Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

HDL-Chitosan Nanoparticles for siRNA Delivery as an SR-B1 Receptor Targeted System

Author(s): Rasim Masimov and Gülay Büyükköroğlu*

Volume 26, Issue 14, 2023

Published on: 10 May, 2023

Page: [2541 - 2553] Pages: 13

DOI: 10.2174/1386207326666230406124524

open access plus

Abstract

Aims: High-Density Lipoprotein (HDL) is a complex structure unique to the human body. ApoA-1 protein is a significant structural/functional protein of HDL and provides a natural interaction with the SR-B1 receptors on the cell membrane. The overexpression of the SR-B1 receptor in the membrane of malignant cells suggests that targeting cancer cells can be possible using HDL. The objective of this study was to prepare HDL-conjugated chitosan nanoparticles containing a genetic material that can be used for liver cancer.

Methods: HDL used in the preparation of the formulations have been obtained by isolating from blood samples taken from healthy volunteers. Bcl-2 siRNA inhibiting BCL-2 oncogene was selected as the genetic material. Chitosan nanoparticles were prepared using the ionic gelation method utilizing low molecular weight chitosan. Physicochemical properties of formulations, transfection efficacy, and cytotoxicity of them on 3T3 and HepG2 cell lines were examined.

Results: The average diameters of the selected formulations were below 250 nm with a positive zeta potential value between +36 ± 0.1 and +34 ± 0.5 mV. All formulations protected Bcl-2 siRNA from enzymatic degradation in the presence of serum. Cellular uptake ratios of particles by HepG2 cells were found to be between 76% and 98%. HDL/chitosan nanoparticles/Bcl-2 siRNA complex was found to be more toxic when compared to chitosan nanoparticles/Bcl-2 siRNA complex and naked Bcl-2 siRNA.

Conclusion: According to attained results, the HDL-conjugated chitosan nanoparticles can bring advantages for targeted siRNA delivery to malignant cells that overexpress SR-B1 receptors, such as HepG2.

Keywords: HDL, SR-B1 receptor and ApoA-1, silencing gene-Bcl-2 siRNA, chitosan nanoparticles, antisense technology-gene delivery, targeting therapy-liver cancer.

[1]
Hu, B.; Weng, Y.; Xia, X.H.; Liang, X.; Huang, Y. Clinical advances of siRNA therapeutics. J. Gene Med., 2019, 21(7), e3097.
[http://dx.doi.org/10.1002/jgm.3097] [PMID: 31069898]
[2]
Lee, L.K.; Roth, C.M. Antisense technology in molecular and cellular bioengineering. Curr. Opin. Biotechnol., 2003, 14(5), 505-511.
[http://dx.doi.org/10.1016/S0958-1669(03)00115-0] [PMID: 14580580]
[3]
Watts, J.K.; Corey, D.R. Gene silencing by siRNAs and antisense oligonucleotides in the laboratory and the clinic. J. Pathol., 2012, 226(2), 365.
[http://dx.doi.org/10.1002/path.2993] [PMID: 22069063]
[4]
Büyükköroğlu, G.; Şenel, B.; Başaran, E.; Yenilmez, E.; Yazan, Y. Preparation and in vitro evaluation of vaginal formulations including siRNA and paclitaxel-loaded SLNs for cervical cancer. Eur. J. Pharm. Biopharm., 2016, 109, 174-183.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.017] [PMID: 27793757]
[5]
Jones, S.K.; Merkel, O.M. Tackling breast cancer chemoresistance with nano-formulated siRNA. Gene Ther., 2016, 23(12), 821-828.
[http://dx.doi.org/10.1038/gt.2016.67] [PMID: 27648580]
[6]
Ganesh, S.; Iyer, A.K.; Weiler, J.; Morrissey, D.V.; Amiji, M.M. Combination of siRNA-directed gene silencing with cisplatin reverses drug resistance in human non-small cell lung cancer. Mol. Ther. Nucleic Acids, 2013, 2(7), e110.
[http://dx.doi.org/10.1038/mtna.2013.29] [PMID: 23900224]
[7]
Tian, J.; Kong, E.; Wang, X.; Xie, Z.; Chang, C.Y.Y.; Sheu, J.J.C.; Hao, Q.; Sun, L. RSF-1 siRNA enhances tumor radiosensitivity in cervical cancer via enhanced DNA damage, cell cycle redistribution, and promotion of apoptosis. OncoTargets Ther., 2020, 13, 3061-3071.
[http://dx.doi.org/10.2147/OTT.S246632] [PMID: 32308437]
[8]
Kim, D.W.; Seo, S.W.; Cho, S.K.; Chang, S.S.; Lee, H.W.; Lee, S.E.; Block, J.A.; Hei, T.K.; Lee, F.Y. Targeting of cell survival genes using small interfering RNAs (siRNAs) enhances radiosensitivity of Grade II chondrosarcoma cells. J. Orthop. Res., 2007, 25(6), 820-828.
[http://dx.doi.org/10.1002/jor.20377] [PMID: 17343283]
[9]
Talaiezadeh, A.; jalali, F.; Galehdari, H.; Khodadadi, A. Time depended Bcl-2 inhibition might be useful for a targeted drug therapy. Cancer Cell Int., 2015, 15(1), 105.
[http://dx.doi.org/10.1186/s12935-015-0254-5] [PMID: 26535028]
[10]
Liu, H.T.; Lu, C.L. Effect of silencing Bcl-2 expression by small interfering RNA on radiosensitivity of gastric cancer BGC823 cells. Asian Pac. J. Trop. Med., 2013, 6(1), 49-52.
[http://dx.doi.org/10.1016/S1995-7645(12)60199-0] [PMID: 23317885]
[11]
Lebedeva, I.; Stein, C.A. Antisense oligonucleotides: Promise and reality. Annu. Rev. Pharmacol. Toxicol., 2001, 41(1), 403-419.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.403] [PMID: 11264463]
[12]
Guo, S.; Huang, L. Nanoparticles escaping RES and endosome: Challenges for siRNA delivery for cancer therapy. J. Nanomater., 2011, 2011, 1-12.
[http://dx.doi.org/10.1155/2011/987530]
[13]
Kuai, R.; Li, D.; Chen, Y.E.; Moon, J.J.; Schwendeman, A. High-density lipoproteins: Nature’s multifunctional nanoparticles. ACS Nano, 2016, 10(3), 3015-3041.
[http://dx.doi.org/10.1021/acsnano.5b07522] [PMID: 26889958]
[14]
Wolfrum, C.; Shi, S.; Jayaprakash, K.N.; Jayaraman, M.; Wang, G.; Pandey, R.K.; Rajeev, K.G.; Nakayama, T.; Charrise, K.; Ndungo, E.M.; Zimmermann, T.; Koteliansky, V.; Manoharan, M.; Stoffel, M. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol., 2007, 25(10), 1149-1157.
[http://dx.doi.org/10.1038/nbt1339] [PMID: 17873866]
[15]
Feng, M.; Cai, Q.; Shi, X.; Huang, H.; Zhou, P.; Guo, X. Recombinant high-density lipoprotein complex as a targeting system of nosiheptide to liver cells. J. Drug Target., 2008, 16(6), 502-508.
[http://dx.doi.org/10.1080/10611860802200938] [PMID: 18604663]
[16]
Kontush, A.; Lindahl, M.; Lhomme, M.; Calabresi, L.; Chapman, M.J.; Davidson, W.S. Structure of HDL: Particle subclasses and molecular components. Handb. Exp. Pharmacol., 2015, 224, 3-51.
[17]
Feingold, K.R.; Grunfeld, C. Introduction to Lipids and Lipoproteins; Endotext, 2015.
[18]
Kingwell, B.A.; Chapman, M.J.; Kontush, A.; Miller, N.E. HDL-targeted therapies: Progress, failures and future. Nat. Rev. Drug Discov., 2014, 13(6), 445-464.
[http://dx.doi.org/10.1038/nrd4279] [PMID: 24854407]
[19]
Shahzad, M.M.K.; Mangala, L.S.; Han, H.D.; Lu, C.; Bottsford-Miller, J.; Nishimura, M.; Mora, E.M.; Lee, J.W.; Stone, R.L.; Pecot, C.V.; Thanapprapasr, D.; Roh, J.W.; Gaur, P.; Nair, M.P.; Park, Y.Y.; Sabnis, N.; Deavers, M.T.; Lee, J.S.; Ellis, L.M.; Lopez-Berestein, G.; McConathy, W.J.; Prokai, L.; Lacko, A.G.; Sood, A.K. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia, 2011, 13(4), 309-IN8.
[http://dx.doi.org/10.1593/neo.101372] [PMID: 21472135]
[20]
Mooberry, L.K.; Nair, M.; Paranjape, S.; McConathy, W.J.; Lacko, A.G. Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier. J. Drug Target., 2010, 18(1), 53-58.
[http://dx.doi.org/10.3109/10611860903156419] [PMID: 19637935]
[21]
Akbuga, J.; Ozbas-Turan, S.; Ekentok, C. Chitosan Nanoparticles in Gene Delivery. In: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Springer: Berlin, Heidelberg, 2016; pp. 337-351.
[http://dx.doi.org/10.1007/978-3-662-47862-2_22]
[22]
Zhou, M.; Hu, Q.; Wang, T.; Xue, J.; Luo, Y. Characterization of high density lipoprotein from egg yolk and its ability to form nanocomplexes with chitosan as natural delivery vehicles. Food Hydrocoll., 2018, 77, 204-211.
[http://dx.doi.org/10.1016/j.foodhyd.2017.09.035]
[23]
Şenel, B.; Büyükköroğlu, G.; Yazan, Y. Solid lipid and chitosan particulate systems for delivery of siRNA. Pharmazie, 2015, 70(11), 698-705.
[24]
Ragelle, H.; Riva, R.; Vandermeulen, G.; Naeye, B.; Pourcelle, V.; Le Duff, C.S.; D’Haese, C.; Nysten, B.; Braeckmans, K.; De Smedt, S.C.; Jérôme, C.; Préat, V. Chitosan nanoparticles for siRNA delivery: Optimizing formulation to increase stability and efficiency. J. Control. Release, 2014, 176, 54-63.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.026] [PMID: 24389132]
[25]
Wiebe, D.A.; Smith, S.J. Six methods for isolating high-density lipoprotein compared, with use of the reference method for quantifying cholesterol in serum. Clin. Chem., 1985, 31(5), 746-750.
[http://dx.doi.org/10.1093/clinchem/31.5.746] [PMID: 3987003]
[26]
Brace, R.J.; Sorrenson, B.; Sviridov, D.; McCormick, S.P.A. A gel-based method for purification of apolipoprotein A-I from small volumes of plasma. J. Lipid Res., 2010, 51(11), 3370-3376.
[http://dx.doi.org/10.1194/jlr.D008300] [PMID: 20667818]
[27]
Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P. Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf. B Biointerfaces, 2005, 44(2-3), 65-73.
[http://dx.doi.org/10.1016/j.colsurfb.2005.06.001] [PMID: 16024239]
[28]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[29]
Büyükköroğlu, G.; Şenel, B.; Yenilmez, E. Vaginal suppositories with siRNA and paclitaxel-incorporated solid lipid nanoparticles for cervical cancer: Preparation and in vitro evaluation. In: RNA Interference and Cancer Therapy; Humana: New York, NY, 2019; pp. 303-328.
[http://dx.doi.org/10.1007/978-1-4939-9220-1_22]
[30]
Nguyen, T.; Albers, A. A. Comparison of improved precipitation methods for quantification of high- density lipoprotein cholesterol. Clin. Chem., 1985, 222, 217-222.31.
[31]
Mooberry, L.K.; Sabnis, N.A.; Panchoo, M.; Nagarajan, B.; Lacko, A.G. Targeting the SR-B1 receptor as a gateway for cancer therapy and imaging. Front. Pharmacol., 2016, 7, 466.
[http://dx.doi.org/10.3389/fphar.2016.00466] [PMID: 28018216]
[32]
Feng, M.; Cai, Q.; Song, D.; Dong, J.; Zhou, P. High yield and secretion of recombinant human apolipoprotein AI in Pichia pastoris. Protein Expr. Purif., 2006, 46(2), 337-342.
[http://dx.doi.org/10.1016/j.pep.2005.11.009] [PMID: 16516487]
[33]
Krishna Sailaja, A.K.; Amareshwar, P.; Chakravarty, P. Different techniques used for the preparation of nanoparticles using natural polymers and their application. Int. J. Pharm. Pharm. Sci., 2011, 3(2), 45-50.
[34]
Mohammed, M.; Syeda, J.; Wasan, K.; Wasan, E. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 2017, 9(4), 53.
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[35]
Chandra Hembram, K.; Prabha, S.; Chandra, R.; Ahmed, B.; Nimesh, S. Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 305-314.
[http://dx.doi.org/10.3109/21691401.2014.948548] [PMID: 25137489]
[36]
Sreekumar, S.; Goycoolea, F.M.; Moerschbacher, B.M.; Rivera-Rodriguez, G.R. Parameters influencing the size of chitosan-TPP nano- and microparticles. Sci. Rep., 2018, 8(1), 4695.
[http://dx.doi.org/10.1038/s41598-018-23064-4] [PMID: 29549295]
[37]
Othman, N.; Masarudin, M.J.; Kuen, C.Y.; Dasuan, N.A.; Abdullah, L.C.; Md Jamil, S.N.A. Synthesis and optimization of chitosan nanoparticles loaded with L-ascorbic acid and thymoquinone. Nanomaterials, 2018, 8(11), 920.
[http://dx.doi.org/10.3390/nano8110920] [PMID: 30405074]
[38]
Al-nemrawi, N.K.; Alsharif, S.S.M.; Dave, R.H. Preparation of chitosan-tpp nanoparticles: The influence of chitosan polymeric properties and formulation variables. Int. Int. J. App. Pharm., 2018, 10(5), 60-65.
[http://dx.doi.org/10.22159/ijap.2018v10i5.26375]
[39]
Davidson, W.S.; Sparks, D.L.; Lund-Katz, S.; Phillips, M.C. The molecular basis for the difference in charge between pre-beta- and alpha-migrating high density lipoproteins. J. Biol. Chem., 1994, 269(12), 8959-8965.
[http://dx.doi.org/10.1016/S0021-9258(17)37061-8] [PMID: 8132633]
[40]
Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett., 2018, 13(1), 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[41]
Kaur, I.P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control. Release, 2008, 127(2), 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[42]
Büyükköroğlu, G.; Şenel, B.; Gezgin, S.; Dinh, T. The simultaneous delivery of paclitaxel and Herceptin® using solid lipid nanoparticles: in vitro evaluation. J. Drug Deliv. Sci. Technol., 2016, 35, 98-105.
[http://dx.doi.org/10.1016/j.jddst.2016.06.010]
[43]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - A Review (Part 2). Trop. J. Pharm. Res., 2013, 12(2), 265-273.
[44]
Truong, N.P.; Whittaker, M.R.; Mak, C.W.; Davis, T.P. The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Deliv., 2015, 12(1), 129-142.
[http://dx.doi.org/10.1517/17425247.2014.950564] [PMID: 25138827]
[45]
Hall, J.B.; Dobrovolskaia, M.A.; Patri, A.K.; McNeil, S.E. Characterization of nanoparticles for therapeutics. Nanomedicine, 2007, 2(6), 789-803.
[http://dx.doi.org/10.2217/17435889.2.6.789] [PMID: 18095846]
[46]
Bugnicourt, L.; Alcouffe, P.; Ladavière, C. Elaboration of chitosan nanoparticles: Favorable impact of a mild thermal treatment to obtain finely divided, spherical, and colloidally stable objects. Colloids Surf. A Physicochem. Eng. Asp., 2014, 457(1), 476-486.
[http://dx.doi.org/10.1016/j.colsurfa.2014.06.029]
[47]
Castro, G.R.; Fielding, C.J. Early incorporation of cell-derived cholesterol into pre-.beta.-migrating high-density lipoprotein. Biochemistry, 1988, 27(1), 25-29.
[http://dx.doi.org/10.1021/bi00401a005] [PMID: 3126809]
[48]
Conlon, D.R.; Blankstein, L.A.; Pasakarnis, P.A.; Steinberg, C.M.; D’Amelio, J.E. Quantitative determination of high-density lipoprotein cholesterol by agarose gel electrophoresis. Clin. Chem., 1979, 25(11), 1965-1969.
[http://dx.doi.org/10.1093/clinchem/25.11.1965] [PMID: 227621]
[49]
Nauck, M.; Winkler, K.; März, W.; Wieland, H. Quantitative determination of high-, low-, and very-low-density lipoproteins and lipoprotein(a) by agarose gel electrophoresis and enzymatic cholesterol staining. Clin. Chem., 1995, 41(12), 1761-1767.
[http://dx.doi.org/10.1093/clinchem/41.12.1761] [PMID: 7497617]
[50]
Leavell, M.D.; Novak, P.; Behrens, C.R.; Schoeniger, J.S.; Kruppa, G.H. Strategy for selective chemical cross-linking of tyrosine and lysine residues. J Am Soc Mass Spectrom, 2004, 15(11), 1604-1611.
[http://dx.doi.org/10.1016/j.jasms.2004.07.018]
[51]
Melchior, J.T.; Walker, R.G.; Cooke, A.L.; Morris, J.; Castleberry, M.; Thompson, T.B.; Jones, M.K.; Song, H.D.; Rye, K.A.; Oda, M.N.; Sorci-Thomas, M.G.; Thomas, M.J.; Heinecke, J.W.; Mei, X.; Atkinson, D.; Segrest, J.P.; Lund-Katz, S.; Phillips, M.C.; Davidson, W.S. A consensus model of human apolipoprotein A-I in its monomeric and lipid-free state. Nat. Struct. Mol. Biol., 2017, 24(12), 1093-1099.
[http://dx.doi.org/10.1038/nsmb.3501] [PMID: 29131142]
[52]
Büyükköröglu, G.; Yazan, E.Y.; Öner, A.F. Preparation and physicochemical characterizations of solid lipid nanoparticles containing DOTAPR ® for DNA delivery. Turk. J. Chem., 2015, 39(5), 1012-1024.
[http://dx.doi.org/10.3906/kim-1412-40]
[53]
Abdul Ghafoor Raja, M.; Katas, H.; Jing Wen, T Stability, intracellular delivery, and release of siRNA from chitosan nanoparticles using different cross-linkers. PLoS One, 2015, 10(6), e0128963.
[http://dx.doi.org/10.1371/journal.pone.0128963] [PMID: 26068222]
[54]
Katas, H.; Alpar, H. O. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release, 2006, 115(2), 216-225.55.
[55]
Mao, S.; Sun, W.; Kissel, T. Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev., 2010, 62(1), 12-27.
[http://dx.doi.org/10.1016/j.addr.2009.08.004] [PMID: 19796660]
[56]
Foged, C.; Brodin, B.; Frokjaer, S.; Sundblad, A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm., 2005, 298(2), 315-322.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.035] [PMID: 15961266]
[57]
Yue, Z.G.; Wei, W.; Lv, P.P.; Yue, H.; Wang, L.Y.; Su, Z.G.; Ma, G.H. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules, 2011, 12(7), 2440-2446.
[http://dx.doi.org/10.1021/bm101482r] [PMID: 21657799]
[58]
An, D.; Yu, X.; Jiang, L.; Wang, R.; He, P.; Chen, N.; Guo, X.; Li, X.; Feng, M. Reversal of multidrug resistance by apolipoprotein A1-modified doxorubicin liposome for breast cancer treatment. Molecules, 2021, 26(5), 1280.
[http://dx.doi.org/10.3390/molecules26051280] [PMID: 33652957]
[59]
Röhrl, C.; Stangl, H. HDL endocytosis and resecretion. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2013, 1831(11), 1626-1633.
[http://dx.doi.org/10.1016/j.bbalip.2013.07.014] [PMID: 23939397]
[60]
Goldstein, J.L.; Brown, M.S.; Anderson, R.G.W.; Russell, D.W.; Schneider, W.J. Receptor-mediated endocytosis: Concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol., 1985, 1(1), 1-39.
[http://dx.doi.org/10.1146/annurev.cb.01.110185.000245] [PMID: 2881559]
[61]
Choi, S.; Park, S.Y.; Jeong, J.; Cho, E.; Phark, S.; Lee, M.; Kwak, D.; Lim, J.Y.; Jung, W.W.; Sul, D. Identification of toxicological biomarkers of di(2-ethylhexyl) phthalate in proteins secreted by HepG2 cells using proteomic analysis. Proteomics, 2010, 10(9), 1831-1846.
[http://dx.doi.org/10.1002/pmic.200900674] [PMID: 20198640]
[62]
Farid, M.M.; Hathout, R.M.; Fawzy, M.; Abou-Aisha, K. Silencing of the scavenger receptor (Class B – Type 1) gene using siRNA-loaded chitosan nanaoparticles in a HepG2 cell model. Colloids Surf. B Biointerfaces, 2014, 123, 930-937.
[http://dx.doi.org/10.1016/j.colsurfb.2014.10.045] [PMID: 25466457]
[63]
Du, X.; Fu, X.; Yao, K.; Lan, Z.; Xu, H.; Cui, Q.; Yang, E. Bcl-2 delays cell cycle through mitochondrial ATP and ROS. Cell Cycle, 2017, 16(7), 707-713.
[http://dx.doi.org/10.1080/15384101.2017.1295182] [PMID: 28278051]
[64]
Qi, L.; Xu, Z. In vivo antitumor activity of chitosan nanoparticles. Bioorg. Med. Chem. Lett., 2006, 16(16), 4243-4245.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.078] [PMID: 16759859]

© 2024 Bentham Science Publishers | Privacy Policy