanai, H.; Sakai, K.; Suehiro, Y.; Yamasaki, T.; Sakaida, I. Clinical importance of Epstein–Barr virus-associated gastric cancer. Cancers, 2018, 10(6), 167.
[http://dx.doi.org/10.3390/cancers10060167] [PMID: 29843478]
[5]
Naseem, M.; Barzi, A.; Brezden-Masley, C.; Puccini, A.; Berger, M.D.; Tokunaga, R.; Battaglin, F.; Soni, S.; McSkane, M.; Zhang, W.; Lenz, H.J. Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat. Rev., 2018, 66, 15-22.
[http://dx.doi.org/10.1016/j.ctrv.2018.03.006] [PMID: 29631196]
[6]
Shinozaki-Ushiku, A.; Kunita, A.; Fukayama, M. Update on Epstein-Barr virus and gastric cancer (Review). Int. J. Oncol., 2015, 46(4), 1421-1434.
[http://dx.doi.org/10.3892/ijo.2015.2856] [PMID: 25633561]
[7]
Saito, M.; Kono, K. Landscape of EBV-positive gastric cancer. Gastric Cancer, 2021, 24(5), 983-989.
[http://dx.doi.org/10.1007/s10120-021-01215-3] [PMID: 34292431]
[8]
Shannon-Lowe, C.; Rickinson, A. The global landscape of EBV-associated tumors. Front. Oncol., 2019, 9, 713.
[http://dx.doi.org/10.3389/fonc.2019.00713] [PMID: 31448229]
[9]
Zhang, Y.; Zhang, W.; Liu, W.; Liu, H.; Zhang, Y.; Luo, B. Epstein–Barr virus miRNA-BART16 modulates cell proliferation by targeting LMP1. Virus Res., 2018, 256, 38-44.
[http://dx.doi.org/10.1016/j.virusres.2018.08.001] [PMID: 30077726]
[10]
Sheu, L.F.; Chen, A.; Wei, Y.H.; Ho, K.C.; Cheng, J.Y.; Meng, C.L.; Lee, W.H. Epstein-Barr virus LMP1 modulates the malignant potential of gastric carcinoma cells involving apoptosis. Am. J. Pathol., 1998, 152(1), 63-74.
[PMID: 9422524]
[11]
Liu, W.; Song, Y.; Wang, J.; Xiao, H.; Zhang, Y.; Luo, B. Dysregulation of FOXO transcription factors in Epstein-Barr virus-associated gastric carcinoma. Virus Res., 2020, 276, 197808.
[http://dx.doi.org/10.1016/j.virusres.2019.197808] [PMID: 31712122]
[12]
Qi, Y.F.; Liu, M.; Zhang, Y.; Liu, W.; Xiao, H.; Luo, B. EBV down-regulates COX-2 expression via TRAF2 and ERK signal pathway in EBV-associated gastric cancer. Virus Res., 2019, 272, 197735.
[http://dx.doi.org/10.1016/j.virusres.2019.197735] [PMID: 31473273]
[13]
Wang, W.; Zhang, Y.; Liu, W.; Xiao, H.; Zhang, Q.; Wang, J.; Luo, B. LMP1–miR-146a–CXCR4 axis regulates cell proliferation, apoptosis and metastasis. Virus Res., 2019, 270, 197654.
[http://dx.doi.org/10.1016/j.virusres.2019.197654] [PMID: 31299195]
[14]
Sato, Y.; Ochiai, S.; Murata, T.; Kanda, T.; Goshima, F.; Kimura, H. Elimination of LMP1-expressing cells from a monolayer of gastric cancer AGS cells. Oncotarget, 2017, 8(24), 39345-39355.
[http://dx.doi.org/10.18632/oncotarget.16996] [PMID: 28454117]
[15]
Gao, Y.; Fu, Y.; Wang, J.; Zheng, X.; Zhou, J.; Ma, J. EBV as a high infection risk factor promotes RASSF10 methylation and induces cell proliferation in EBV-associated gastric cancer. Biochem. Biophys. Res. Commun., 2021, 547, 1-8.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.014] [PMID: 33588233]
[16]
Hurwitz, S.N.; Nkosi, D.; Conlon, M.M.; York, S.B.; Liu, X.; Tremblay, D.C.; Meckes, D.G. CD63 regulates Epstein-Barr virus LMP1 Exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling. J. Virol., 2017, 91(5), e02251-e16.
[http://dx.doi.org/10.1128/JVI.02251-16] [PMID: 27974566]
[17]
Zhang, Y.; Liu, W.; Zhang, W.; Wang, W.; Song, Y.; Xiao, H.; Luo, B. Constitutive activation of the canonical NF-κB signaling pathway in EBV-associated gastric carcinoma. Virology, 2019, 532, 1-10.
[http://dx.doi.org/10.1016/j.virol.2019.03.019] [PMID: 30974373]
[18]
Eliopoulos, A.G.; Young, L.S. LMP1 structure and signal transduction. Semin. Cancer Biol., 2001, 11(6), 435-444.
[http://dx.doi.org/10.1006/scbi.2001.0410] [PMID: 11669605]
[19]
Wang, L.; Ning, S. New look of EBV LMP1 signaling landscape. Cancers, 2021, 13(21), 5451.
[http://dx.doi.org/10.3390/cancers13215451] [PMID: 34771613]
[20]
Wang, L.; Howell, M.E.A.; Sparks-Wallace, A.; Hawkins, C.; Nicksic, C.A.; Kohne, C.; Hall, K.H.; Moorman, J.P.; Yao, Z.Q.; Ning, S. p62-mediated selective autophagy endows virus-transformed cells with insusceptibility to DNA damage under oxidative stress. PLoS Pathog., 2019, 15(4), e1007541.
[http://dx.doi.org/10.1371/journal.ppat.1007541] [PMID: 31017975]
[21]
Wang, L.; Ren, J.; Li, G.; Moorman, J.P.; Yao, Z.Q.; Ning, S. LMP1 signaling pathway activates IRF4 in latent EBV infection and a positive circuit between PI3K and Src is required. Oncogene, 2017, 36(16), 2265-2274.
[http://dx.doi.org/10.1038/onc.2016.380] [PMID: 27819673]
[22]
Kanda, T.; Yajima, M.; Ikuta, K. Epstein‐Barr virus strain variation and cancer. Cancer Sci., 2019, 110(4), 1132-1139.
[http://dx.doi.org/10.1111/cas.13954] [PMID: 30697862]
[23]
Yang, J.; Liu, Z.; Zeng, B.; Hu, G.; Gan, R. Epstein–Barr virus-associated gastric cancer: A distinct subtype. Cancer Lett., 2020, 495, 191-199.
[http://dx.doi.org/10.1016/j.canlet.2020.09.019] [PMID: 32979463]
[24]
Wang, L.W.; Jiang, S.; Gewurz, B.E. Epstein-Barr virus LMP1-mediated oncogenicity. J. Virol., 2017, 91(21), e01718-16.
[http://dx.doi.org/10.1128/JVI.01718-16] [PMID: 28835489]
[25]
Lo, A.K.F.; Dawson, C.W.; Lung, H.L.; Wong, K.L.; Young, L.S. The role of EBV-encoded LMP1 in the NPC tumor microenvironment: From function to therapy. Front. Oncol., 2021, 11, 640207.
[http://dx.doi.org/10.3389/fonc.2021.640207] [PMID: 33718235]
[26]
Minamitani, T.; Ma, Y.; Zhou, H.; Kida, H.; Tsai, C.Y.; Obana, M.; Okuzaki, D.; Fujio, Y.; Kumanogoh, A.; Zhao, B.; Kikutani, H.; Kieff, E.; Gewurz, B.E.; Yasui, T. Mouse model of Epstein–Barr virus LMP1- and LMP2A-driven germinal center B-cell lymphoproliferative disease. Proc. Natl. Acad. Sci. USA, 2017, 114(18), 4751-4756.
[http://dx.doi.org/10.1073/pnas.1701836114] [PMID: 28351978]
[27]
Fukayama, M.; Abe, H.; Kunita, A.; Shinozaki-Ushiku, A.; Matsusaka, K.; Ushiku, T.; Kaneda, A. Thirty years of Epstein-Barr virus-associated gastric carcinoma. Virchows Arch., 2020, 476(3), 353-365.
[http://dx.doi.org/10.1007/s00428-019-02724-4] [PMID: 31836926]
[28]
Jiang, N.; Dai, Q.; Su, X.; Fu, J.; Feng, X.; Peng, J. Role of PI3K/AKT pathway in cancer: The framework of malignant behavior. Mol. Biol. Rep., 2020, 47(6), 4587-4629.
[http://dx.doi.org/10.1007/s11033-020-05435-1] [PMID: 32333246]
[29]
Shair, K.; Reddy, A.; Cooper, V. New insights from elucidating the role of LMP1 in nasopharyngeal carcinoma. Cancers, 2018, 10(4), 86.
[http://dx.doi.org/10.3390/cancers10040086] [PMID: 29561768]
[30]
Yoshizaki, T.; Kondo, S.; Endo, K.; Nakanishi, Y.; Aga, M.; Kobayashi, E.; Hirai, N.; Sugimoto, H.; Hatano, M.; Ueno, T.; Ishikawa, K.; Wakisaka, N. Modulation of the tumor microenvironment by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Cancer Sci., 2018, 109(2), 272-278.
[http://dx.doi.org/10.1111/cas.13473] [PMID: 29247573]
[31]
Zeng, M.; Chen, Y.; Jia, X.; Liu, Y. The anti-apoptotic role of EBV-LMP1 in lymphoma cells. Cancer Manag. Res., 2020, 12, 8801-8811.
[http://dx.doi.org/10.2147/CMAR.S260583] [PMID: 33061576]
[32]
Chen, Y.F.; Chang, C.H.; Huang, Z.N.; Su, Y.C.; Chang, S.J.; Jan, J.S. The JAK inhibitor antcin H exhibits direct anticancer activity while enhancing chemotherapy against LMP1-expressed lymphoma. Leuk. Lymphoma, 2019, 60(5), 1193-1203.
[http://dx.doi.org/10.1080/10428194.2018.1512709] [PMID: 30277103]
[33]
Kume, A.; Shinozaki-Ushiku, A.; Kunita, A.; Kondo, A.; Ushiku, T. Enhanced PD-L1 expression in LMP1-positive cells of epstein-barr virus–associated malignant lymphomas and lymphoproliferative disorders. Am. J. Surg. Pathol., 2022, 46(10), 1386-1396.
[http://dx.doi.org/10.1097/PAS.0000000000001919] [PMID: 35605962]
[34]
Lin, H.C.; Chang, Y.; Chen, R.Y.; Hung, L.Y.; Chen, P.C.H.; Chen, Y.P.; Medeiros, L.J.; Chiang, P.M.; Chang, K.C. Epstein‐Barr virus latent membrane protein‐1 upregulates autophagy and promotes viability in Hodgkin lymphoma: Implications for targeted therapy. Cancer Sci., 2021, 112(4), 1589-1602.
[http://dx.doi.org/10.1111/cas.14833] [PMID: 33525055]
[35]
Kang, G.H.; Lee, S.; Kim, W.H.; Lee, H.W.; Kim, J.C.; Rhyu, M.G.; Ro, J.Y. Epstein-barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am. J. Pathol., 2002, 160(3), 787-794.
[http://dx.doi.org/10.1016/S0002-9440(10)64901-2] [PMID: 11891177]
[36]
Chatterjee, K.; Das, P.; Chattopadhyay, N.R.; Mal, S.; Choudhuri, T. The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon, 2019, 5(11), e02624.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02624] [PMID: 31840114]
[37]
Shannon-Lowe, C.; Rowe, M. Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog., 2011, 7(5), e1001338.
[http://dx.doi.org/10.1371/journal.ppat.1001338] [PMID: 21573183]
[38]
El-Sharkawy, A.; Al Zaidan, L.; Malki, A. Epstein–Barr virus-associated malignancies: Roles of viral oncoproteins in carcinogenesis. Front. Oncol., 2018, 8, 265.
[http://dx.doi.org/10.3389/fonc.2018.00265] [PMID: 30116721]
[39]
Li, J.; Liu, X.; Liu, M.; Che, K.; Luo, B. Methylation and expression of Epstein–Barr virus latent membrane protein 1, 2A and 2B in EBV-associated gastric carcinomas and cell lines. Dig. Liver Dis., 2016, 48(6), 673-680.
[http://dx.doi.org/10.1016/j.dld.2016.02.017] [PMID: 27026080]
[40]
Nishikawa, J.; Iizasa, H.; Yoshiyama, H.; Nakamura, M.; Saito, M.; Sasaki, S.; Shimokuri, K.; Yanagihara, M.; Sakai, K.; Suehiro, Y.; Yamasaki, T.; Sakaida, I. The role of epigenetic regulation in Epstein-Barr virus-associated gastric cancer. Int. J. Mol. Sci., 2017, 18(8), 1606.
[http://dx.doi.org/10.3390/ijms18081606] [PMID: 28757548]
[41]
Ma, J.; Li, J.; Hao, Y.; Nie, Y.; Li, Z.; Qian, M.; Liang, Q.; Yu, J.; Zeng, M.; Wu, K. Differentiated tumor immune microenvironment of Epstein-Barr virus-associated and negative gastric cancer: Implication in prognosis and immunotherapy. Oncotarget, 2017, 8(40), 67094-67103.
[http://dx.doi.org/10.18632/oncotarget.17945] [PMID: 28978018]
[42]
van Beek, J.; Hausen, A.; Snel, S.N.; Berkhof, J.; Kranenbarg, E.K.; van de Velde, C.J.H.; van den Brule, A.J.C.; Middeldorp, J.M.; Meijer, C.J.L.M.; Bloemena, E. Morphological evidence of an activated cytotoxic T-cell infiltrate in EBV-positive gastric carcinoma preventing lymph node metastases. Am. J. Surg. Pathol., 2006, 30(1), 59-65.
[http://dx.doi.org/10.1097/01.pas.0000176428.06629.1e] [PMID: 16330943]
[43]
Choi, I.K.; Wang, Z.; Ke, Q.; Hong, M.; Qian, Y.; Zhao, X.; Liu, Y.; Kim, H.J.; Ritz, J.; Cantor, H.; Rajewsky, K.; Wucherpfennig, K.W.; Zhang, B. Signaling by the Epstein–Barr virus LMP1 protein induces potent cytotoxic CD4 + and CD8 + T cell responses. Proc. Natl. Acad. Sci. USA, 2018, 115(4), E686-E695.
[http://dx.doi.org/10.1073/pnas.1713607115] [PMID: 29311309]
[44]
Li, J.; Zhang, Y.; Sun, L.; Liu, S.; Zhao, M.; Luo, B. LMP1 induces p53 protein expression via the H19/miR-675-5p axis. Microbiol. Spectr., 2022, 10(3), e00006-22.
[http://dx.doi.org/10.1128/spectrum.00006-22] [PMID: 35674441]
[45]
Bonglack, E.N.; Messinger, J.E.; Cable, J.M.; Ch’ng, J.; Parnell, K.M.; Reinoso-Vizcaíno, N.M.; Barry, A.P.; Russell, V.S.; Dave, S.S.; Christofk, H.R.; Luftig, M.A. Monocarboxylate transporter antagonism reveals metabolic vulnerabilities of viral-driven lymphomas. Proc. Natl. Acad. Sci., 2021, 118(25), e2022495118.
[http://dx.doi.org/10.1073/pnas.2022495118] [PMID: 34161263]
[46]
Price, A.M.; Messinger, J.E.; Luftig, M.A. c-Myc represses transcription of Epstein-Barr virus latent membrane protein 1 early after primary B cell infection. J. Virol., 2018, 92(2), e01178-17.
[http://dx.doi.org/10.1128/JVI.01178-17] [PMID: 29118124]
[47]
Yi, M.; Cai, J.; Li, J.; Chen, S.; Zeng, Z.; Peng, Q.; Ban, Y.; Zhou, Y.; Li, X.; Xiong, W.; Li, G.; Xiang, B. Rediscovery of NF‐κB signaling in nasopharyngeal carcinoma: How genetic defects of NF‐κB pathway interplay with EBV in driving oncogenesis? J. Cell. Physiol., 2018, 233(8), 5537-5549.
[http://dx.doi.org/10.1002/jcp.26410] [PMID: 29266238]
[48]
Montes-Mojarro, I.A.; Fend, F.; Quintanilla-Martinez, L. EBV and the pathogenesis of NK/T cell Lymphoma. Cancers, 2021, 13(6), 1414.
[http://dx.doi.org/10.3390/cancers13061414] [PMID: 33808787]
[49]
Vincent-Fabert, C.; Saintamand, A.; David, A.; Alizadeh, M.; Boyer, F.; Arnaud, N.; Zimber-Strobl, U.; Feuillard, J.; Faumont, N. Reproducing indolent B-cell lymphoma transformation with T-cell immunosuppression in LMP1/CD40-expressing mice. Cell. Mol. Immunol., 2019, 16(4), 412-414.
[http://dx.doi.org/10.1038/s41423-018-0197-6] [PMID: 30635651]
[50]
Hu, M.; Zhu, S.; Xiong, S.; Xue, X.; Zhou, X. MicroRNAs and the PTEN/PI3K/Akt pathway in gastric cancer (Review). Oncol. Rep., 2019, 41(3), 1439-1454.
[http://dx.doi.org/10.3892/or.2019.6962] [PMID: 30628706]
[51]
Ashrafizadeh, M.; Najafi, M.; Ang, H.L.; Moghadam, E.R.; Mahabady, M.K.; Zabolian, A.; Jafaripour, L.; Bejandi, A.K.; Hushmandi, K.; Saleki, H.; Zarrabi, A.; Kumar, A.P. PTEN, a barrier for proliferation and metastasis of gastric cancer cells: From molecular pathways to targeting and regulation. Biomedicines, 2020, 8(8), 264.
[http://dx.doi.org/10.3390/biomedicines8080264] [PMID: 32756305]
[52]
Tsao, S.W.; Tsang, C.M.; To, K.F.; Lo, K.W. The role of Epstein–Barr virus in epithelial malignancies. J. Pathol., 2015, 235(2), 323-333.
[http://dx.doi.org/10.1002/path.4448] [PMID: 25251730]
[53]
Sokolova, O.; Naumann, M. NF‐κB signaling in gastric cancer. Toxins, 2017, 9(4), 119.
[http://dx.doi.org/10.3390/toxins9040119] [PMID: 28350359]
[54]
Zhang, Y.; Chen, J.; Dong, M.; Zhang, Z.; Zhang, Y.; Wu, J.; Du, H.; Li, H.; Huang, Y.; Shao, C. Clinical significance of spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia in Epstein-Barr virus–associated and Epstein-Barr virus–negative gastric cancer. Hum. Pathol., 2017, 63, 128-138.
[http://dx.doi.org/10.1016/j.humpath.2017.02.016] [PMID: 28300576]
[55]
Morales-Sanchez, A.; Fuentes-Panana, E.M. Epstein-Barr virus-associated gastric cancer and potential mechanisms of oncogenesis. Curr. Cancer Drug Targets, 2017, 17(6), 534-554.
[PMID: 27677953]
[56]
Fukayama, M.; Kunita, A.; Kaneda, A. Gastritis-infection-cancer sequence of epstein-barr virus-associated gastric cancer. Adv. Exp. Med. Biol., 2018, 1045, 437-457.
[http://dx.doi.org/10.1007/978-981-10-7230-7_20] [PMID: 29896679]
[57]
Nkosi, D.; Sun, L.; Duke, L.C.; Patel, N.; Surapaneni, S.K.; Singh, M.; Meckes, D.G., Jr Epstein-Barr virus LMP1 promotes syntenin-1- and Hrs-Induced Extracellular vesicle formation for its own secretion to increase cell proliferation and migration. MBio, 2020, 11(3), e00589-20.
[http://dx.doi.org/10.1128/mBio.00589-20] [PMID: 32546618]
[58]
Zhang, Z.; Yu, X.; Zhou, Z.; Li, B.; Peng, J.; Wu, X.; Luo, X.; Yang, L. LMP1‐positive extracellular vesicles promote radioresistance in nasopharyngeal carcinoma cells through P38 MAPK signaling. Cancer Med., 2019, 8(13), 6082-6094.
[http://dx.doi.org/10.1002/cam4.2506] [PMID: 31436393]
[59]
Pandey, S.; Jha, H.C.; Shukla, S.K.; Shirley, M.K.; Robertson, E.S. Epigenetic regulation of tumor suppressors by Helicobacter pylori enhances EBV-induced proliferation of gastric epithelial cells. MBio, 2018, 9(2), e00649-18.
[http://dx.doi.org/10.1128/mBio.00649-18] [PMID: 29691341]
[60]
Ye, D.; Zhu, J.; Zhao, Q.; Ma, W.; Xiao, Y.; Xu, G.; Zhang, Z. LMP1 Up-regulates calreticulin to induce Epithelial-mesenchymal transition via TGF-β/Smad3/NRP1 pathway in Nasopharyngeal Carcinoma cells. J. Cancer, 2020, 11(5), 1257-1269.
[http://dx.doi.org/10.7150/jca.37415] [PMID: 31956372]
[61]
Choi, I.K.; Wang, Z.; Ke, Q.; Hong, M.; Paul, D.W., Jr; Fernandes, S.M.; Hu, Z.; Stevens, J.; Guleria, I.; Kim, H.J.; Cantor, H.; Wucherpfennig, K.W.; Brown, J.R.; Ritz, J.; Zhang, B. Mechanism of EBV inducing anti-tumour immunity and its therapeutic use. Nature, 2021, 590(7844), 157-162.
[http://dx.doi.org/10.1038/s41586-020-03075-w] [PMID: 33361812]
[62]
Tsao, S.W.; Tsang, C.M.; Lo, K.W. Epstein–Barr virus infection and nasopharyngeal carcinoma. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1732), 20160270.
[http://dx.doi.org/10.1098/rstb.2016.0270] [PMID: 28893937]
[63]
Zhu, N.; Wang, Q.; Wu, Z.; Wang, Y.; Zeng, M.S.; Yuan, Y. Epstein-Barr virus LMP1-Activated mTORC1 and mTORC2 coordinately promote nasopharyngeal cancer stem cell properties. J. Virol., 2022, 96(5), e01941-21.
[http://dx.doi.org/10.1128/jvi.01941-21] [PMID: 35019715]
[64]
Tsang, C.M.; Lui, V.W.Y.; Bruce, J.P.; Pugh, T.J.; Lo, K.W. Translational genomics of nasopharyngeal cancer. Semin. Cancer Biol., 2020, 61, 84-100.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.006] [PMID: 31521748]
[65]
Zhou, H.; Tan, S.; Li, H.; Lin, X. Expression and significance of EBV, ARID1A and PIK3CA in gastric carcinoma. Mol. Med. Rep., 2019, 19(3), 2125-2136.
[http://dx.doi.org/10.3892/mmr.2019.9886] [PMID: 30747208]
[66]
Link, W. Introduction to FOXO Biology. Methods Mol. Biol., 2019, 1890, 1-9.
[http://dx.doi.org/10.1007/978-1-4939-8900-3_1] [PMID: 30414140]
[67]
Hatton, O.; Smith, M.M.; Alexander, M.; Mandell, M.; Sherman, C.; Stesney, M.W.; Hui, S.T.; Dohrn, G.; Medrano, J.; Ringwalt, K.; Harris-Arnold, A.; Maloney, E.M.; Krams, S.M.; Martinez, O.M. Epstein-Barr Virus latent membrane protein 1 regulates host B cell MicroRNA-155 and its target FOXO3a via PI3K p110α activation. Front. Microbiol., 2019, 10, 2692.
[http://dx.doi.org/10.3389/fmicb.2019.02692] [PMID: 32038504]
[68]
Hornsveld, M.; Dansen, T.B.; Derksen, P.W.; Burgering, B.M.T. Re-evaluating the role of FOXOs in cancer. Semin. Cancer Biol., 2018, 50, 90-100.
[http://dx.doi.org/10.1016/j.semcancer.2017.11.017] [PMID: 29175105]
[69]
Ramezani, A.; Nikravesh, H.; Faghihloo, E. The roles of FOX proteins in virus‐associated cancers. J. Cell. Physiol., 2019, 234(4), 3347-3361.
[http://dx.doi.org/10.1002/jcp.27295] [PMID: 30362516]
[70]
Peng, C.; Ouyang, Y.; Lu, N.; Li, N. The NF-κB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: Recent advances. Front. Immunol., 2020, 11, 1387.
[http://dx.doi.org/10.3389/fimmu.2020.01387] [PMID: 32695120]
[71]
Chaithongyot, S.; Jantaree, P.; Sokolova, O.; Naumann, M. NF-κB in gastric cancer development and therapy. Biomedicines, 2021, 9(8), 870.
[http://dx.doi.org/10.3390/biomedicines9080870] [PMID: 34440074]
[72]
Zebardast, A.; Tehrani, S.S.; Latifi, T.; Sadeghi, F. Critical review of Epstein–Barr virus microRNAs relation with EBV‐associated gastric cancer. J. Cell. Physiol., 2021, 236(9), 6136-6153.
[http://dx.doi.org/10.1002/jcp.30297] [PMID: 33507558]
[73]
Letícia de Castro Barbosa, M.; Alves da Conceicao, R.; Guerra Manssour Fraga, A.; Dias Camarinha, B.; Cristina de Carvalho Silva, G.; Gilcler Ferreira Lima, A.; Azevedo Cardoso, E.; de Oliveira Freitas Lione, V. NF-κB signaling pathway inhibitors as anticancer drug candidates. Anticancer. Agents Med. Chem., 2017, 17(4), 483-490.
[http://dx.doi.org/10.2174/1871520616666160729112854] [PMID: 27481554]
[74]
Li, X.; Hu, Y. Attribution of NF-κB activity to CHUK/IKKα-involved carcinogenesis. Cancers, 2021, 13(6), 1411.
[http://dx.doi.org/10.3390/cancers13061411] [PMID: 33808757]
[75]
Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol., 2018, 18(5), 309-324.
[http://dx.doi.org/10.1038/nri.2017.142] [PMID: 29379212]
[76]
Xiang, Z.; Zhou, Z-J.; Xia, G-K.; Zhang, X-H.; Wei, Z-W.; Zhu, J-T.; Yu, J.; Chen, W.; He, Y.; Schwarz, R.E.; Brekken, R.A.; Awasthi, N.; Zhang, C-H. A positive crosstalk between CXCR4 and CXCR2 promotes gastric cancer metastasis. Oncogene, 2017, 36(36), 5122-5133.
[http://dx.doi.org/10.1038/onc.2017.108] [PMID: 28481874]
[77]
Wang, W.; Zhang, Y.; Liu, W.; Zhang, X.; Xiao, H.; Zhao, M.; Luo, B. CXCR4 induces cell autophagy and maintains EBV latent infection in EBVaGC. Theranostics, 2020, 10(25), 11549-11561.
[http://dx.doi.org/10.7150/thno.44251] [PMID: 33052232]
[78]
Degirmenci, U.; Wang, M.; Hu, J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells, 2020, 9(1), 198.
[http://dx.doi.org/10.3390/cells9010198] [PMID: 31941155]
[79]
Gonzalez-Hormazabal, P.; Musleh, M.; Bustamante, M.; Stambuk, J.; Pisano, R.; Valladares, H.; Lanzarini, E.; Chiong, H.; Rojas, J.; Suazo, J.; Castro, V.G.; Jara, L.; Berger, Z. Polymorphisms in RAS/RAF/MEK/ERK pathway are associated with gastric cancer. Genes, 2018, 10(1), 20.
[http://dx.doi.org/10.3390/genes10010020] [PMID: 30597917]
[80]
Ren, J.; Liu, J.; Sui, X. Correlation of COX-2 and MMP-13 expressions with gastric cancer and their effects on prognosis. J BUON., 2019, 24(1), 187-193.
[81]
Xiang, L.; Wang, W.; Zhou, Z.; Lv, M.; Tao, L.; Ni, T.; Deng, J.; Masatara, S.; Liu, Y.; Zhou, Y. COX-2 promotes metastasis and predicts prognosis in gastric cancer via regulating mTOR. Biomarkers Med., 2020, 14(6), 421-432.
[http://dx.doi.org/10.2217/bmm-2019-0357] [PMID: 32175764]
[82]
Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 585-597.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.005] [PMID: 27825853]
[83]
Hu, X.; li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther., 2021, 6(1), 402.
[http://dx.doi.org/10.1038/s41392-021-00791-1] [PMID: 34824210]
[84]
Chang, Z.; Wang, Y.; Zhou, X.; Long, J.E. STAT3 roles in viral infection: Antiviral or proviral? Future Virol., 2018, 13(8), 557-574.
[http://dx.doi.org/10.2217/fvl-2018-0033] [PMID: 32201498]
[85]
Lu, R.; Zhang, Y.; Sun, J. STAT3 activation in infection and infection-associated cancer. Mol. Cell. Endocrinol., 2017, 451, 80-87.
[http://dx.doi.org/10.1016/j.mce.2017.02.023] [PMID: 28223148]
[86]
Choi, S.J.; Shin, Y.S.; Kang, B.W.; Kim, J.G.; Won, K.J.; Lieberman, P.M.; Cho, H.; Kang, H. DNA hypermethylation induced by Epstein-Barr virus in the development of Epstein-Barr virus-associated gastric carcinoma. Arch. Pharm. Res., 2017, 40(8), 894-905.
[http://dx.doi.org/10.1007/s12272-017-0939-5] [PMID: 28779374]
[87]
Stanland, L.J.; Luftig, M.A. The role of EBV-Induced hypermethylation in gastric cancer tumorigenesis. viruses, 2020, 12(11), 1222.
[http://dx.doi.org/10.3390/v12111222] [PMID: 33126718]
[88]
Luo, X.; Hong, L.; Cheng, C.; Li, N.; Zhao, X.; Shi, F.; Liu, J.; Fan, J.; Zhou, J.; Bode, A.M.; Cao, Y. DNMT1 mediates metabolic reprogramming induced by Epstein–Barr virus latent membrane protein 1 and reversed by grifolin in nasopharyngeal carcinoma. Cell Death Dis., 2018, 9(6), 619.
[http://dx.doi.org/10.1038/s41419-018-0662-2] [PMID: 29795311]
[89]
Cao, Y. EBV based cancer prevention and therapy in nasopharyngeal carcinoma. NPJ Precis. Oncol., 2017, 1(1), 10.
[http://dx.doi.org/10.1038/s41698-017-0018-x] [PMID: 29872698]
[90]
Zhang, L.; Wang, R.; Xie, Z. The roles of DNA methylation on the promotor of the Epstein–Barr virus (EBV) gene and the genome in patients with EBV-associated diseases. Appl. Microbiol. Biotechnol., 2022, 106(12), 4413-4426.
[http://dx.doi.org/10.1007/s00253-022-12029-3] [PMID: 35763069]
[91]
Hou, Y.; Li, S.; Du, W.; Li, H.; Wen, R. The tumor suppressor role of the Ras association domain family 10. Anticancer. Agents Med. Chem., 2020, 20(18), 2207-2215.
[http://dx.doi.org/10.2174/1871520620666200714141906] [PMID: 32664845]
[92]
Lakshmi Ch, N.P.; Sivagnanam, A.; Raja, S.; Mahalingam, S. Molecular basis for RASSF10/NPM/RNF2 feedback cascade–mediated regulation of gastric cancer cell proliferation. J. Biol. Chem., 2021, 297(2), 100935.
[http://dx.doi.org/10.1016/j.jbc.2021.100935] [PMID: 34224728]
[93]
Pietropaolo, V.; Prezioso, C.; Moens, U. Role of virus-induced host cell epigenetic changes in cancer. Int. J. Mol. Sci., 2021, 22(15), 8346.
[http://dx.doi.org/10.3390/ijms22158346] [PMID: 34361112]
[94]
Hu, Y.; Ma, P.; Feng, Y.; Li, P.; Wang, H.; Guo, Y.; Mao, Q.; Xue, W. Predictive value of the serum RASSF10 promoter methylation status in gastric cancer. J. Int. Med. Res., 2019, 47(7), 2890-2900.
[http://dx.doi.org/10.1177/0300060519848924] [PMID: 31119967]
[95]
Nakamura, M.; Nishikawa, J.; Saito, M.; Sakai, K.; Sasaki, S.; Hashimoto, S.; Okamoto, T.; Suehiro, Y.; Yamasaki, T.; Sakaida, I. Decitabine inhibits tumor cell proliferation and up-regulates e-cadherin expression in Epstein-Barr virus-associated gastric cancer. J. Med. Virol., 2017, 89(3), 508-517.
[http://dx.doi.org/10.1002/jmv.24634] [PMID: 27430892]
[96]
Ramos, H.; Raimundo, L.; Saraiva, L. p73: From the p53 shadow to a major pharmacological target in anticancer therapy. Pharmacol. Res., 2020, 162, 105245.
[http://dx.doi.org/10.1016/j.phrs.2020.105245] [PMID: 33069756]
[97]
Blanchet, A.; Bourgmayer, A.; Kurtz, J.E.; Mellitzer, G.; Gaiddon, C. Isoforms of the p53 family and gastric cancer: A Ménage à Trois for an Unfinished Affair. Cancers, 2021, 13(4), 916.
[http://dx.doi.org/10.3390/cancers13040916] [PMID: 33671606]
[98]
Accardi, R.; Fathallah, I.; Gruffat, H.; Mariggiò, G.; Le Calvez-Kelm, F.; Voegele, C.; Bartosch, B.; Hernandez-Vargas, H.; McKay, J.; Sylla, B.S.; Manet, E.; Tommasino, M. Epstein - Barr virus transforming protein LMP-1 alters B cells gene expression by promoting accumulation of the oncoprotein ΔNp73α. PLoS Pathog., 2013, 9(3), e1003186.
[http://dx.doi.org/10.1371/journal.ppat.1003186] [PMID: 23516355]
[99]
Wang, J.; Liu, W.; Zhang, X.; Zhang, Y.; Xiao, H.; Luo, B. LMP2A induces DNA methylation and expression repression of AQP3 in EBV-associated gastric carcinoma. Virology, 2019, 534, 87-95.
[http://dx.doi.org/10.1016/j.virol.2019.06.006] [PMID: 31220652]
[100]
Guo, L.; Huang, C.; Ji, Q.J. Aberrant promoter hypermethylation of p16, survivin, and retinoblastoma in gastric cancer. Bratisl. Med. J., 2017, 118(3), 164-168.
[http://dx.doi.org/10.4149/BLL_2017_033] [PMID: 28319413]
[101]
Zeng, D.; Li, M.; Zhou, R.; Zhang, J.; Sun, H.; Shi, M.; Bin, J.; Liao, Y.; Rao, J.; Liao, W. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol. Res., 2019, 7(5), 737-750.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0436] [PMID: 30842092]
[102]
Hurwitz, S.N.; Cheerathodi, M.R.; Nkosi, D.; York, S.B.; Meckes, D.G., Jr Tetraspanin CD63 bridges autophagic and endosomal processes to regulate exosomal secretion and intracellular signaling of epstein-barr virus LMP1. J. Virol., 2018, 92(5), e01969-e17.
[http://dx.doi.org/10.1128/JVI.01969-17] [PMID: 29212935]
[103]
Minarovits, J.; Niller, H.H. Current trends and alternative scenarios in EBV research. Methods Mol. Biol., 2017, 1532, 1-32.
[http://dx.doi.org/10.1007/978-1-4939-6655-4_1] [PMID: 27873264]
[104]
Cheerathodi, M.; Nkosi, D.; Cone, A.S.; York, S.B.; Meckes, D.G. Epstein-Barr Virus LMP1 modulates the CD63 interactome. Viruses, 2021, 13(4), 675.
[http://dx.doi.org/10.3390/v13040675] [PMID: 33920772]
[105]
Rider, M.A.; Cheerathodi, M.R.; Hurwitz, S.N.; Nkosi, D.; Howell, L.A.; Tremblay, D.C.; Liu, X.; Zhu, F.; Meckes, D.G. The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology, 2018, 516, 55-70.
[http://dx.doi.org/10.1016/j.virol.2017.12.033] [PMID: 29329079]
[106]
Nkosi, D.; Howell, L.A.; Cheerathodi, M.R.; Hurwitz, S.N.; Tremblay, D.C.; Liu, X.; Meckes, D.G., Jr Transmembrane domains mediate Intra- and Extracellular trafficking of epstein-barr virus latent membrane protein 1. J. Virol., 2018, 92(17), e00280-e18.
[http://dx.doi.org/10.1128/JVI.00280-18] [PMID: 29950415]
[107]
Vishwakarma, M.; Piddini, E. Outcompeting cancer. Nat. Rev. Cancer, 2020, 20(3), 187-198.
[http://dx.doi.org/10.1038/s41568-019-0231-8] [PMID: 31932757]
[108]
Kanda, H.; Igaki, T. Mechanism of tumor‐suppressive cell competition in flies. Cancer Sci., 2020, 111(10), 3409-3415.
[http://dx.doi.org/10.1111/cas.14575] [PMID: 32677169]
[109]
Hinata, M.; Kunita, A.; Abe, H.; Morishita, Y.; Sakuma, K.; Yamashita, H.; Seto, Y.; Ushiku, T.; Fukayama, M. Exosomes of epstein-barr virus-associated gastric carcinoma suppress dendritic cell maturation. Microorganisms, 2020, 8(11), 1776.
[http://dx.doi.org/10.3390/microorganisms8111776] [PMID: 33198173]
[110]
Zhao, W.; Liu, M.; Zhang, M.; Wang, Y.; Zhang, Y.; Wang, S.; Zhang, N. Effects of inflammation on the immune microenvironment in gastric cancer. Front. Oncol., 2021, 11, 690298.
[http://dx.doi.org/10.3389/fonc.2021.690298] [PMID: 34367971]
[111]
Hibino, S.; Kawazoe, T.; Kasahara, H.; Itoh, S.; Ishimoto, T.; Sakata-Yanagimoto, M.; Taniguchi, K. Inflammation-Induced tumorigenesis and metastasis. Int. J. Mol. Sci., 2021, 22(11), 5421.
[http://dx.doi.org/10.3390/ijms22115421] [PMID: 34063828]
[112]
Sonkar, C.; Varshney, N.; Koganti, S.; Jha, H.C. Kinases and therapeutics in pathogen mediated gastric cancer. Mol. Biol. Rep., 2022, 49(3), 2519-2530.
[http://dx.doi.org/10.1007/s11033-021-07063-9] [PMID: 35031925]
[113]
Dávila-Collado, R.; Jarquín-Durán, O.; Dong, L.T.; Espinoza, J.L. Epstein–barr virus and Helicobacter pylori co-infection in non-malignant gastroduodenal disorders. Pathogens, 2020, 9(2), 104.
[http://dx.doi.org/10.3390/pathogens9020104] [PMID: 32041355]
[114]
Rihane, F.E.; Erguibi, D.; Elyamine, O.; Abumsimir, B.; Ennaji, M.M.; Chehab, F. Helicobacter pylori co-infection with Epstein-Barr virus and the risk of developing gastric adenocarcinoma at an early age: Observational study infectious agents and cancer. Ann. Med. Surg., 2021, 68, 102651.
[http://dx.doi.org/10.1016/j.amsu.2021.102651] [PMID: 34386233]
[115]
Singh, S.; Jha, H.C. Status of epstein-barr virus coinfection with Helicobacter pylori in gastric cancer. J. Oncol., 2017, 2017, 1-17.
[http://dx.doi.org/10.1155/2017/3456264] [PMID: 28421114]
[116]
Polakovicova, I.; Jerez, S.; Wichmann, I.A.; Sandoval-Bórquez, A.; Carrasco-Véliz, N.; Corvalán, A.H. Role of microRNAs and Exosomes in Helicobacter pylori and epstein-barr virus associated gastric cancers. Front. Microbiol., 2018, 9, 636.
[http://dx.doi.org/10.3389/fmicb.2018.00636] [PMID: 29675003]
[117]
Harhaj, E.W.; Shembade, N. Lymphotropic viruses: Chronic inflammation and induction of cancers. Biology, 2020, 9(11), 390.
[http://dx.doi.org/10.3390/biology9110390] [PMID: 33182552]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy