Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

From Allenes to Spirobifluorenes: On the Way to Device-compatible Chiroptical Systems

Author(s): Ani Ozcelik, Raquel Pereira-Cameselle* and José Lorenzo Alonso-Gómez*

Volume 24, Issue 23, 2020

Page: [2737 - 2754] Pages: 18

DOI: 10.2174/1385272824999201013164534

Price: $65

Abstract

The last decade has seen a huge growth in the construction of chiral systems to expand the scope of chiroptical applications. Dependence of chiroptical response on molecular conformation typically leads to low chiroptical intensities of chiral systems that feature several conformations in solution. In this respect, allenes were employed for the preparation of open and cyclic oligomers as well as molecular cages, presenting remarkable chiroptical responses in solution. Their molecular chirality was also transferred to metal surfaces, yet photoisomerization of allenes limited their further exploration. In search of a more robust chiral axis, theoretical and experimental studies confirmed that spirobifluorenes could give rise to stable systems with tailored optical and chiroptical properties. Additionally, incorporating a conformational lock into spirobifluorene cyclic architectures served as an efficient strategy towards the generation of distinct helical molecular orbitals. This review article outlines our results on developing device-compatible chiroptical systems through axially chiral allenes and spirobifluorenes. The contribution from other research groups is presented briefly.

Keywords: Chiroptical systems, chiroptical responses, axial chirality, allenes, spirobifluorenes, applications.

Graphical Abstract
[1]
Gerlach, H. Chirality: a relational geometric-physical property. Chirality, 2013, 25(11), 684-685.
[http://dx.doi.org/10.1002/chir.22216] [PMID: 23966341]
[2]
Ernst, K.H.; Ernst, K.H. Molecular chirality at surfaces. Surf. Interface Sci., 2016, 249(11), 695-748.
[http://dx.doi.org/10.1002/9783527680580.ch42]
[3]
Inaki, M.; Liu, J.; Matsuno, K. Cell chirality: its origin and roles in left-right asymmetric development. Philos. Trans. R. Soc. B Biol. Sci., 1710, 2016(371), 1-9.
[http://dx.doi.org/10.1098/rstb.2015.0403]
[4]
Ali, I.; Wani, A.W.; Saleem, K.; Haque, A. Thalidomide. A banned drug resurged into future anticancer drug. Curr. Drug Ther., 2012, 7(1), 13-23.
[http://dx.doi.org/10.2174/157488512800389164]
[5]
Serafini, M.; Cargnin, S.; Massarotti, A.; Pirali, T.; Genazzani, A.A. Essential medicinal chemistry of essential medicines. J. Med. Chem., 2020, 63(18), 10170-10187.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00415] [PMID: 32352778]
[6]
De Carvalho, C.C.C.R.; Da Fonseca, M.M.R. Carvone: why and how should one bother to produce this terpene. Food Chem., 2006, 95(3), 413-422.
[http://dx.doi.org/10.1016/j.foodchem.2005.01.003]
[7]
Engel, K-H. Chirality: an important phenomenon regarding biosynthesis, perception, and authenticity of flavor compounds. J. Agric. Food Chem., 2020, 68(38), 10265-10274.
[http://dx.doi.org/10.1021/acs.jafc.0c01512] [PMID: 32223150]
[8]
Polavarapu, P.L. Renaissance in chiroptical spectroscopic methods for molecular structure determination. Chem. Rec., 2007, 7(2), 125-136.
[http://dx.doi.org/10.1002/tcr.20117] [PMID: 17394174]
[9]
Polavarapu, P.L. Molecular structure determination using chiroptical spectroscopy: where we may go wrong? Chirality, 2012, 24(11), 909-920.
[http://dx.doi.org/10.1002/chir.22015] [PMID: 22544541]
[10]
Johnson, J.L.; Raghavan, V.; Cimmino, A.; Moeini, A.; Petrovic, A.G.; Santoro, E.; Superchi, S.; Berova, N.; Evidente, A.; Polavarapu, P.L. Absolute configurations of chiral molecules with multiple stereogenic centers without prior knowledge of the relative configurations: a case study of inuloxin C. Chirality, 2018, 30(11), 1206-1214.
[http://dx.doi.org/10.1002/chir.23013] [PMID: 30199113]
[11]
Senthilkumar, K.; Kondratowicz, M.; Lis, T.; Chmielewski, P.J.; Cybińska, J.; Zafra, J.L.; Casado, J.; Vives, T.; Crassous, J.; Favereau, L.; Stępień, M. Lemniscular [16]cycloparaphenylene: a radially conjugated figure-eight aromatic molecule. J. Am. Chem. Soc., 2019, 141(18), 7421-7427.
[http://dx.doi.org/10.1021/jacs.9b01797] [PMID: 30998349]
[12]
Kosaka, T.; Iwai, S.; Inoue, Y.; Moriuchi, T.; Mori, T. Solvent and temperature effects on dynamics and chiroptical properties of propeller chirality and toroidal interaction of hexaarylbenzenes. J. Phys. Chem. A, 2018, 122(37), 7455-7463.
[http://dx.doi.org/10.1021/acs.jpca.8b06535] [PMID: 30102034]
[13]
Wu, H.; Zhou, Y.; Yin, L.; Hang, C.; Li, X.; Ågren, H.; Yi, T.; Zhang, Q.; Zhu, L. Helical self-assembly-induced singlet-triplet emissive switching in a mechanically sensitive system. J. Am. Chem. Soc., 2017, 139(2), 785-791.
[http://dx.doi.org/10.1021/jacs.6b10550] [PMID: 28027639]
[14]
Sofikitis, D.; Bougas, L.; Katsoprinakis, G.E.; Spiliotis, A.K.; Loppinet, B.; Rakitzis, T.P. Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry. Nature, 2014, 514(7520), 76-79.
[http://dx.doi.org/10.1038/nature13680] [PMID: 25209661]
[15]
Lu, W.; Yang, H.; Li, X.; Wang, C.; Zhan, X.; Qi, D.; Bian, Y.; Jiang, J. Chiral discrimination of diamines by a binaphthalene-bridged porphyrin dimer. Inorg. Chem., 2017, 56(14), 8223-8231.
[http://dx.doi.org/10.1021/acs.inorgchem.7b00920] [PMID: 28648063]
[16]
Zhang, S.; Liu, X.; Li, C.; Li, L.; Song, J.; Shi, J.; Morton, M.; Rajca, S.; Rajca, A.; Wang, H. Thiophene-based double helices: syntheses, X-ray structures, and chiroptical properties. J. Am. Chem. Soc., 2016, 138(31), 10002-10010.
[http://dx.doi.org/10.1021/jacs.6b05709] [PMID: 27440376]
[17]
Chen, Y.; Gao, J.; Yang, X. Chiral grayscale imaging with plasmonic metasurfaces of stepped nanoapertures. Adv. Opt. Mater., 2019, 7(6), 1801467-1801474.
[http://dx.doi.org/10.1002/adom.201801467]
[18]
Testa, B. Organic stereochemistry. Part 2: stereoisomerism resulting from one or several stereogenic centers. Helv. Chim. Acta, 2013, 96(2), 159-188.
[http://dx.doi.org/10.1002/hlca.201200470]
[19]
Testa, B. Organic stereochemistry. Part 3. Other stereogenic elements: axes of chirality, planes of chirality, helicity, and (E,Z)-diastereoisomerism. Helv. Chim. Acta, 2013, 96(3), 351-374.
[http://dx.doi.org/10.1002/hlca.201200471]
[20]
Moss, G.P.; Smith, P.A.S.; Tavernier, D. Glossary of class names of organic compounds and reactive intermediates based on structure (IUPAC recommendations 1995). Pure Appl. Chem., 1995, 67(8-9), 1307-1375.
[http://dx.doi.org/10.1351/pac199567081307]
[21]
van’t Hoff, J.H. La Chimie dans L’espace; Bazemdijk, P.M., Ed.; University of California: Rotterdam, 1875.
[22]
Maitland, P.; Mills, W.H. Experimental demonstration of the allene asymmetry. Nature, 1935, 135(3424), 994.
[http://dx.doi.org/10.1038/135994a0]]
[23]
Kim, H.Y.; Li, J.Y.; Oh, K. Studies on elimination pathways of β-halovinyl ketones leading to allenyl and propargyl ketones and furans under the action of mild bases. J. Org. Chem., 2012, 77(24), 11132-11145.
[http://dx.doi.org/10.1021/jo302253c] [PMID: 23198987]
[24]
Yao, Y.; Zhu, G.; Chen, Q.; Qian, H.; Ma, S. Efficient synthesis of tetrasubstituted 2,3-allenoates and preliminary studies on bioactivities. Org. Chem. Front., 2019, 6(3), 304-308.
[http://dx.doi.org/10.1039/C8QO01202D]
[25]
Ding, R.; Lu, R.; Fang, Z.; Liu, Y.; Wang, S.; Liang, X.; Zhang, C.; Huang, T.; Hu, J. Synthesis of 4,5-dihydropyrazoles via palladium-catalyzed cyclization reactions of β,γ-unsaturated hydrazones with aryl iodides. Organometallics, 2019, 38(24), 4561-4564.
[http://dx.doi.org/10.1021/acs.organomet.9b00656]
[26]
Wang, Y.; Burton, D.J. Site-specific preparation of 2-carboalkoxy-4-substituted naphthalenes and 9-alkylphenanthrenes and evidence for an allene intermediate in the novel base-catalyzed cyclization of 2-alkynylbiphenyls. Org. Lett., 2006, 8(23), 5295-5298.
[http://dx.doi.org/10.1021/ol0620850] [PMID: 17078701]
[27]
Krause, N.; Hoffmann-Rder, A. Allenic natural products and pharmaceuticals.In: Modern Allene Chemistry; Wiley-VCH Verlag GmbH: Weinheim, 2008, pp. 997-1040.
[28]
Livingston, R.C.; Cox, L.R.; Gramlich, V.; Diederich, F. 1,3-Diethynyl-allenes: new modules for three-dimensional acetylenic scaffolding. Angew. Chem. Int. Ed., 2001, 40(12), 2334-2337.
[http://dx.doi.org/10.1002/1521-3773(20010618)40:12<2334:AID-ANIE2334>3.0.CO;2-7]
[29]
Livingston, R.; Cox, L.R.; Odermatt, S.; Diederich, F. 1,3-Diethynylallenes: carbon-rich modules for three-dimensional acetylenic scaffolding. Helv. Chim. Acta, 2002, 85(10), 3052-3077.
[http://dx.doi.org/10.1002/1522-2675(200210)85:10<3052:AID-HLCA3052>3.0.CO;2-4]
[30]
Odermatt, S.; Alonso-Gómez, J.L.; Seiler, P.; Cid, M.M.; Diederich, F. Shape-persistent chiral alleno-acetylenic macrocycles and cyclophanes by acetylenic scaffolding with 1,3-diethynylallenes. Angew. Chem. Int. Ed. Engl., 2005, 44(32), 5074-5078.
[http://dx.doi.org/10.1002/anie.200501621] [PMID: 16035028]
[31]
ter Wiel, M.K.J.; Odermatt, S.; Schanen, P.; Seiler, P.; Diederich, F. 1,3-Diethynylallenes: stable monomers, length-defined oligomers, asymmetric synthesis, and optical resolution. Eur. J. Org. Chem., 2007, 2007(21), 3449-3462.
[http://dx.doi.org/10.1002/ejoc.200700373]
[32]
Guichard, G.; Huc, I. Synthetic foldamers. Chem. Commun. (Camb.), 2011, 47(21), 5933-5941.
[http://dx.doi.org/10.1039/c1cc11137j] [PMID: 21483969]
[33]
John, E.A.; Massena, C.J.; Berryman, O.B. Helical anion foldamers in solution. Chem. Rev., 2020, 120(5), 2759-2782.
[http://dx.doi.org/10.1021/acs.chemrev.9b00583] [PMID: 32039583]
[34]
Mateus, P.; Wicher, B.; Ferrand, Y.; Huc, I. Alkali and alkaline earth metal ion binding by a foldamer capsule: selective recognition of magnesium hydrate. Chem. Commun. (Camb.), 2017, 53(67), 9300-9303.
[http://dx.doi.org/10.1039/C7CC05422J] [PMID: 28765843]
[35]
Urushibara, K.; Yamada, T.; Yokoyama, A.; Mori, H.; Masu, H.; Azumaya, I.; Kagechika, H.; Yokozawa, T.; Tanatani, A. Development of helical aromatic amide foldamers with a diphenylacetylene backbone. J. Org. Chem., 2020, 85(4), 2019-2039.
[http://dx.doi.org/10.1021/acs.joc.9b02758] [PMID: 31902203]
[36]
Hay, A.S. Oxidative coupling of acetylenes. J. Org. Chem., 1960, 25(7), 1275-1276.
[http://dx.doi.org/10.1021/jo01077a633]
[37]
Rivera-Fuentes, P.; Alonso-Gómez, J.L.; Petrovic, A.G.; Santoro, F.; Harada, N.; Berova, N.; Diederich, F. Amplification of chirality in monodisperse, enantiopure alleno-acetylenic oligomers. Angew. Chem. Int. Ed. Engl., 2010, 49(12), 2247-2250.
[http://dx.doi.org/10.1002/anie.200906191] [PMID: 20108291]
[38]
Donckele, E.J.; Gidron, O.; Trapp, N.; Diederich, F. Outstanding chiroptical properties: a signature of enantiomerically pure alleno-acetylenic macrocycles and monodisperse acyclic oligomers. Chemistry, 2014, 20(31), 9558-9566.
[http://dx.doi.org/10.1002/chem.201402758] [PMID: 25043446]
[39]
Alonso-Gómez, J.L.; Rivera-Fuentes, P.; Harada, N.; Berova, N.; Diederich, F. An enantiomerically pure alleno-acetylenic macrocycle: synthesis and rationalization of its outstanding chiroptical response. Angew. Chem. Int. Ed. Engl., 2009, 48(30), 5545-5548.
[http://dx.doi.org/10.1002/anie.200901240] [PMID: 19533690]
[40]
Eglinton, G.; Galbraith, A.R. Macrocyclic acetylenic compounds. Part I. Cyclotetradeca-1:3-diyne and related compounds. J. Chem. Soc., 1959, 1959, 889-896.
[http://dx.doi.org/10.1039/jr9590000889]
[41]
Rivera-Fuentes, P.; Alonso-Gómez, J.L.; Petrovic, A.G.; Seiler, P.; Santoro, F.; Harada, N.; Berova, N.; Rzepa, H.S.; Diederich, F. Enantiomerically pure alleno-acetylenic macrocycles: synthesis, solid-state structures, chiroptical properties, and electron localization function analysis. Chemistry, 2010, 16(32), 9796-9807.
[http://dx.doi.org/10.1002/chem.201001087] [PMID: 20680946]
[42]
Rivera-Fuentes, P.; Nieto-Ortega, B.; Schweizer, W.B.; Navarrete, J.T.L.; Casado, J.; Diederich, F. Enantiopure, monodisperse alleno-acetylenic cyclooligomers: effect of symmetry and conformational flexibility on the chiroptical properties of carbon-rich compounds. Chemistry, 2011, 17(14), 3876-3885.
[http://dx.doi.org/10.1002/chem.201100131] [PMID: 21416492]
[43]
Tzirakis, M.D.; Marion, N.; Schweizer, W.B.; Diederich, F. A shape-persistent alleno-acetylenic macrocycle with a modifiable periphery: synthesis, chiroptical properties and H-bond-driven self-assembly into a homochiral columnar structure. Chem. Commun. (Camb.), 2013, 49(69), 7605-7607.
[http://dx.doi.org/10.1039/c3cc44101f] [PMID: 23877247]
[44]
Tzirakis, M.D.; Alberti, M.N.; Weissman, H.; Rybtchinski, B.; Diederich, F. Enantiopure laterally functionalized alleno-acetylenic macrocycles: synthesis, chiroptical properties, and self-assembly in aqueous media. Chemistry, 2014, 20(49), 16070-16073.
[http://dx.doi.org/10.1002/chem.201404941] [PMID: 25346432]
[45]
Thorand, S.; Vögtle, F.; Krause, N. Synthesis of the first [34]allenophane: 1,3,10,12,19,21,28,30-octamethyl[3.3.3.3]paracyclophan-1,2,10,11,19,20,28,29-octaene. Angew. Chem. Int. Ed., 1999, 38(24), 3721-3723.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3721:AID-ANIE3721>3.0.CO;2-9]
[46]
Clay, M.D.; Fallis, A.G. Acetylenic allenophanes: an asymmetric synthesis of a bis(alleno)-bis(butadiynyl)-meta-cyclophane. Angew. Chem. Int. Ed. Engl., 2005, 44(26), 4039-4042.
[http://dx.doi.org/10.1002/anie.200500484] [PMID: 15906404]
[47]
Alonso-Gómez, J.L.; Navarro-Vázquez, A.; Cid, M.M. Chiral (2,5)-pyrido[74]allenoacetylenic cyclophanes: synthesis and characterization. Chemistry, 2009, 15(26), 6495-6503.
[http://dx.doi.org/10.1002/chem.200900316] [PMID: 19466730]
[48]
Lahoz, I.R.; Navarro-Vázquez, A.; Alonso-Gómez, J.L.; Cid, M.M. Acetylenic homocoupling methodology towards the synthesis of 1,3-butadiynyl macrocycles: [142]-alleno-acetylenic cyclophanes. Eur. J. Org. Chem., 2014, 2014(9), 1915-1924.
[http://dx.doi.org/10.1002/ejoc.201301701]
[49]
Castro-Fernández, S.; Lahoz, I.R.R.; Llamas-Saiz, A.L.L.; Alonso-Gómez, J.L.L.; Cid, M-M.M.; Navarro-Vázquez, A. Preparation and characterization of a halogen-bonded shape-persistent chiral alleno-acetylenic inclusion complex. Org. Lett., 2014, 16(4), 1136-1139.
[http://dx.doi.org/10.1021/ol403778f] [PMID: 24512516]
[50]
O’Krongly, D.; Denmeade, S.R.; Chiang, M.Y.; Breslow, R. Efficient triple coupling reaction to produce a self-adjusting molecular cage. J. Am. Chem. Soc., 1985, 107(19), 5544-5545.
[http://dx.doi.org/10.1021/ja00305a047]
[51]
Padula, D.; Lahoz, I.R.; Díaz, C.; Hernández, F.E.; Di Bari, L.; Rizzo, A.; Santoro, F.; Cid, M.M. A combined experimental-computational investigation to uncover the puzzling (chiro-)optical response of pyridocyclophanes: one- and two-photon spectra. Chemistry, 2015, 21(34), 12136-12147.
[http://dx.doi.org/10.1002/chem.201500557] [PMID: 26178401]
[52]
Castro-Fernández, S.; Álvarez-García, J.; García-Río, L.; Silva-López, C.; Cid, M.M. Double protonation of a cis-bipyridoallenophane detected via chiral-sensing switch: the role of ion pairs. Org. Lett., 2019, 21(15), 5898-5902.
[http://dx.doi.org/10.1021/acs.orglett.9b02024] [PMID: 31329450]
[53]
Míguez-Lago, S.; Llamas-Saiz, A.L.; Magdalena Cid, M.; Alonso-Gómez, J.L. A Covalent organic helical cage with remarkable chiroptical amplification. Chemistry, 2015, 21(50), 18085-18088.
[http://dx.doi.org/10.1002/chem.201503994] [PMID: 26449173]
[54]
Míguez-Lago, S.; Cid, M.M.; Alonso-Gómez, J.L.L. Covalent organic helical cages as sandwich compound containers. Eur. J. Org. Chem., 2016, 2016(34), 5716-5721.
[http://dx.doi.org/10.1002/ejoc.201600997]
[55]
Gidron, O.; Ebert, M-O.; Trapp, N.; Diederich, F. Chiroptical detection of nonchromophoric, achiral guests by enantiopure alleno-acetylenic helicages. Angew. Chem. Int. Ed. Engl., 2014, 53(49), 13614-13618.
[http://dx.doi.org/10.1002/anie.201406585] [PMID: 25384621]
[56]
Gidron, O.; Jirásek, M.; Trapp, N.; Ebert, M.O.; Zhang, X.; Diederich, F. Homochiral [2]catenane and bis[2]catenane from alleno-acetylenic helicates - a highly selective narcissistic self-sorting process. J. Am. Chem. Soc., 2015, 137(39), 12502-12505.
[http://dx.doi.org/10.1021/jacs.5b08649] [PMID: 26380872]
[57]
Gidron, O.; Jirásek, M.; Wörle, M.; Diederich, F. Enantiopure alleno-acetylenic helicages containing multiple binding sites. Chemistry, 2016, 22(45), 16172-16177.
[http://dx.doi.org/10.1002/chem.201603923] [PMID: 27723155]
[58]
Gropp, C.; Trapp, N.; Diederich, F. Alleno-Acetylenic Cage (AAC) Receptors: chiroptical switching and enantioselective complexation of trans-1,2-dimethylcyclohexane in a diaxial conformation. Angew. Chem. Int. Ed. Engl., 2016, 55(46), 14444-14449.
[http://dx.doi.org/10.1002/anie.201607681] [PMID: 27739233]
[59]
Gropp, C.; Husch, T.; Trapp, N.; Reiher, M.; Diederich, F. Dispersion and halogen-bonding interactions: binding of the axial conformers of monohalo- and (±)-trans-1,2-dihalocyclohexanes in enantiopure alleno-acetylenic cages. J. Am. Chem. Soc., 2017, 139(35), 12190-12200.
[http://dx.doi.org/10.1021/jacs.7b05461] [PMID: 28809485]
[60]
Gropp, C.; Fischer, S.; Husch, T.; Trapp, N.; Carreira, E.M.; Diederich, F. Molecular recognition and cocrystallization of methylated and halogenated fragments of Danicalipin A by enantiopure alleno-acetylenic cage receptors. J. Am. Chem. Soc., 2020, 142(10), 4749-4755.
[http://dx.doi.org/10.1021/jacs.9b13217] [PMID: 32114766]
[61]
Guo, Z.; De Cat, I.; Van Averbeke, B.; Lin, J.; Wang, G.; Xu, H.; Lazzaroni, R.; Beljonne, D.; Schenning, A.P.H.J.; De Feyter, S. Affecting surface chirality via multicomponent adsorption of chiral and achiral molecules. Chem. Commun. (Camb.), 2014, 50(80), 11903-11906.
[http://dx.doi.org/10.1039/C4CC04393F] [PMID: 25154626]
[62]
Dong, Y.; Goubert, G.; Groves, M.N.; Lemay, J.C.; Hammer, B.; McBreen, P.H. Structure and dynamics of individual diastereomeric complexes on platinum: surface studies related to heterogeneous enantioselective catalysis. Acc. Chem. Res., 2017, 50(5), 1163-1170.
[http://dx.doi.org/10.1021/acs.accounts.6b00516] [PMID: 28418642]
[63]
Yi, Y.; Zhang, D.; Ma, Y.; Wu, X.; Zhu, G. Dual-signal electrochemical enantiospecific recognition system via competitive supramolecular host-guest interactions: the case of phenylalanine. Anal. Chem., 2019, 91(4), 2908-2915.
[http://dx.doi.org/10.1021/acs.analchem.8b05047] [PMID: 30650964]
[64]
Yokoyama, A.; Saiki, T.; Masu, H.; Azumaya, I.; Yokozawa, T. Effect of the α-substituted chiral side chain on the helical conformation of N-substituted poly(p-benzamide). Polymer (Guildf.), 2018, 134, 175-180.
[http://dx.doi.org/10.1016/j.polymer.2017.11.066]
[65]
Zhang, Y.Q.; Öner, M.A.; Lahoz, I.R.; Cirera, B.; Palma, C.A.; Castro-Fernández, S.; Míguez-Lago, S.; Cid, M.M.; Barth, J.V.; Alonso-Gómez, J.L.; Klappenberger, F. Morphological self-assembly of enantiopure allenes for upstanding chiral architectures at interfaces. Chem. Commun. (Camb.), 2014, 50(95), 15022-15025.
[http://dx.doi.org/10.1039/C4CC06398H] [PMID: 25327567]
[66]
Mandler, D.; Kraus-Ophir, S. Self-assembled monolayers (SAMs) for electrochemical sensing. J. Solid State Electrochem., 2011, 15, 1-24.
[http://dx.doi.org/10.1007/s10008-011-1493-6]
[67]
Vericat, C.; Vela, M.E.; Corthey, G.; Pensa, E.; Cortés, E.; Fonticelli, M.H.; Ibañez, F.; Benitez, G.E.; Carro, P.; Salvarezza, R.C. Self-assembled monolayers of thiolates on metals: a review article on sulfur-metal chemistry and surface structures. RSC Adv., 2014, 4(53), 27730-27754.
[http://dx.doi.org/10.1039/C4RA04659E]
[68]
Casalini, S.; Bortolotti, C.A.; Leonardi, F.; Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev., 2017, 46(1), 40-71.
[http://dx.doi.org/10.1039/C6CS00509H] [PMID: 27722675]
[69]
Ozcelik, A.; Pereira-Cameselle, R.; von Weber, A.; Paszkiewicz, M.; Carlotti, M.; Paintner, T.; Zhang, L.; Lin, T.; Zhang, Y.Q.; Barth, J.V.; van den Nobelen, T.; Chiechi, R.C.; Jakob, M.; Heiz, U.; Chiussi, S.; Kartouzian, A.; Klappenberger, F.; Alonso-Gómez, J.L. Device-compatible chiroptical surfaces through self-assembly of enantiopure allenes. Langmuir, 2018, 34(15), 4548-4553.
[http://dx.doi.org/10.1021/acs.langmuir.8b00305] [PMID: 29551068]
[70]
Sander, F.; Hermes, J.P.; Mayor, M.; Hamoudi, H.; Zharnikov, M. Add a third hook: S-acetyl protected oligophenylene pyridine dithiols as advanced precursors for self-assembled monolayers. Phys. Chem. Chem. Phys., 2013, 15(8), 2836-2846.
[http://dx.doi.org/10.1039/c2cp43564k] [PMID: 23337896]
[71]
Kartouzian, A.; Heister, P.; Thämer, M.; Gerlach, S.; Heiz, U. In-line reference measurement for surface second harmonic generation spectroscopy. J. Opt. Soc. Am. B, 2013, 30(3), 541-548.
[http://dx.doi.org/10.1364/JOSAB.30.000541]
[72]
Saragi, T.P.I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Spiro compounds for organic optoelectronics. Chem. Rev., 2007, 107(4), 1011-1065.
[http://dx.doi.org/10.1021/cr0501341] [PMID: 17381160]
[73]
Valášek, M.; Edelmann, K.; Gerhard, L.; Fuhr, O.; Lukas, M.; Mayor, M. Synthesis of molecular tripods based on a rigid 9,9′-spirobifluorene scaffold. J. Org. Chem., 2014, 79(16), 7342-7357.
[http://dx.doi.org/10.1021/jo501029t] [PMID: 25025826]
[74]
Sicard, L.; Quinton, C.; Peltier, J.D.; Tondelier, D.; Geffroy, B.; Biapo, U.; Métivier, R.; Jeannin, O.; Rault-Berthelot, J.; Poriel, C. Spirobifluorene regioisomerism: a structure-property relationship study. Chemistry, 2017, 23(32), 7719-7727.
[http://dx.doi.org/10.1002/chem.201700570] [PMID: 28382739]
[75]
Wang, Q.; Lucas, F.; Quinton, C.; Qu, Y.K.; Rault-Berthelot, J.; Jeannin, O.; Yang, S.Y.; Kong, F.C.; Kumar, S.; Liao, L.S.; Poriel, C.; Jiang, Z.Q. Evolution of pure hydrocarbon hosts: simpler structure, higher performance and universal application in RGB phosphorescent organic light-emitting diodes. Chem. Sci. (Camb.), 2020, 11(19), 4887-4894.
[http://dx.doi.org/10.1039/D0SC01238F]
[76]
Becker, D.; Konnertz, N.; Böhning, M.; Schmidt, J.; Thomas, A. Light-switchable polymers of intrinsic microporosity. Chem. Mater., 2016, 28(23), 8523-8529.
[http://dx.doi.org/10.1021/acs.chemmater.6b02619]
[77]
Poriel, C.; Rault-Berthelot, J. Structure-property relationship of 4-substi-tuted-spirobifluorenes as hosts for phosphorescent organic light emitting diodes: an overview. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(16), 3869-3897.
[http://dx.doi.org/10.1039/C7TC00746A]
[78]
Ziessel, R.; Alamiry, M.A.H.; Elliott, K.J.; Harriman, A. Exploring the limits of Förster theory for energy transfer at a separation of 20 A. Angew. Chem. Int. Ed. Engl., 2009, 48(15), 2772-2776.
[http://dx.doi.org/10.1002/anie.200900188] [PMID: 19288505]
[79]
Ventura, B.; Barbieri, A.; Degli Esposti, A.; Seneclauze, J.B.; Ziessel, R. Spirobifluorene bridged Ir(III) and Os(II) polypyridyl arrays: synthesis, photophysical characterization, and energy transfer dynamics. Inorg. Chem., 2012, 51(5), 2832-2840.
[http://dx.doi.org/10.1021/ic201903g] [PMID: 22356478]
[80]
Hovorka, R.; Meyer-Eppler, G.; Piehler, T.; Hytteballe, S.; Engeser, M.; Topić, F.; Rissanen, K.; Lützen, A. Unexpected self-assembly of a homochiral metallosupramolecular M4L4 catenane. Chemistry, 2014, 20(41), 13253-13258.
[http://dx.doi.org/10.1002/chem.201403414] [PMID: 25154609]
[81]
Castro-Fernández, S.; Cid, M.M.; López, C.S.; Alonso-Gómez, J.L. Opening access to new chiral macrocycles: from allenes to spiranes. J. Phys. Chem. A, 2015, 119(9), 1747-1753.
[http://dx.doi.org/10.1021/jp508414r] [PMID: 25412323]
[82]
Castro-Fernández, S.; Yang, R.; García, A.P.; Garzón, I.L.; Xu, H.; Petrovic, A.G.; Alonso-Gómez, J.L. Diverse chiral scaffolds from diethynylspiranes: all-carbon double helices and flexible shape-persistent macrocycles. Chemistry, 2017, 23(49), 11747-11751.
[http://dx.doi.org/10.1002/chem.201702986] [PMID: 28677214]
[83]
Wu, F.I.; Dodda, R.; Reddy, D.S.; Shu, C.F. Synthesis and characterization of spiro-linked poly(terfluorene): a blue-emitting polymer with controlled conjugated length. J. Mater. Chem., 2002, 12(10), 2893-2897.
[http://dx.doi.org/10.1039/b205334a]
[84]
Chou, C-H.; Reddy, D.S.; Shu, C-F. Synthesis and characterization of spirobifluorene-based polyimides. J. Polym. Sci. A Polym. Chem., 2002, 40(21), 3615-3621.
[http://dx.doi.org/10.1002/pola.10431]
[85]
Chiang, C.L.; Shu, C.F.; Chen, C.T. Improved synthesis of 2,2′-dibromo-9,9′-spirobifluorene and its 2,2′-bisdonor-7,7′-bisacceptor-substituted fluorescent derivatives. Org. Lett., 2005, 7(17), 3717-3720.
[http://dx.doi.org/10.1021/ol0513591] [PMID: 16092858]
[86]
Thiemann, F.; Piehler, T.; Haase, D.; Saak, W.; Lützen, A. Synthesis of enantiomerically pure dissymmetric 2,2′-disubstituted 9,9′-spirobifluorenes. Eur. J. Org. Chem., 2005, 2005(10), 1991-2001.
[http://dx.doi.org/10.1002/ejoc.200400796]
[87]
Muller, P. Glossary of terms used in physical organic chemistry: (IUPAC Recommendations 1994). Pure Appl. Chem., 1994, 66(5), 1077-1184.
[http://dx.doi.org/10.1351/pac199466051077]
[88]
Buda, A.B.; Mislow, K. A Hausdorff chirality measure. J. Am. Chem. Soc., 1992, 114(15), 6006-6012.
[http://dx.doi.org/10.1021/ja00041a016]
[89]
Ozcelik, A.; Aranda, D.; Gil-Guerrero, S.; Pola-Otero, X.A.; Talavera, M.; Wang, L.; Behera, S.K.; Gierschner, J.; Peña-Gallego, Á.; Santoro, F.; Pereira-Cameselle, R.; Alonso Gómez, J.L. Distinct helical molecular orbitals through conformational lock. Chemistry, 2020, 2020, 1.
[http://dx.doi.org/10.1002/chem.202002561] [PMID: 32696530]
[90]
Naaman, R.; Waldeck, D.H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem., 2015, 66(1), 263-281.
[http://dx.doi.org/10.1146/annurev-physchem-040214-121554] [PMID: 25622190]
[91]
Garner, M.H.; Jensen, A.; Hyllested, L.O.H.; Solomon, G.C. Helical orbitals and circular currents in linear carbon wires. Chem. Sci. (Camb.), 2019, 10(17), 4598-4608.
[http://dx.doi.org/10.1039/C8SC05464A] [PMID: 31123570]
[92]
Naaman, R.; Paltiel, Y.; Waldeck, D.H. Chiral molecules and the electron spin. Nat. Rev. Chem., 2019, 3(4), 250-260.
[http://dx.doi.org/10.1038/s41570-019-0087-1]
[93]
Ozcelik, A.; Peña-Gallego, M.L.Á.; Pereira-Cameselle, R.; Alonso-Gómez, J.L. Design and synthesis of chiral spirobifluorenes. Chirality, 2020, 32(4), 464-473.
[http://dx.doi.org/10.1002/chir.23186] [PMID: 32053262]
[94]
Al-Azani, M.; Al-Sulaibi, M.; al Soom, N.; Al Jasem, Y.; Bugenhagen, B.; Al Hindawi, B.; Thiemann, T. The use of BrCCl3-PPh3 in Appel type transformations to esters, O-acyloximes, amides, and acid anhydrides. C. R. Chim., 2016, 19(8), 921-932.
[http://dx.doi.org/10.1016/j.crci.2016.04.004]
[95]
Jurinovich, S.; Pescitelli, G.; Di Bari, L.; Mennucci, B.A. TDDFT/MMPol/PCM model for the simulation of exciton-coupled circular dichroism spectra. Phys. Chem. Chem. Phys., 2014, 16(31), 16407-16418.
[http://dx.doi.org/10.1039/c3cp55428g]]
[96]
Ozcelik, A.; Pereira-Cameselle, R.; Ulrih, N.P.; Petrovic, A.G.; Alonso-Gómez, J.L. Chiroptical sensing: a conceptual introduction. Sensors (Basel), 2020, 20(4), 974-995.
[http://dx.doi.org/10.3390/s20040974] [PMID: 32059394]
[97]
Arias-Coronado, V.C.; Pereira-Cameselle, R.; Ozcelik, A.; Talavera, M.; Peña-Gallego, Á.; Alonso-Gómez, J.L.; Bolaño, S. Spirobifluorene metallaaromatics. Chemistry, 2019, 25(59), 13496-13499.
[http://dx.doi.org/10.1002/chem.201903213] [PMID: 31430403]
[98]
Poriel, C.; Sicard, L.; Rault-Berthelot, J. New generations of spirobifluorene regioisomers for organic electronics: tuning electronic properties with the substitution pattern. Chem. Commun. (Camb.), 2019, 55(95), 14238-14254.
[http://dx.doi.org/10.1039/C9CC07169E] [PMID: 31724667]
[99]
Zhang, W.; Liang, C.; He, Z.; Pang, H.; Wang, Y.; Zhao, S. Stable orange and white electrophosphorescence based on spirobifluorenyltrifluoromethylpyridine iridium complexes. Synth. Met., 2015, 210, 214-222.
[http://dx.doi.org/10.1016/j.synthmet.2015.10.003]
[100]
Talavera, M.; Peña-Gallego, A.; Alonso-Gómez, J.L.; Bolaño, S. Metallaaromatic biaryl atropisomers. Chem. Commun. (Camb.), 2018, 54(78), 10974-10976.
[http://dx.doi.org/10.1039/C8CC06443A] [PMID: 30209448]
[101]
Geuenich, D.; Hess, K.; Köhler, F.; Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev., 2005, 105(10), 3758-3772.
[http://dx.doi.org/10.1021/cr0300901] [PMID: 16218566]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy