Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Immune Checkpoint Inhibitors for Advanced Biliary Tract Cancer

Author(s): Hossein Taghizadeh and Gerald W. Prager*

Volume 22, Issue 8, 2022

Published on: 31 March, 2022

Page: [639 - 650] Pages: 12

DOI: 10.2174/1568009622666220215144235

Price: $65

Abstract

BTC is a rare and aggressive cancer disease, bearing an overall dismal prognosis with only finite therapy options. Only combination chemotherapy regimens achieve disease control, which is often only short-lived since the tumor tissue exhibits high resistance to chemotherapy.

The emergence of immune checkpoint inhibitors in recent years has significantly improved the survival of cancer patients and thus, has been integrated into the therapeutic management of several solid tumors, including melanoma, colorectal carcinoma (CRC), hepatocellular carcinoma (HCC), triple- negative breast cancer (TNBC), and non-small-cell lung cancer (NSCLC).

Investigation of the tumor biology of BTC and results of preliminary studies have shown that BTC may also be amenable to immunomodulation. In this review, we seek to give a comprehensive overview of the role, potential, and clinical significance of ICPI in the management of BTC.

Keywords: Biliary tract cancer, immunotherapy, immune checkpoint inhibitor, PD-1/PD-L1, CTLA-4, carcinoma.

[1]
Key statistics for bile duct cancer. 2018. Available from: https://www.cancer.org/cancer/bile-duct-cancer/about/key-statistics.html [cited 2020 December].
[2]
Jain, A.; Javle, M. Molecular profiling of biliary tract cancer: A target rich disease. J. Gastrointest. Oncol., 2016, 7(5), 797-803.
[http://dx.doi.org/10.21037/jgo.2016.09.01] [PMID: 27747093]
[3]
Zamani, Z.; Fatima, S. Biliary Tract Cancer; StatPearls: Treasure Island, FL, 2020.
[4]
Tariq, N.U.; McNamara, M.G.; Valle, J.W. Biliary tract cancers: Current knowledge, clinical candidates and future challenges. Cancer Manag. Res., 2019, 11, 2623-2642.
[http://dx.doi.org/10.2147/CMAR.S157092] [PMID: 31015767]
[5]
Edeline, J.; Benabdelghani, M.; Bertaut, A.; Watelet, J.; Hammel, P.; Joly, J.P.; Boudjema, K.; Fartoux, L.; Bouhier-Leporrier, K.; Jouve, J.L.; Faroux, R.; Guerin-Meyer, V.; Kurtz, J.E.; Assénat, E.; Seitz, J.F.; Baumgaertner, I.; Tougeron, D.; de la Fouchardière, C.; Lombard-Bohas, C.; Boucher, E.; Stanbury, T.; Louvet, C.; Malka, D.; Phelip, J.M. Gemcitabine and oxaliplatin chemotherapy or surveillance in resected biliary tract cancer (PRODIGE 12-ACCORD 18-UNICANCER GI): A randomized phase III study. J. Clin. Oncol., 2019, 37(8), 658-667.
[http://dx.doi.org/10.1200/JCO.18.00050] [PMID: 30707660]
[6]
Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; Roughton, M.; Bridgewater, J. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med., 2010, 362(14), 1273-1281.
[http://dx.doi.org/10.1056/NEJMoa0908721] [PMID: 20375404]
[7]
Lamarca, A. ABC-06 | A randomised phase III, multi-centre, open-label study of active symptom control (ASC) alone or ASC with oxaliplatin/5-FU chemotherapy (ASC+mFOLFOX) for patients (pts) with locally advanced/metastatic biliary tract cancers (ABC) previously-treated with cisplatin/gemcitabine (CisGem) chemotherapy. J. Clin. Oncol., 2019, 37(Suppl. 15), 4003-4003.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4003]
[8]
Oneda, E.; Abu Hilal, M.; Zaniboni, A. Biliary tract cancer: Current medical treatment strategies. Cancers (Basel), 2020, 12(5), E1237.
[http://dx.doi.org/10.3390/cancers12051237] [PMID: 32423017]
[9]
Survival rates for bile duct cancer. 2020. Available from: https://www.cancer.org/cancer/bile-duct-cancer/detection-diagnosis-staging/survival-by-stage.html [cited 2020 December].
[10]
Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; Oh, D.Y.; Dotan, E.; Catenacci, D.V.; Van Cutsem, E.; Ji, T.; Lihou, C.F.; Zhen, H.; Féliz, L.; Vogel, A. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol., 2020, 21(5), 671-684.
[http://dx.doi.org/10.1016/S1470-2045(20)30109-1] [PMID: 32203698]
[11]
Herrscher, H.; Robert, C. Immune checkpoint inhibitors in melanoma in the metastatic, neoadjuvant, and adjuvant setting. Curr. Opin. Oncol., 2020, 32(2), 106-113.
[http://dx.doi.org/10.1097/CCO.0000000000000610] [PMID: 31876547]
[12]
Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; Li, D.; Verret, W.; Xu, D.Z.; Hernandez, S.; Liu, J.; Huang, C.; Mulla, S.; Wang, Y.; Lim, H.Y.; Zhu, A.X.; Cheng, A.L. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med., 2020, 382(20), 1894-1905.
[http://dx.doi.org/10.1056/NEJMoa1915745] [PMID: 32402160]
[13]
Reddy, S.M.; Carroll, E.; Nanda, R. Atezolizumab for the treatment of breast cancer. Expert Rev. Anticancer Ther., 2020, 20(3), 151-158.
[http://dx.doi.org/10.1080/14737140.2020.1732211] [PMID: 32067545]
[14]
Lu, M.; Su, Y. Immunotherapy in non-small cell lung cancer: The past, the present, and the future. Thorac. Cancer, 2019, 10(4), 585-586.
[http://dx.doi.org/10.1111/1759-7714.13012] [PMID: 30821103]
[15]
Jakubowski, C.D.; Azad, N.S. Immune checkpoint inhibitor therapy in biliary tract cancer (cholangiocarcinoma). Chin. Clin. Oncol., 2020, 9(1), 2.
[http://dx.doi.org/10.21037/cco.2019.12.10] [PMID: 32008328]
[16]
Hui, E. Immune checkpoint inhibitors. J. Cell Biol., 2019, 218(3), 740-741.
[http://dx.doi.org/10.1083/jcb.201810035] [PMID: 30760493]
[17]
Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol., 2016, 39(1), 98-106.
[http://dx.doi.org/10.1097/COC.0000000000000239] [PMID: 26558876]
[18]
Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front. Oncol., 2018, 8, 86.
[http://dx.doi.org/10.3389/fonc.2018.00086] [PMID: 29644214]
[19]
Heinzerling, L.; de Toni, E.N.; Schett, G.; Hundorfean, G.; Zimmer, L. Checkpoint inhibitors. Dtsch. Arztebl. Int., 2019, 116(8), 119-126.
[PMID: 30940340]
[20]
Piha-Paul, S.A.; Oh, D.Y.; Ueno, M.; Malka, D.; Chung, H.C.; Nagrial, A.; Kelley, R.K.; Ros, W.; Italiano, A.; Nakagawa, K.; Rugo, H.S.; de Braud, F.; Varga, A.I.; Hansen, A.; Wang, H.; Krishnan, S.; Norwood, K.G.; Doi, T. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies. Int. J. Cancer, 2020, 147(8), 2190-2198.
[http://dx.doi.org/10.1002/ijc.33013] [PMID: 32359091]
[21]
Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; Piha-Paul, S.A.; Doi, T.; Gao, B.; Chung, H.C.; Lopez-Martin, J.; Bang, Y.J.; Frommer, R.S.; Shah, M.; Ghori, R.; Joe, A.K.; Pruitt, S.K.; Diaz, L.A., Jr Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II Keynote-158 study. J. Clin. Oncol., 2020, 38(1), 1-10.
[http://dx.doi.org/10.1200/JCO.19.02105] [PMID: 31682550]
[22]
Kang, J.; Jeong, J.H.; Hwang, H.S.; Lee, S.S.; Park, D.H.; Oh, D.W.; Song, T.J.; Kim, K.H.; Hwang, S.; Hwang, D.W.; Kim, S.C.; Park, J.H.; Hong, S.M.; Kim, K.P.; Ryoo, B.Y.; Yoo, C. Efficacy and safety of pembrolizumab in patients with refractory advanced biliary tract cancer: Tumor proportion score as a potential biomarker for response. Cancer Res. Treat., 2020, 52(2), 594-603.
[http://dx.doi.org/10.4143/crt.2019.493] [PMID: 32019287]
[23]
Ahn, S.; Lee, J.C.; Shin, D.W.; Kim, J.; Hwang, J.H. High PD-L1 expression is associated with therapeutic response to pembrolizumab in patients with advanced biliary tract cancer. Sci. Rep., 2020, 10(1), 12348.
[http://dx.doi.org/10.1038/s41598-020-69366-4] [PMID: 32704067]
[24]
Lee, S.H.; Lee, H.S.; Lee, S.H.; Woo, S.M.; Kim, D.U.; Bang, S. Efficacy and safety of pembrolizumab for gemcitabine/cisplatin-refractory biliary tract cancer: A multicenter retrospective study. J. Clin. Med., 2020, 9(6), E1769.
[http://dx.doi.org/10.3390/jcm9061769] [PMID: 32517311]
[25]
Arkenau, H.T.; Martin-Liberal, J.; Calvo, E.; Penel, N.; Krebs, M.G.; Herbst, R.S.; Walgren, R.A.; Widau, R.C.; Mi, G.; Jin, J.; Ferry, D.; Chau, I. Ramucirumab plus pembrolizumab in patients with previously treated advanced or metastatic biliary tract cancer: Nonrandomized, open-label, phase I trial (JVDF). Oncologist, 2018, 23(12), 1407-e136.
[http://dx.doi.org/10.1634/theoncologist.2018-0044] [PMID: 29853658]
[26]
Lin, J.; Yang, X.; Long, J.; Zhao, S.; Mao, J.; Wang, D.; Bai, Y.; Bian, J.; Zhang, L.; Yang, X.; Wang, A.; Xie, F.; Shi, W.; Yang, H.; Pan, J.; Hu, K.; Guan, M.; Zhao, L.; Huo, L.; Mao, Y.; Sang, X.; Wang, K.; Zhao, H. Pembrolizumab combined with lenvatinib as non-first-line therapy in patients with refractory biliary tract carcinoma. Hepatobiliary Surg. Nutr., 2020, 9(4), 414-424.
[http://dx.doi.org/10.21037/hbsn-20-338] [PMID: 32832493]
[27]
Finn, R.S. Abstract CT283: KEYNOTE-966: A randomized, double-blind, placebo-controlled, phase 3 study of pembrolizumab in combination with gemcitabine and cisplatin for the treatment of advanced biliary tract carcinoma. Cancer Res., 2020, 80(16)(Suppl.), CT283-CT283.
[28]
Ueno, M.; Ikeda, M.; Morizane, C.; Kobayashi, S.; Ohno, I.; Kondo, S.; Okano, N.; Kimura, K.; Asada, S.; Namba, Y.; Okusaka, T.; Furuse, J. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: A non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol. Hepatol., 2019, 4(8), 611-621.
[http://dx.doi.org/10.1016/S2468-1253(19)30086-X] [PMID: 31109808]
[29]
Kim, R.D.; Chung, V.; Alese, O.B.; El-Rayes, B.F.; Li, D.; Al-Toubah, T.E.; Schell, M.J.; Zhou, J.M.; Mahipal, A.; Kim, B.H.; Kim, D.W. A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer. JAMA Oncol., 2020, 6(6), 888-894.
[http://dx.doi.org/10.1001/jamaoncol.2020.0930] [PMID: 32352498]
[30]
Sahai, V. A multicenter randomized phase II study of nivolumab in combination with gemcitabine/cisplatin or ipilimumab as first-line therapy for patients with advanced unresectable biliary tract cancer (BilT-01). J. Clin. Oncol., 2020, 38(Suppl. 15), 4582-4582.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4582]
[31]
Feng, K.; Liu, Y.; Zhao, Y.; Yang, Q.; Dong, L.; Liu, J.; Li, X.; Zhao, Z.; Mei, Q.; Han, W. Efficacy and biomarker analysis of nivolumab plus gemcitabine and cisplatin in patients with unresectable or metastatic biliary tract cancers: Results from a phase II study. J. Immunother. Cancer, 2020, 8(1), e000367.
[http://dx.doi.org/10.1136/jitc-2019-000367] [PMID: 32487569]
[32]
Klein, O.; Kee, D.; Nagrial, A.; Markman, B.; Underhill, C.; Michael, M.; Jackett, L.; Lum, C.; Behren, A.; Palmer, J.; Tebbutt, N.C.; Carlino, M.S.; Cebon, J. Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: Subgroup analysis of a phase 2 nonrandomized clinical trial. JAMA Oncol., 2020, 6(9), 1405-1409.
[http://dx.doi.org/10.1001/jamaoncol.2020.2814] [PMID: 32729929]
[33]
Ioka, T. Evaluation of safety and tolerability of durvalumab (D) with or without tremelimumab (T) in patients (pts) with biliary tract cancer (BTC). J. Clin. Oncol., 2019, 37(Suppl. 4), 387-387.
[http://dx.doi.org/10.1200/JCO.2019.37.4_suppl.387]
[34]
Boilève, A.; Hilmi, M.; Gougis, P.; Cohen, R.; Rousseau, B.; Blanc, J.F.; Ben Abdelghani, M.; Castanié, H.; Dahan, L.; Tougeron, D.; Metges, J.P.; Tournigand, C.; Garcia-Larnicol, M.L.; Vernerey, D.; Turpin, A.; Neuzillet, C. Triplet combination of durvalumab, tremelimumab, and paclitaxel in biliary tract carcinomas: Safety run-in results of the randomized IMMUNOBIL PRODIGE 57 phase II trial. Eur. J. Cancer, 2021, 143, 55-63.
[http://dx.doi.org/10.1016/j.ejca.2020.10.027] [PMID: 33279854]
[35]
Oh, D-Y. Phase II study assessing tolerability, efficacy, and biomarkers for durvalumab (D) ± tremelimumab (T) and gemcitabine/cisplatin (GemCis) in chemo-naïve advanced biliary tract cancer (aBTC). J. Clin. Oncol., 2020, 38(Suppl. 15), 4520-4520.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4520]
[36]
Turkes, F.; Carmichael, J.; Cunningham, D.; Starling, N. Contemporary tailored oncology treatment of biliary tract cancers. Gastroenterol. Res. Pract., 2019, 2019, 7698786.
[http://dx.doi.org/10.1155/2019/7698786] [PMID: 31929787]
[37]
Rizzo, A.; Ricci, A.D.; Brandi, G. PD-L1, TMB, MSI, and other predictors of response to immune checkpoint inhibitors in biliary tract cancer. Cancers (Basel), 2021, 13(3), 558.
[http://dx.doi.org/10.3390/cancers13030558] [PMID: 33535621]
[38]
Sha, D.; Jin, Z.; Budczies, J.; Kluck, K.; Stenzinger, A.; Sinicrope, F.A. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov., 2020, 10(12), 1808-1825.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0522] [PMID: 33139244]
[39]
Apetoh, L.; Ladoire, S.; Coukos, G.; Ghiringhelli, F. Combining immunotherapy and anticancer agents: The right path to achieve cancer cure? Ann. Oncol., 2015, 26(9), 1813-1823.
[http://dx.doi.org/10.1093/annonc/mdv209] [PMID: 25922066]
[40]
Leonetti, A.; Wever, B.; Mazzaschi, G.; Assaraf, Y.G.; Rolfo, C.; Quaini, F.; Tiseo, M.; Giovannetti, E. Molecular basis and rationale for combining immune checkpoint inhibitors with chemotherapy in non-small cell lung cancer. Drug Resist. Updat., 2019, 46, 100644.
[http://dx.doi.org/10.1016/j.drup.2019.100644] [PMID: 31585395]
[41]
Robert, L.; Ribas, A.; Hu-Lieskovan, S. Combining targeted therapy with immunotherapy. Can 1+1 equal more than 2? Semin. Immunol., 2016, 28(1), 73-80.
[http://dx.doi.org/10.1016/j.smim.2016.01.001] [PMID: 26861544]
[42]
Khair, D.O.; Bax, H.J.; Mele, S.; Crescioli, S.; Pellizzari, G.; Khiabany, A.; Nakamura, M.; Harris, R.J.; French, E.; Hoffmann, R.M.; Williams, I.P.; Cheung, A.; Thair, B.; Beales, C.T.; Touizer, E.; Signell, A.W.; Tasnova, N.L.; Spicer, J.F.; Josephs, D.H.; Geh, J.L.; MacKenzie Ross, A.; Healy, C.; Papa, S.; Lacy, K.E.; Karagiannis, S.N. Combining immune checkpoint inhibitors: Established and emerging targets and strategies to improve outcomes in melanoma. Front. Immunol., 2019, 10, 453.
[http://dx.doi.org/10.3389/fimmu.2019.00453] [PMID: 30941125]
[43]
Valle, J.W.; Lamarca, A.; Goyal, L.; Barriuso, J.; Zhu, A.X. New horizons for precision medicine in biliary tract cancers. Cancer Discov., 2017, 7(9), 943-962.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0245] [PMID: 28818953]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy