Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Engineering the Protein Folding Landscape in Gram-Negative Bacteria

Author(s): Thomas J. Mansell, Adam C. Fisher and Matthew P. DeLisa

Volume 9, Issue 2, 2008

Page: [138 - 149] Pages: 12

DOI: 10.2174/138920308783955243

Price: $65

Abstract

Gram-negative bacteria, especially Escherichia coli, are often the preferred hosts for recombinant protein production because of their fast doubling times, ability to grow to high cell density, propensity for high recombinant protein titers and straightforward protein purification techniques. The utility of simple bacteria in such studies continues to improve as a result of an ever-increasing body of knowledge regarding their native protein biogenesis machinery. From translation on the ribosome to interaction with cytosolic accessory factors to transport across the inner membrane into the periplasmic space, cellular proteins interact with many different types of cellular machinery and each interaction can have a profound effect on the protein folding process. This review addresses key aspects of cellular protein folding, solubility and expression in E. coli with particular focus on the elegant biological machinery that orchestrates the transition from nascent polypeptide to folded, functional protein. Specifically highlighted are a variety of different techniques to intentionally alter the folding environment of the cell as a means to understand and engineer intracellular protein folding and stability.

Keywords: Protein engineering, chaperone engineering, protein folding, disulfide bonds, recombinant protein expression


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy