Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Demystifying Bacteriocins of Human Microbiota by Genome Guided Prospects: An Impetus to Rekindle the Antimicrobial Research

Author(s): Karthika Suryaletha, Akhila Velappan Savithri, Seema A. Nayar, Sijo Asokan, Divya Rajeswary and Sabu Thomas*

Volume 23, Issue 12, 2022

Published on: 01 November, 2022

Page: [811 - 822] Pages: 12

DOI: 10.2174/1389203724666221019111515

Price: $65

Abstract

The human microbiome is a reservoir of potential bacteriocins that can counteract multidrug resistant bacterial pathogens. Unlike antibiotics, bacteriocins selectively inhibit a spectrum of competent bacteria and are said to safeguard gut commensals, reducing the chance of dysbiosis. Bacteriocinogenic probiotics or bacteriocins of human origin will be more pertinent in human physiological conditions for therapeutic applications to act against invading pathogens. Recent advancement in the omics approach enables the mining of diverse and novel bacteriocins by identifying biosynthetic gene clusters from the human microbial genome, pangenome or shotgun metagenome, which is a breakthrough in the discovery line of novel bacteriocins. This review summarizes the most recent trends and therapeutic potential of bacteriocins of human microbial origin, the advancement in the in silico algorithms and databases in the discovery of novel bacteriocin, and how to bridge the gap between the discovery of bacteriocin genes from big datasets and their in vitro production. Besides, the later part of the review discussed the various impediments in their clinical applications and possible solution to bring them into the frontline therapeutics to control infections, thereby meeting the challenges of global antimicrobial resistance.

Keywords: Bacteriocin, antimicrobial peptides, human microbiome, bacteriocin gene clusters (BGCs), bacteriocinogenic probiotics, LAB.

Next »
Graphical Abstract
[1]
Blaser, M. Stop the killing of beneficial bacteria. Nature, 2011, 476(7361), 393-394.
[http://dx.doi.org/10.1038/476393a] [PMID: 21866137]
[2]
Willing, B.P.; Russell, S.L.; Finlay, B.B. Shifting the balance: Antibiotic effects on host–microbiota mutualism. Nat. Rev. Microbiol., 2011, 9(4), 233-243.
[http://dx.doi.org/10.1038/nrmicro2536] [PMID: 21358670]
[3]
Gratia, A. On a remarkable example of antagonism between two strains of humming bird. C. R. Biol., 1925, 93, 1040-1042.
[4]
Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol., 2005, 3(10), 777-788.
[http://dx.doi.org/10.1038/nrmicro1273] [PMID: 16205711]
[5]
Asaduzzaman, S.M.; Sonomoto, K. Lantibiotics: Diverse activities and unique modes of action. J. Biosci. Bioeng., 2009, 107(5), 475-487.
[http://dx.doi.org/10.1016/j.jbiosc.2009.01.003] [PMID: 19393544]
[6]
Castiglione, F.; Cavaletti, L.; Losi, D.; Lazzarini, A.; Carrano, L.; Feroggio, M.; Ciciliato, I.; Corti, E.; Candiani, G.; Marinelli, F.; Selva, E. A novel lantibiotic acting on bacterial cell wall synthesis produced by the uncommon actinomycete Planomonospora sp. Biochemistry, 2007, 46(20), 5884-5895.
[http://dx.doi.org/10.1021/bi700131x] [PMID: 17469849]
[7]
Balciunas, E.M.; Castillo Martinez, F.A.; Todorov, S.D.; Franco, B.D.G.M.; Converti, A.; Oliveira, R.P.S. Novel biotechnological applica-tions of bacteriocins: A review. Food Control, 2013, 32(1), 134-142.
[http://dx.doi.org/10.1016/j.foodcont.2012.11.025]
[8]
Mills, S.; Serrano, L.M.; Griffin, C.; O’Connor, P.M.; Schaad, G.; Bruining, C.; Hill, C.; Ross, R.P.; Meijer, W.C. Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese. Microb. Cell Fact., 2011, 10(S1)(Suppl. 1), S7.
[http://dx.doi.org/10.1186/1475-2859-10-S1-S7] [PMID: 21995443]
[9]
Gross, E.; Morell, J.L. Structure of nisin. J. Am. Chem. Soc., 1971, 93(18), 4634-4635.
[http://dx.doi.org/10.1021/ja00747a073] [PMID: 5131162]
[10]
Jack, R.W.; Tagg, J.R.; Ray, B. Bacteriocins of gram-positive bacteria. Microbiol. Rev., 1995, 59(2), 171-200.
[http://dx.doi.org/10.1128/mr.59.2.171-200.1995] [PMID: 7603408]
[11]
Makarova, K.S.; Wolf, Y.I.; Karamycheva, S.; Zhang, D.; Aravind, L.; Koonin, E.V. Antimicrobial peptides, polymorphic toxins and self-nonself recognition systems in archaea: An untapped armory for intermicrobial conflicts. MBio, 2019, 10(3), e00715-e00719.
[http://dx.doi.org/10.1128/mBio.00715-19] [PMID: 31064832]
[12]
Zimina, M.; Babich, O.; Prosekov, A.; Sukhikh, S.; Ivanova, S.; Shevchenko, M.; Noskova, S. Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics (Basel), 2020, 9(9), 553.
[http://dx.doi.org/10.3390/antibiotics9090553] [PMID: 32872235]
[13]
Ge, J.; Kang, J.; Ping, W. Effect of acetic acid on bacteriocin production by Gram-positive bacteria. J. Microbiol. Biotechnol., 2019, 29(9), 1341-1348.
[http://dx.doi.org/10.4014/jmb.1905.05060] [PMID: 31336430]
[14]
Acedo, J.Z.; Chiorean, S.; Vederas, J.C.; van Belkum, M.J. The expanding structural variety among bacteriocins from Gram-positive bacte-ria. FEMS Microbiol. Rev., 2018, 42(6), 805-828.
[http://dx.doi.org/10.1093/femsre/fuy033] [PMID: 30085042]
[15]
Tracanna, V.; de Jong, A.; Medema, M.H.; Kuipers, O.P. Mining prokaryotes for antimicrobial compounds: From diversity to function. FEMS Microbiol. Rev., 2017, 41(3), 417-429.
[http://dx.doi.org/10.1093/femsre/fux014] [PMID: 28402441]
[16]
Ongey, E.L.; Yassi, H.; Pflugmacher, S.; Neubauer, P. Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clini-cal studies. Biotechnol. Lett., 2017, 39(4), 473-482.
[http://dx.doi.org/10.1007/s10529-016-2279-9] [PMID: 28044226]
[17]
Bennallack, P.R.; Griffitts, J.S. Elucidating and engineering thiopeptide biosynthesis. World J. Microbiol. Biotechnol., 2017, 33(6), 119-126.
[http://dx.doi.org/10.1007/s11274-017-2283-9] [PMID: 28497389]
[18]
Lajis, A.F.B. Biomanufacturing process for the production of bacteriocins from Bacillaceae family. Bioresour. Bioprocess., 2020, 7(1), 8-13.
[http://dx.doi.org/10.1186/s40643-020-0295-z]
[19]
Heng, N.C.K.; Tagg, J.R. What’s in a name? Class distinction for bacteriocins. Nat. Rev. Microbiol., 2006, 4(2), 160.
[http://dx.doi.org/10.1038/nrmicro1273-c1]
[20]
Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature, 2007, 449(7164), 804-810.
[http://dx.doi.org/10.1038/nature06244] [PMID: 17943116]
[21]
Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489(7415), 220-230.
[http://dx.doi.org/10.1038/nature11550] [PMID: 22972295]
[22]
de Lorenzo, V. Isolation and characterization of microcin E 492 fromKlebsiella pneumoniae. Arch. Microbiol., 1984, 139(1), 72-75.
[http://dx.doi.org/10.1007/BF00692715] [PMID: 6385903]
[23]
Laviña, M.; Gaggero, C.; Moreno, F. Microcin H47, a chromosome-encoded microcin antibiotic of Escherichia coli. J. Bacteriol., 1990, 172(11), 6585-6588.
[http://dx.doi.org/10.1128/jb.172.11.6585-6588.1990] [PMID: 2228975]
[24]
Salomón, R.A.; Farías, R.N. Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J. Bacteriol., 1992, 174(22), 7428-7435.
[http://dx.doi.org/10.1128/jb.174.22.7428-7435.1992] [PMID: 1429464]
[25]
Haas, W.; Shepard, B.D.; Gilmore, M.S. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoin-duction. Nature, 2002, 415(6867), 84-87.
[http://dx.doi.org/10.1038/415084a] [PMID: 11780122]
[26]
Patzer, S.I.; Baquero, M.R.; Bravo, D.; Moreno, F.; Hantke, K. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology (Reading), 2003, 149(9), 2557-2570.
[http://dx.doi.org/10.1099/mic.0.26396-0] [PMID: 12949180]
[27]
Li, M.; Zhou, X.; Stanton, C.; Ross, R.P.; Zhao, J.; Zhang, H.; Yang, B.; Chen, W. Comparative genomics analyses reveal the differences between B. longum subsp. infantis and B. longum subsp. longum in carbohydrate utilisation, CRISPR-Cas systems and bacteriocin oper-ons. Microorganisms, 2021, 9(8), 1713.
[PMID: 34442792]
[28]
Rea, M.C.; Sit, C.S.; Clayton, E.; O’Connor, P.M.; Whittal, R.M.; Zheng, J.; Vederas, J.C.; Ross, R.P.; Hill, C.; Thuricin, C.D. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci. USA, 2010, 107(20), 9352-9357.
[http://dx.doi.org/10.1073/pnas.0913554107] [PMID: 20435915]
[29]
Hatziioanou, D.; Gherghisan-Filip, C.; Saalbach, G.; Horn, N.; Wegmann, U.; Duncan, S.H.; Flint, H.J.; Mayer, M.J.; Narbad, A. Discovery of a novel lantibiotic nisin O from Blautia obeum A2-162, isolated from the human gastrointestinal tract. Microbiology, 2017, 163(9), 1292-1305.
[http://dx.doi.org/10.1099/mic.0.000515] [PMID: 28857034]
[30]
Millette, M.; Cornut, G.; Dupont, C.; Shareck, F.; Archambault, D.; Lacroix, M. Capacity of human nisin- and pediocin-producing lactic Acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl. Environ. Microbiol., 2008, 74(7), 1997-2003.
[http://dx.doi.org/10.1128/AEM.02150-07] [PMID: 18245231]
[31]
Scott, J.C.; Sahl, H.G.; Carne, A.; Tagg, J.R. Lantibiotic-mediated anti-lactobacillus activity of a vaginal Staphylococcus aureus isolate. FEMS Microbiol. Lett., 1992, 93(1), 97-102.
[http://dx.doi.org/10.1111/j.1574-6968.1992.tb05047.x] [PMID: 1612423]
[32]
Jack, R.W.; Carne, A.; Metzger, J. Stefanović S.; Sahl, H.G.; Jung, G.; Tagg, J. Elucidation of the structure of SA-FF22, a lanthionine-containing antibacterial peptide produced by Streptococcus pyogenes strain FF22. Eur. J. Biochem., 1994, 220(2), 455-462.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb18643.x] [PMID: 8125103]
[33]
Nascimento, J.S.; Ceotto, H.; Nascimento, S.B.; Giambiagi-deMarval, M.; Santos, K.R.N.; Bastos, M.C.F. Bacteriocins as alternative agents for control of multiresistant staphylococcal strains. Lett. Appl. Microbiol., 2006, 42(3), 215-221.
[http://dx.doi.org/10.1111/j.1472-765X.2005.01832.x] [PMID: 16478507]
[34]
Burton, J.P.; Wescombe, P.A.; Macklaim, J.M.; Chai, M.H.C.; MacDonald, K.; Hale, J.D.F.; Tagg, J.; Reid, G.; Gloor, G.B.; Cadieux, P.A. Persistence of the oral probiotic Streptococcus salivarius M18 is dose dependent and megaplasmid transfer can augment their bacteriocin production and adhesion characteristics. PLoS One, 2013, 8(6), e65991.
[http://dx.doi.org/10.1371/journal.pone.0065991] [PMID: 23785463]
[35]
Wayah, S.B.; Philip, K. Purification, characterization, mode of action, and enhanced production of Salivaricin mmaye1, a novel bacteriocin from Lactobacillus salivarius SPW1 of human gut origin. Electron. J. Biotechnol., 2018, 35, 39-47.
[http://dx.doi.org/10.1016/j.ejbt.2018.08.003]
[36]
Moroni, O.; Kheadr, E.; Boutin, Y.; Lacroix, C.; Fliss, I. Inactivation of adhesion and invasion of food-borne Listeria monocytogenes by bacteriocin-producing Bifidobacterium strains of human origin. Appl. Environ. Microbiol., 2006, 72(11), 6894-6901.
[http://dx.doi.org/10.1128/AEM.00928-06] [PMID: 16936051]
[37]
Marciset, O.; Jeronimus-Stratingh, M.C.; Mollet, B.; Poolman, B. Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J. Biol. Chem., 1997, 272(22), 14277-14284.
[http://dx.doi.org/10.1074/jbc.272.22.14277] [PMID: 9162062]
[38]
Dimitrijević R.; Stojanović M.; Živković I.; Petersen, A.; Jankov, R.M.; Dimitrijević L.; Gavrović-Jankulović M. The identification of a low molecular mass bacteriocin, rhamnosin A, produced by Lactobacillus rhamnosus strain 68. J. Appl. Microbiol., 2009, 107(6), 2108-2115.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04539.x] [PMID: 19796123]
[39]
Yamashita, H.; Tomita, H.; Inoue, T.; Ike, Y. Genetic organization and mode of action of a novel bacteriocin, bacteriocin 51: determinant of VanA-type vancomycin-resistant Enterococcus faecium. Antimicrob. Agents Chemother., 2011, 55(9), 4352-4360.
[http://dx.doi.org/10.1128/AAC.01274-10] [PMID: 21709077]
[40]
Kommineni, S.; Bretl, D.J.; Lam, V.; Chakraborty, R.; Hayward, M.; Simpson, P.; Cao, Y.; Bousounis, P.; Kristich, C.J.; Salzman, N.H. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature, 2015, 526(7575), 719-722.
[http://dx.doi.org/10.1038/nature15524] [PMID: 26479034]
[41]
Tomita, H.; Fujimoto, S.; Tanimoto, K.; Ike, Y. Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Entero-coccus faecalis pheromone-responsive conjugative plasmid pYI17. J. Bacteriol., 1996, 178(12), 3585-3593.
[http://dx.doi.org/10.1128/jb.178.12.3585-3593.1996] [PMID: 8655558]
[42]
Dabard, J.; Bridonneau, C.; Phillipe, C.; Anglade, P.; Mollé, D.; Nardi, M.; Ladiré, M.; Girardin, H.; Marcille, F.; Gomez, A.; Fons, M. Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces. Appl. Environ. Microbiol., 2001, 67(9), 4111-4118.
[http://dx.doi.org/10.1128/AEM.67.9.4111-4118.2001] [PMID: 11526013]
[43]
Del Campo, R.; Tenorio, C.; Jiménez-Díaz, R.; Rubio, C.; Gómez-Lus, R.; Baquero, F.; Torres, C. Bacteriocin production in vancomycin-resistant and vancomycin-susceptible Enterococcus isolates of different origins. Antimicrob. Agents Chemother., 2001, 45(3), 905-912.
[http://dx.doi.org/10.1128/AAC.45.3.905-912.2001] [PMID: 11181378]
[44]
Todokoro, D.; Tomita, H.; Inoue, T.; Ike, Y. Genetic analysis of bacteriocin 43 of vancomycin-resistant Enterococcus faecium. Appl. Environ. Microbiol., 2006, 72(11), 6955-6964.
[http://dx.doi.org/10.1128/AEM.00934-06] [PMID: 17088377]
[45]
Coyne, M.J.; Béchon, N.; Matano, L.M.; McEneany, V.L.; Chatzidaki-Livanis, M.; Comstock, L.E. A family of anti-bacteroidales peptide toxins wide-spread in the human gut microbiota. Nat. Commun., 2019, 10(1), 3460.
[http://dx.doi.org/10.1038/s41467-019-11494-1] [PMID: 31371723]
[46]
Abee, T.; Klaenhammer, T.R.; Letellier, L. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl. Environ. Microbiol., 1994, 60(3), 1006-1013.
[http://dx.doi.org/10.1128/aem.60.3.1006-1013.1994] [PMID: 8161167]
[47]
Tahara, T.; Oshimura, M.; Umezawa, C.; Kanatani, K. Isolation, partial characterization, and mode of action of Acidocin J1132, a two-component bacteriocin produced by Lactobacillus acidophilus JCM 1132. Appl. Environ. Microbiol., 1996, 62(3), 892-897.
[http://dx.doi.org/10.1128/aem.62.3.892-897.1996] [PMID: 8975617]
[48]
Kawai, Y.; Saitoh, B.; Takahashi, O.; Kitazawa, H.; Saito, T.; Nakajima, H.; Itoh, T. Primary amino acid and DNA sequences of gassericin T, a lactacin F-family bacteriocin produced by Lactobacillus gasseri SBT2055. Biosci. Biotechnol. Biochem., 2000, 64(10), 2201-2208.
[http://dx.doi.org/10.1271/bbb.64.2201] [PMID: 11129595]
[49]
Flynn, S.; van Sinderen, D.; Thornton, G.M.; Holo, H.; Nes, I.F.; Collins, J.K. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118 The GenBank accession number for the sequence reported in this paper is AF408405. Microbiology, 2002, 148(4), 973-984.
[http://dx.doi.org/10.1099/00221287-148-4-973] [PMID: 11932444]
[50]
Caly, D.L.; Chevalier, M.; Flahaut, C.; Cudennec, B.; Al Atya, A.K.; Chataigné, G.; D’Inca, R.; Auclair, E.; Drider, D. The safe enterocin DD14 is a leaderless two-peptide bacteriocin with anti-Clostridium perfringens activity. Int. J. Antimicrob. Agents, 2017, 49(3), 282-289.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.11.016] [PMID: 28104423]
[51]
Gálvez, A.; Maqueda, M.; Valdivia, E.; Quesada, A.; Montoya, E. Characterization and partial purification of a broad spectrum antibiotic AS-48 produced by Streptococcus faecalis. Can. J. Microbiol., 1986, 32(10), 765-771.
[http://dx.doi.org/10.1139/m86-141] [PMID: 3098396]
[52]
Toba, T.; Samant, S.K.; Yoshioka, E.; Itoh, T. Reutericin 6, a new bacteriocin produced by Lactobacillus reuteri LA 6. Lett. Appl. Microbiol., 1991, 13(6), 281-286.
[http://dx.doi.org/10.1111/j.1472-765X.1991.tb00629.x]
[53]
Kawai, Y.; Saito, T.; Kitazawa, H.; Itoh, T. Gassericin A; an uncommon cyclic bacteriocin produced by Lactobacillus gasseri LA39 linked at N- and C-terminal ends. Biosci. Biotechnol. Biochem., 1998, 62(12), 2438-2440.
[http://dx.doi.org/10.1271/bbb.62.2438] [PMID: 9972271]
[54]
O’Shea, E.F.; O’Connor, P.M.; Raftis, E.J.; O’Toole, P.W.; Stanton, C.; Cotter, P.D.; Ross, R.P.; Hill, C. Production of multiple bacteriocins from a single locus by gastrointestinal strains of Lactobacillus salivarius. J. Bacteriol., 2011, 193(24), 6973-6982.
[http://dx.doi.org/10.1128/JB.06221-11] [PMID: 21984788]
[55]
Wescombe, P.A.; Dyet, K.H.; Dierksen, K.P.; Power, D.A.; Jack, R.W.; Burton, J.P.; Inglis, M.A.; Wescombe, A.L.; Tagg, J.R. Salivaricin G32, a homolog of the prototype Streptococcus pyogenes Nisin-Like Lantibiotic SA-FF22, produced by the commensal species Strepto-coccus salivarius. Int. J. Microbiol., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/738503] [PMID: 22567013]
[56]
Vera Pingitore, E.; Hébert, E.M.; Nader-Macías, M.E.; Sesma, F. Characterization of salivaricin CRL 1328, a two-peptide bacteriocin pro-duced by Lactobacillus salivarius CRL 1328 isolated from the human vagina. Res. Microbiol., 2009, 160(6), 401-408.
[http://dx.doi.org/10.1016/j.resmic.2009.06.009] [PMID: 19591924]
[57]
Zschüttig, A.; Zimmermann, K.; Blom, J.; Goesmann, A.; Pöhlmann, C.; Gunzer, F. Identification and characterization of microcin S, a new antibacterial peptide produced by probiotic Escherichia coli G3/10. PLoS One, 2012, 7(3), e33351.
[http://dx.doi.org/10.1371/journal.pone.0033351] [PMID: 22479389]
[58]
Busarcevic, M.; Dalgalarrondo, M. Purification and genetic characterisation of the novel bacteriocin LS2 produced by the human oral strain Lactobacillus salivarius BGHO1. Int. J. Antimicrob. Agents, 2012, 40(2), 127-134.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.04.011] [PMID: 22739096]
[59]
Grimont, P.A.; Grimont, F. Biotyping of Serratia marcescens and its use in epidemiological studies. J. Clin. Microbiol., 1978, 8(1), 73-83.
[http://dx.doi.org/10.1128/jcm.8.1.73-83.1978] [PMID: 353073]
[60]
Micenková, L.; Bosák, J.; Kucera, J.; Hrala, M.; Dolejšová, T.; Šedo, O.; Linke, D.; Fišer, R.; Šmajs, D. Colicin Z, a structurally and func-tionally novel colicin type that selectively kills enteroinvasive Escherichia coli and Shigella strains. Sci. Rep., 2019, 9(1), 11127.
[http://dx.doi.org/10.1038/s41598-019-47488-8] [PMID: 31366939]
[61]
Donia, M.S.; Cimermancic, P.; Schulze, C.J.; Wieland Brown, L.C.; Martin, J.; Mitreva, M.; Clardy, J.; Linington, R.G.; Fischbach, M.A. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell, 2014, 158(6), 1402-1414.
[http://dx.doi.org/10.1016/j.cell.2014.08.032] [PMID: 25215495]
[62]
Gebhart, D.; Lok, S.; Clare, S.; Tomas, M.; Stares, M.; Scholl, D.; Donskey, C.J.; Lawley, T.D.; Govoni, G.R. A modified R-type bacterioc-in specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. MBio, 2015, 6(2), e02368-e14.
[http://dx.doi.org/10.1128/mBio.02368-14] [PMID: 25805733]
[63]
Karaoğlu, Ş.A.; Aydin, F.; Kilic, S.S.; Kilic, A.O. Antimicrobial activity and characteristics of bacteriocins produced by vaginal lactobacilli. Turk. J. Med. Sci., 2003, 33(1), 7-13.
[64]
Walls, T.; Power, D.; Tagg, J. Bacteriocin-like inhibitory substance (BLIS) production by the normal flora of the nasopharynx: potential to protect against otitis media? J. Med. Microbiol., 2003, 52(9), 829-833.
[http://dx.doi.org/10.1099/jmm.0.05259-0] [PMID: 12909662]
[65]
Padilla, C.; Lobos, O.; Hubert, E. Shigella flexneri strains produce bacteriocins active against members of the human microbial intestinal flora. Rev. Latinoam. Microbiol., 2004, 46(3-4), 85-88.
[PMID: 17061528]
[66]
Drissi, F.; Buffet, S.; Raoult, D.; Merhej, V. Common occurrence of antibacterial agents in human intestinal microbiota. Front. Microbiol., 2015, 6, 441.
[http://dx.doi.org/10.3389/fmicb.2015.00441] [PMID: 25999943]
[67]
Sassone-Corsi, M.; Nuccio, S.P.; Liu, H.; Hernandez, D.; Vu, C.T.; Takahashi, A.A.; Edwards, R.A.; Raffatellu, M. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature, 2016, 540(7632), 280-283.
[http://dx.doi.org/10.1038/nature20557] [PMID: 27798599]
[68]
Bendjeddou, K.; Hamma-Faradji, S.; Meddour, A.A.; Belguesmia, Y.; Cudennec, B.; Bendali, F.; Daube, G.; Taminiau, B.; Drider, D. Gut microbiota, body weight and histopathological examinations in experimental infection by methicillin-resistant Staphylococcus aureus: an-tibiotic versus bacteriocin. Benef. Microbes, 2021, 12(3), 295-305.
[http://dx.doi.org/10.3920/BM2020.0155] [PMID: 33789553]
[69]
O’Sullivan, J.N.; Rea, M.C.; O’Connor, P.M.; Hill, C.; Ross, R.P. Human skin microbiota is a rich source of bacteriocin-producing staphy-lococci that kill human pathogens. FEMS Microbiol. Ecol., 2019, 95(2), fiy241.
[http://dx.doi.org/10.1093/femsec/fiy241] [PMID: 30590567]
[70]
van Heel, A.J.; de Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res., 2018, 46(W1), W278-W281.
[http://dx.doi.org/10.1093/nar/gky383] [PMID: 29788290]
[71]
Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res., 2019, 47(W1), W81-W87.
[http://dx.doi.org/10.1093/nar/gkz310] [PMID: 31032519]
[72]
Angelopoulou, A.; Warda, A.K.; O’Connor, P.M.; Stockdale, S.R.; Shkoporov, A.N.; Field, D.; Draper, L.A.; Stanton, C.; Hill, C.; Ross, R.P. Diverse bacteriocins produced by strains from the human milk microbiota. Front. Microbiol., 2020, 11, 788.
[http://dx.doi.org/10.3389/fmicb.2020.00788] [PMID: 32508758]
[73]
Skinnider, M.A.; Merwin, N.J.; Johnston, C.W.; Magarvey, N.A. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res., 2017, 45(W1), W49-W54.
[http://dx.doi.org/10.1093/nar/gkx320] [PMID: 28460067]
[74]
Agrawal, P.; Amir, S. Deepak; Barua, D.; Mohanty, D. RiPPMiner-Genome: A web resource for automated prediction of crosslinked chemical structures of RiPPs by genome mining. J. Mol. Biol., 2021, 433(11), 166887.
[http://dx.doi.org/10.1016/j.jmb.2021.166887] [PMID: 33972022]
[75]
de los Santos, E.L.C. NeuRiPP: Neural network identification of RiPP precursor peptides. Sci. Rep., 2019, 9(1), 13406.
[http://dx.doi.org/10.1038/s41598-019-49764-z] [PMID: 31527713]
[76]
Hammami, R.; Zouhir, A.; Le Lay, C.; Ben Hamida, J.; Fliss, I. BACTIBASE second release: A database and tool platform for bacteriocin characterization. BMC Microbiol., 2010, 10(1), 22.
[http://dx.doi.org/10.1186/1471-2180-10-22] [PMID: 20105292]
[77]
Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMP R3: A database on sequences, structures and signatures of antimicrobial peptides: Table 1. Nucleic Acids Res., 2016, 44(D1), D1094-D1097.
[http://dx.doi.org/10.1093/nar/gkv1051] [PMID: 26467475]
[78]
Kautsar, S.A.; Blin, K.; Shaw, S.; Navarro-Muñoz, J.C.; Terlouw, B.R.; van der Hooft, J.J.J.; van Santen, J.A.; Tracanna, V.; Suarez Duran, H.G.; Pascal Andreu, V.; Selem-Mojica, N.; Alanjary, M.; Robinson, S.L.; Lund, G.; Epstein, S.C.; Sisto, A.C.; Charkoudian, L.K.; Col-lemare, J.; Linington, R.G.; Weber, T.; Medema, M.H. MIBiG 2.0: A repository for biosynthetic gene clusters of known function. Nucleic Acids Res., 2020, 48(D1), D454-D458.
[PMID: 31612915]
[79]
Rutherford, K.; Parkhill, J.; Crook, J.; Horsnell, T.; Rice, P.; Rajandream, M.A.; Barrell, B. Artemis: Sequence visualization and annotation. Bioinformatics, 2000, 16(10), 944-945.
[http://dx.doi.org/10.1093/bioinformatics/16.10.944] [PMID: 11120685]
[80]
Gumerov, V.M.; Ortega, D.R.; Adebali, O.; Ulrich, L.E.; Zhulin, I.B. MiST 3.0: An updated microbial signal transduction database with an emphasis on chemosensory systems. Nucleic Acids Res., 2020, 48(D1), D459-D464.
[http://dx.doi.org/10.1093/nar/gkz988] [PMID: 31754718]
[81]
Helske, S.; Helske, J. Mixture hidden Markov models for sequence data: The seqHMM package in R. J. Stat. Softw., 2019, 88(3)
[http://dx.doi.org/10.18637/jss.v088.i03]
[82]
Zheng, J.; Gänzle, M.G.; Lin, X.B.; Ruan, L.; Sun, M. Diversity and dynamics of bacteriocins from human microbiome. Environ. Microbiol., 2015, 17(6), 2133-2143.
[http://dx.doi.org/10.1111/1462-2920.12662] [PMID: 25346017]
[83]
Walsh, C.J.; Guinane, C.M.; Hill, C.; Ross, R.P.; O’Toole, P.W.; Cotter, P.D. In silico identification of bacteriocin gene clusters in the gas-trointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiol., 2015, 15(1), 183.
[http://dx.doi.org/10.1186/s12866-015-0515-4] [PMID: 26377179]
[84]
Wosinska, L.; Walsh, C.J.; O’Connor, P.M.; Lawton, E.M.; Cotter, P.D.; Guinane, C.M.; O’Sullivan, O. In Vitro and In Silico based ap-proaches to identify potential novel bacteriocins from the athlete gut microbiome of an elite athlete cohort. Microorganisms, 2022, 10(4), 701.
[http://dx.doi.org/10.3390/microorganisms10040701] [PMID: 35456752]
[85]
Nichols, D.; Cahoon, N.; Trakhtenberg, E.M.; Pham, L.; Mehta, A.; Belanger, A.; Kanigan, T.; Lewis, K.; Epstein, S.S. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol., 2010, 76(8), 2445-2450.
[http://dx.doi.org/10.1128/AEM.01754-09] [PMID: 20173072]
[86]
Cui, Y.; Luo, L.; Wang, X.; Lu, Y.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Lü, X. Mining, heterologous expression, purification, antibacteri-cidal mechanism, and application of bacteriocins: A review. Compr. Rev. Food Sci. Food Saf., 2021, 20(1), 863-899.
[http://dx.doi.org/10.1111/1541-4337.12658] [PMID: 33443793]
[87]
Ni, Z.J.; Zhang, X.; Liu, F.; Wang, M.; Hao, R.; Ling, P.; Zhu, X.Q. Effect of co-overexpression of nisin key genes on nisin production improvement in Lactococcus lactis LS01. Probiotics Antimicrob. Proteins, 2017, 9(2), 204-212.
[http://dx.doi.org/10.1007/s12602-017-9268-8] [PMID: 28303477]
[88]
Zhou, L.; van Heel, A.J.; Montalban-Lopez, M.; Kuipers, O.P. Potentiating the activity of nisin against Escherichia coli. Front. Cell Dev. Biol., 2016, 4, 7.
[http://dx.doi.org/10.3389/fcell.2016.00007] [PMID: 26904542]
[89]
Schmitt, S.; Montalbán-López, M.; Peterhoff, D.; Deng, J.; Wagner, R.; Held, M.; Kuipers, O.P.; Panke, S. Analysis of modular bioengi-neered antimicrobial lanthipeptides at nanoliter scale. Nat. Chem. Biol., 2019, 15(5), 437-443.
[http://dx.doi.org/10.1038/s41589-019-0250-5] [PMID: 30936500]
[90]
Bédard, F.; Hammami, R.; Zirah, S.; Rebuffat, S.; Fliss, I.; Biron, E. Synthesis, antimicrobial activity and conformational analysis of the class IIa bacteriocin pediocin PA-1 and analogs thereof. Sci. Rep., 2018, 8(1), 9029.
[http://dx.doi.org/10.1038/s41598-018-27225-3] [PMID: 29899567]
[91]
Hsieh, Y.S.Y.; Wilkinson, B.L.; O’Connell, M.R.; Mackay, J.P.; Matthews, J.M.; Payne, R.J. Synthesis of the bacteriocin glycopeptide sublancin 168 and S-glycosylated variants. Org. Lett., 2012, 14(7), 1910-1913.
[http://dx.doi.org/10.1021/ol300557g] [PMID: 22455748]
[92]
Rohrbacher, F.; Zwicky, A.; Bode, J.W. Chemical synthesis of a homoserine-mutant of the antibacterial, head-to-tail cyclized protein AS-48 by α-ketoacid–hydroxylamine (KAHA) ligation. Chem. Sci. (Camb.), 2017, 8(5), 4051-4055.
[http://dx.doi.org/10.1039/C7SC00789B] [PMID: 28580120]
[93]
Bisset, S.W.; Yang, S.H.; Amso, Z.; Harris, P.W.R.; Patchett, M.L.; Brimble, M.A.; Norris, G.E. Using chemical synthesis to probe struc-ture–activity relationships of the glycoactive bacteriocin glycocin F. ACS Chem. Biol., 2018, 13(5), 1270-1278.
[http://dx.doi.org/10.1021/acschembio.8b00055] [PMID: 29701461]
[94]
Dreyer, L.; Smith, C.; Deane, S.M.; Dicks, L.M.T.; van Staden, A.D. Migration of bacteriocins across gastrointestinal epithelial and vascu-lar endothelial cells, as determined using in vitro simulations. Sci. Rep., 2019, 9(1), 11481.
[http://dx.doi.org/10.1038/s41598-019-47843-9] [PMID: 31391488]
[95]
Jabés, D.; Brunati, C.; Candiani, G.; Riva, S.; Romanó, G.; Donadio, S. Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant Gram-positive pathogens. Antimicrob. Agents Chemother., 2011, 55(4), 1671-1676.
[http://dx.doi.org/10.1128/AAC.01288-10] [PMID: 21220527]
[96]
Goldstein, B.; Wei, J.; Greenberg, K.; Novick, R. Activity of nisin against Streptococcus pneumoniae, in vitro, and in a mouse infection model. J. Antimicrob. Chemother., 1998, 42(2), 277-278.
[http://dx.doi.org/10.1093/jac/42.2.277] [PMID: 9738856]
[97]
Naimi, S.; Zirah, S.; Hammami, R.; Fernandez, B.; Rebuffat, S.; Fliss, I. Fate and biological activity of the antimicrobial lasso peptide mi-crocin J25 under gastrointestinal tract conditions. Front. Microbiol., 2018, 9, 1764.
[http://dx.doi.org/10.3389/fmicb.2018.01764] [PMID: 30123205]
[98]
Gardiner, G.E.; Rea, M.C.; O’Riordan, B.; O’Connor, P.; Morgan, S.M.; Lawlor, P.G.; Lynch, P.B.; Cronin, M.; Ross, R.P.; Hill, C. Fate of the two-component lantibiotic lacticin 3147 in the gastrointestinal tract. Appl. Environ. Microbiol., 2007, 73(21), 7103-7109.
[http://dx.doi.org/10.1128/AEM.01117-07] [PMID: 17766459]
[99]
Fahim, H.A.; Khairalla, A.S.; El-Gendy, A.O. Nanotechnology: A valuable strategy to improve bacteriocin formulations. Front. Microbiol., 2016, 7, 1385.
[http://dx.doi.org/10.3389/fmicb.2016.01385] [PMID: 27695440]
[100]
Prombutara, P.; Kulwatthanasal, Y.; Supaka, N.; Sramala, I.; Chareonpornwattana, S. Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control, 2012, 24(1-2), 184-190.
[http://dx.doi.org/10.1016/j.foodcont.2011.09.025]
[101]
Thirumurugan, A.; Ramachandran, S.; Gowri, A.S. Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria – an approach for food packaging material preparation. Int. Food Res. J., 2013, 20(4), 1909-1912.
[102]
Singh, A.K.; Bai, X.; Amalaradjou, M.A.R.; Bhunia, A.K. Antilisterial and antibiofilm activities of pediocin and LAP functionalized gold nanoparticles. Front. Sustain. Food Syst., 2018, 2, 74.
[http://dx.doi.org/10.3389/fsufs.2018.00074]
[103]
Sidhu, P.K.; Nehra, K. Bacteriocin-nanoconjugates as emerging compounds for enhancing antimicrobial activity of bacteriocins. J. King Saud Univ. Sci. Science, 2019, 31(4), 758-767.
[104]
Field, D.; Begley, M.; O’Connor, P.M.; Daly, K.M.; Hugenholtz, F.; Cotter, P.D.; Hill, C.; Ross, R.P. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLoS One, 2012, 7(10), e46884.
[http://dx.doi.org/10.1371/journal.pone.0046884] [PMID: 23056510]
[105]
Field, D.; Molloy, E.M.; Iancu, C.; Draper, L.A.; O’ Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. Saturation mutagenesis of selected residues of the α-peptide of the lantibiotic lacticin 3147 yields a derivative with enhanced antimicrobial activity. Microb. Biotechnol., 2013, 6(5), 564-575.
[http://dx.doi.org/10.1111/1751-7915.12041] [PMID: 23433070]
[106]
Field, D.; Gaudin, N.; Lyons, F.; O’Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. A bioengineered nisin derivative to control biofilms of Staphylococcus pseudintermedius. PLoS One, 2015, 10(3), e0119684.
[http://dx.doi.org/10.1371/journal.pone.0119684] [PMID: 25789988]
[107]
Perez, R.; Aguimatang, R.H.; Zendo, T.; Sonomoto, K. Bioengineering of the circular bacteriocin from Enterococcus faecium NKR-5-3 by NNK-Scanning to enhance its bioactivity. J. Microbiol. Biotechnol. Food Sci., 2021, 11(3), e4309.
[http://dx.doi.org/10.15414/jmbfs.4309]
[108]
Di Pierro, F.; Donato, G.; Fomia, F.; Adami, T.; Careddu, D.; Cassandro, C.; Albera, R. Preliminary pediatric clinical evaluation of the oral probiotic Streptococcus salivarius K12 in preventing recurrent pharyngitis and/or tonsillitis caused by Streptococcus pyogenes and recur-rent acute otitis media. Int. J. Gen. Med., 2012, 5, 991-997.
[http://dx.doi.org/10.2147/IJGM.S38859] [PMID: 23233809]
[109]
Hillman, J.D.; Dzuback, A.L.; Andrews, S.W. Colonization of the human oral cavity by a Streptococcus mutans mutant producing in-creased bacteriocin. J. Dent. Res., 1987, 66(6), 1092-1094.
[http://dx.doi.org/10.1177/00220345870660060101] [PMID: 3476580]
[110]
Walsh, M.C.; Gardiner, G.E.; Hart, O.M.; Lawlor, P.G.; Daly, M.; Lynch, B.; Richert, B.T.; Radcliffe, S.; Giblin, L.; Hill, C.; Fitzgerald, G.F.; Stanton, C.; Ross, P. Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiol. Ecol., 2008, 64(2), 317-327.
[http://dx.doi.org/10.1111/j.1574-6941.2008.00454.x] [PMID: 18373687]
[111]
Bhardwaj, A.; Gupta, H.; Kapila, S.; Kaur, G.; Vij, S.; Malik, R.K. Safety assessment and evaluation of probiotic potential of bacteriocino-genic Enterococcus faecium KH 24 strain under in vitro and in vivo conditions. Int. J. Food Microbiol., 2010, 141(3), 156-164.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.05.001] [PMID: 20570005]
[112]
Cursino, L.; Šmajs, D.; Šmarda, J.; Nardi, R.M.D.; Nicoli, J.R.; Chartone-Souza, E.; Nascimento, A.M.A. Exoproducts of the Escherichia coli strain H22 inhibiting some enteric pathogens both in vitro and in vivo. J. Appl. Microbiol., 2006, 100(4), 821-829.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02834.x] [PMID: 16553738]
[113]
Dabour, N.; Zihler, A.; Kheadr, E.; Lacroix, C.; Fliss, I. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int. J. Food Microbiol., 2009, 133(3), 225-233.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.05.005] [PMID: 19541383]
[114]
Dobson, A.; Crispie, F.; Rea, M.C.; O’Sullivan, O.; Casey, P.G.; Lawlor, P.G.; Cotter, P.D.; Ross, P.; Gardiner, G.E.; Hill, C. Fate and effi-cacy of lacticin 3147-producing Lactococcus lactis in the mammalian gastrointestinal tract. FEMS Microbiol. Ecol., 2011, 76(3), 602-614.
[http://dx.doi.org/10.1111/j.1574-6941.2011.01069.x] [PMID: 21314706]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy