Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Novel Anti-tumor Strategy for Breast Cancer: Synergistic Role of Oleuropein with Paclitaxel Therapeutic in MCF-7 Cells

Author(s): Gamze Yılmaz and Filiz Özdemir*

Volume 24, Issue 3, 2024

Published on: 22 November, 2023

Page: [224 - 234] Pages: 11

DOI: 10.2174/0118715206284107231120063630

open access plus

Abstract

Background: The side effects of conventional therapeutics pose a problem for cancer treatment. Recently, combination treatments with natural compounds have attracted attention regarding limiting the side effects of treatment. Oleuropein is a natural polyphenol in olives that has antioxidant and anticancer effects.

Objectives: This study aimed to investigate the oxidative stress effect of a combination of Paclitaxel, a chemotherapeutic agent, and Oleuropein in the MCF-7 cell line.

Methods: The xCELLigence RTCA method was used to determine the cytotoxic effects of Oleuropein and Paclitaxel in the MCF-7 cell line. The Total Oxidant and Total Antioxidant Status were analyzed using a kit. The Oxidative Stress Index was calculated by measuring Total Oxidant and Total Antioxidant states. The levels of superoxide dismutase, reduced glutathione and malondialdehyde, which are oxidative stress markers, were also measured by ELISA assay kit.

Results: As a result of the measurement, IC50 doses of Oleuropein and Paclitaxel were determined as 230 μM and 7.5 μM, respectively. Different percentages of combination ratios were generated from the obtained IC50 values. The effect of oxidative stress was investigated at the combination rates of 10%, 20%, 30%, and 40% which were determined to be synergistic. In terms of the combined use of Oleuropein and Paclitaxel on oxidative stress, antioxidant defense increased, and Oxidative Stress Index levels decreased.

Conclusion: These findings demonstrate that the doses administered to the Oleuropein+Paclitaxel combination group were lower than those administered to groups using one agent alone (e.g. Paclitaxel), the results of which reduce the possibility of administering toxic doses.

Keywords: Oleuropein, paclitaxel, MCF-7 cell line, breast cancer, oxidative stress, antioxidant.

« Previous
Graphical Abstract
[1]
Smolarz, B.; Nowak, A.Z.; Romanowicz, H. Breast cancer—epidemiology, classification, pathogenesis and treatment (Review of Literature). Cancers, 2022, 14(10), 2569.
[http://dx.doi.org/10.3390/cancers14102569] [PMID: 35626173]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Nguyen, L.H.; Goel, A.; Chung, D.C. Pathways of colorectal carcinogenesis. Gastroenterology, 2020, 158(2), 291-302.
[http://dx.doi.org/10.1053/j.gastro.2019.08.059] [PMID: 31622622]
[4]
Peters, J.M.; Gonzalez, F.J. The evolution of carcinogenesis. Toxicol. Sci., 2018, 165(2), 272-276.
[http://dx.doi.org/10.1093/toxsci/kfy184] [PMID: 30629266]
[5]
Agrawal, K.; Asthana, S.; Kumar, D. Role of oxidative stress in metabolic reprogramming of brain cancer. Cancers, 2023, 15(20), 4920.
[http://dx.doi.org/10.3390/cancers15204920] [PMID: 37894287]
[6]
Liu, L.; Hou, Q.; Chen, B.; Lai, X.; Wang, H.; Liu, H.; Wu, L.; Liu, S.; Luo, K.; Liu, J. Identification of molecular subgroups and establishment of risk model based on the response to oxidative stress to predict overall survival of patients with lung adenocarcinoma. Eur. J. Med. Res., 2023, 28(1), 333.
[http://dx.doi.org/10.1186/s40001-023-01290-5] [PMID: 37689745]
[7]
Peña-Oyarzun, D.; Bravo-Sagua, R.; Diaz-Vega, A.; Aleman, L.; Chiong, M.; Garcia, L.; Bambs, C.; Troncoso, R.; Cifuentes, M.; Morselli, E.; Ferreccio, C.; Quest, A.F.G.; Criollo, A.; Lavandero, S. Autophagy and oxidative stress in non-communicable diseases: A matter of the inflammatory state? Free Radic. Biol. Med., 2018, 124, 61-78.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.084] [PMID: 29859344]
[8]
Georgescu, S.R.; Mitran, C.I.; Mitran, M.I.; Caruntu, C.; Sarbu, M.I.; Matei, C.; Nicolae, I.; Tocut, S.M.; Popa, M.I.; Tampa, M. New insights in the pathogenesis of hpv infection and the associated carcinogenic processes: The role of chronic inflammation and oxidative stress. J. Immunol. Res., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/5315816] [PMID: 30225270]
[9]
Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H. LLeonart, M.E. Oxidative stress and cancer: An overview. Ageing Res. Rev., 2013, 12(1), 376-390.
[http://dx.doi.org/10.1016/j.arr.2012.10.004] [PMID: 23123177]
[10]
Azmanova, M.; Pitto-Barry, A. Oxidative stress in cancer therapy: Friend or enemy? ChemBioChem, 2022, 23(10), e202100641.
[http://dx.doi.org/10.1002/cbic.202100641] [PMID: 35015324]
[11]
Moo, T.A.; Sanford, R.; Dang, C.; Morrow, M. Overview of breast cancer therapy. PET Clin., 2018, 13(3), 339-354.
[http://dx.doi.org/10.1016/j.cpet.2018.02.006] [PMID: 30100074]
[12]
Ye, F.; Dewanjee, S.; Li, Y.; Jha, N.K.; Chen, Z-S.; Kumar, A. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol. Cancer, 2023, 22(1), 105.
[http://dx.doi.org/10.1186/s12943-023-01805-y] [PMID: 37415164]
[13]
Pons, D.G.; Nadal-Serrano, M.; Torrens-Mas, M.; Valle, A.; Oliver, J.; Roca, P. UCP2 inhibition sensitizes breast cancer cells to therapeutic agents by increasing oxidative stress. Free Radic. Biol. Med., 2015, 86, 67-77.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.032] [PMID: 25960046]
[14]
Lewis-Wambi, J.S.; Kim, H.R.; Wambi, C.; Patel, R.; Pyle, J.R.; Klein-Szanto, A.J.; Jordan, V.C. Buthionine sulfoximine sensitizes antihormone-resistant human breast cancer cells to estrogen-induced apoptosis. Breast Cancer Res., 2008, 10(6), R104.
[http://dx.doi.org/10.1186/bcr2208] [PMID: 19061505]
[15]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc., 1971, 93(9), 2325-2327.
[http://dx.doi.org/10.1021/ja00738a045] [PMID: 5553076]
[16]
Foley, E.A.; Kapoor, T.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol., 2013, 14(1), 25-37.
[http://dx.doi.org/10.1038/nrm3494] [PMID: 23258294]
[17]
Liao, P.C.; Lieu, C.H. Cell cycle specific induction of apoptosis and necrosis by paclitaxel in the leukemic U937 cells. Life Sci., 2005, 76(14), 1623-1639.
[http://dx.doi.org/10.1016/j.lfs.2004.09.021] [PMID: 15680171]
[18]
Varbiro, G.; Veres, B.; Gallyas, F., Jr; Sumegi, B. Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free Radic. Biol. Med., 2001, 31(4), 548-558.
[http://dx.doi.org/10.1016/S0891-5849(01)00616-5] [PMID: 11498288]
[19]
Yamamoto, Y.; Kawano, I.; Iwase, H. Nab-paclitaxel for the treatment of breast cancer: Efficacy, safety, and approval. OncoTargets Ther., 2011, 4, 123-136.
[http://dx.doi.org/10.2147/OTT.S13836] [PMID: 21792318]
[20]
Vishnu, P.; Roy, V. Safety and efficacy of nab -paclitaxel in the treatment of patients with breast cancer. Breast Cancer, 2011, 5, BCBCR.S5857.
[http://dx.doi.org/10.4137/BCBCR.S5857] [PMID: 21603258]
[21]
Yue, Q.X.; Liu, X.; Guo, D.A. Microtubule-binding natural products for cancer therapy. Planta Med., 2010, 76(11), 1037-1043.
[http://dx.doi.org/10.1055/s-0030-1250073] [PMID: 20577942]
[22]
Li, W.B.; Li, Y.; Yu, C.; He, Y.M. Reversal of multidrug resistance by the chinese medicine yiqi jianpi huaji decoction and the mechanism of action in human gastric cancer SGC7901/VCR cells. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/390812] [PMID: 25705237]
[23]
Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; Serra-Majem, L. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr., 2011, 14(12A), 2274-2284.
[http://dx.doi.org/10.1017/S1368980011002515] [PMID: 22166184]
[24]
García-Segovia, P.; Sánchez-Villegas, A.; Doreste, J.; Santana, F.; Serra-Majem, L. Olive oil consumption and risk of breast cancer in the Canary Islands: A population-based case–control study. Public Health Nutr., 2006, 9(1a), 163-167.
[http://dx.doi.org/10.1079/PHN2005940] [PMID: 16512965]
[25]
La Vecchia, C.; Negri, E.; Franceschi, S.; Decarli, A.; Giacosa, A.; Lipworth, L. Olive oil, other dietary fats, and the risk of breast cancer (Italy). Cancer Causes Control, 1995, 6(6), 545-550.
[http://dx.doi.org/10.1007/BF00054164] [PMID: 8580304]
[26]
de Lorgeril, M.; Salen, P.; Martin, J.L.; Monjaud, I.; Boucher, P.; Mamelle, N. Mediterranean dietary pattern in a randomized trial: Prolonged survival and possible reduced cancer rate. Arch. Intern. Med., 1998, 158(11), 1181-1187.
[http://dx.doi.org/10.1001/archinte.158.11.1181] [PMID: 9625397]
[27]
Nediani, C.; Ruzzolini, J.; Romani, A.; Calorini, L. Oleuropein, a bioactive compound from Olea europaea L., as a potential preventive and therapeutic agent in non-communicable diseases. Antioxidants, 2019, 8(12), 578.
[http://dx.doi.org/10.3390/antiox8120578] [PMID: 31766676]
[28]
Martínez-González, M.A.; Sayón-Orea, C.; Bullón-Vela, V.; Bes-Rastrollo, M.; Rodríguez-Artalejo, F.; Yusta-Boyo, M.J.; García-Solano, M. Effect of olive oil consumption on cardiovascular disease, cancer, type 2 diabetes, and all-cause mortality: A systematic review and meta-analysis. Clin. Nutr., 2022, 41(12), 2659-2682.
[http://dx.doi.org/10.1016/j.clnu.2022.10.001] [PMID: 36343558]
[29]
Moral, R.; Escrich, E. Influence of olive oil and its components on breast cancer: Molecular mechanisms. Molecules, 2022, 27(2), 477.
[http://dx.doi.org/10.3390/molecules27020477] [PMID: 35056792]
[30]
Mitra, S.; Dash, R. Natural products for the management and prevention of breast cancer. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-23.
[http://dx.doi.org/10.1155/2018/8324696] [PMID: 29681985]
[31]
Sznarkowska, A.; Kostecka, A.; Meller, K.; Bielawski, K.P. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget, 2017, 8(9), 15996-16016.
[http://dx.doi.org/10.18632/oncotarget.13723] [PMID: 27911871]
[32]
Panieri, E.; Santoro, M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis., 2016, 7(6), e2253-e2253.
[http://dx.doi.org/10.1038/cddis.2016.105] [PMID: 27277675]
[33]
Gikas, E.; Bazoti, F.N.; Tsarbopoulos, A. Conformation of oleuropein, the major bioactive compound of Olea europea. J. Mol. Struct. Theochem., 2007, 821(1-3), 125-132.
[http://dx.doi.org/10.1016/j.theochem.2007.06.033]
[34]
Servili, M.; Esposto, S.; Fabiani, R.; Urbani, S.; Taticchi, A.; Mariucci, F.; Selvaggini, R.; Montedoro, G.F. Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology, 2009, 17(2), 76-84.
[http://dx.doi.org/10.1007/s10787-008-8014-y] [PMID: 19234678]
[35]
Cicerale, S.; Lucas, L.J.; Keast, R.S.J. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol., 2012, 23(2), 129-135.
[http://dx.doi.org/10.1016/j.copbio.2011.09.006] [PMID: 22000808]
[36]
Piroddi, M.; Albini, A.; Fabiani, R.; Giovannelli, L.; Luceri, C.; Natella, F.; Rosignoli, P.; Rossi, T.; Taticchi, A.; Servili, M.; Galli, F. Nutrigenomics of extra‐virgin olive oil: A review. Biofactors, 2017, 43(1), 17-41.
[http://dx.doi.org/10.1002/biof.1318] [PMID: 27580701]
[37]
Delboccio, P.; Dideo, A.; Decurtis, A.; Celli, N.; Iacoviello, L.; Rotilio, D. Liquid chromatography–tandem mass spectrometry analysis of oleuropein and its metabolite hydroxytyrosol in rat plasma and urine after oral administration. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 785(1), 47-56.
[http://dx.doi.org/10.1016/S1570-0232(02)00853-X] [PMID: 12535837]
[38]
Kimura, Y.; Sumiyoshi, M. Olive leaf extract and its main component oleuropein prevent chronic ultraviolet B radiation-induced skin damage and carcinogenesis in hairless mice. J. Nutr., 2009, 139(11), 2079-2086.
[http://dx.doi.org/10.3945/jn.109.104992] [PMID: 19776181]
[39]
Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul., 1984, 22, 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]
[40]
Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev., 2006, 58(3), 621-681.
[http://dx.doi.org/10.1124/pr.58.3.10] [PMID: 16968952]
[41]
Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem., 2005, 38(12), 1103-1111.
[http://dx.doi.org/10.1016/j.clinbiochem.2005.08.008] [PMID: 16214125]
[42]
Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem., 2004, 37(4), 277-285.
[http://dx.doi.org/10.1016/j.clinbiochem.2003.11.015] [PMID: 15003729]
[43]
Altmann, K.H.; Gertsch, J. Anticancer drugs from nature—natural products as a unique source of new microtubule-stabilizing agents. Nat. Prod. Rep., 2007, 24(2), 327-357.
[http://dx.doi.org/10.1039/B515619J] [PMID: 17390000]
[44]
Haddad, R.; Alrabadi, N.; Altaani, B.; Li, T. Paclitaxel drug delivery systems: Focus on Nanocrystals’ surface modifications. Polymers, 2022, 14(4), 658.
[http://dx.doi.org/10.3390/polym14040658] [PMID: 35215570]
[45]
Sparano, J.A.; Wang, M.; Martino, S.; Jones, V.; Perez, E.A.; Saphner, T.; Wolff, A.C.; Sledge, G.W., Jr; Wood, W.C.; Davidson, N.E. Weekly paclitaxel in the adjuvant treatment of breast cancer. N. Engl. J. Med., 2008, 358(16), 1663-1671.
[http://dx.doi.org/10.1056/NEJMoa0707056] [PMID: 18420499]
[46]
Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer Chemotherapy. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
[47]
Abu Samaan, T.M.; Samec, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules, 2019, 9(12), 789.
[http://dx.doi.org/10.3390/biom9120789] [PMID: 31783552]
[48]
Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.; Tresoldi, I.; Modesti, A.; Bei, R. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int. J. Mol. Sci., 2015, 16(12), 9236-9282.
[http://dx.doi.org/10.3390/ijms16059236] [PMID: 25918934]
[49]
Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol., 2018, 9, 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[50]
Escrich, E.; Moral, R.; Solanas, M. Olive oil, an essential component of the Mediterranean diet, and breast cancer. Public Health Nutr., 2011, 14(12A), 2323-2332.
[http://dx.doi.org/10.1017/S1368980011002588] [PMID: 22166191]
[51]
Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino, G.A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci., 2018, 19(3), 686.
[http://dx.doi.org/10.3390/ijms19030686] [PMID: 29495598]
[52]
Nenadis, N.; Papoti, V.T.; Tsimidou, M.Z. Bioactive ingredients in olive leaves. In: Olives and Olive Oil in Health and Disease Prevention; 2nd ed; Preedy, V.R.; Watson, R.R., Eds.; Academic Press: San Diego, 2021; p. 65-78.
[http://dx.doi.org/10.1016/B978-0-12-819528-4.00056-0]
[53]
Di Francesco, A.; Falconi, A.; Di Germanio, C.; Micioni Di Bonaventura, M.V.; Costa, A.; Caramuta, S.; Del Carlo, M.; Compagnone, D.; Dainese, E.; Cifani, C.; Maccarrone, M.; D’Addario, C. Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms. J. Nutr. Biochem., 2015, 26(3), 250-258.
[http://dx.doi.org/10.1016/j.jnutbio.2014.10.013] [PMID: 25533906]
[54]
Hassan, Z.K.; Elamin, M.H.; Daghestani, M.H.; Omer, S.A.; Al-Olayan, E.M.; Elobeid, M.A.; Virk, P.; Mohammed, O.B. Oleuropein induces anti-metastatic effects in breast cancer. Asian Pac. J. Cancer Prev., 2012, 13(9), 4555-4559.
[http://dx.doi.org/10.7314/APJCP.2012.13.9.4555] [PMID: 23167379]
[55]
Žukovec Topalović D.; Živković L.; Čabarkapa, A.; Djelić N.; Bajić V.; Dekanski, D.; Spremo-Potparević B. Dry olive leaf extract counteracts L-thyroxine-induced genotoxicity in human peripheral blood leukocytes in vitro. Oxid. Med. Cell. Longev., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/762192] [PMID: 25789081]
[56]
Visioli, F.; Galli, C. Biological properties of olive oil phytochemicals. Crit. Rev. Food Sci. Nutr., 2002, 42(3), 209-221.
[http://dx.doi.org/10.1080/10408690290825529] [PMID: 12058980]
[57]
Cao, S.; Zhu, X.; Du, L. P38 MAP kinase is involved in oleuropein-induced apoptosis in A549 cells by a mitochondrial apoptotic cascade. Biomed. Pharmacother., 2017, 95, 1425-1435.
[http://dx.doi.org/10.1016/j.biopha.2017.09.072] [PMID: 28946190]
[58]
Elamin, M.H.; Daghestani, M.H.; Omer, S.A.; Elobeid, M.A.; Virk, P.; Al-Olayan, E.M.; Hassan, Z.K.; Mohammed, O.B.; Aboussekhra, A. Olive oil oleuropein has anti-breast cancer properties with higher efficiency on ER-negative cells. Food Chem. Toxicol., 2013, 53, 310-316.
[http://dx.doi.org/10.1016/j.fct.2012.12.009] [PMID: 23261678]
[59]
Przychodzen, P.; Kuban-Jankowska, A.; Wyszkowska, R.; Barone, G.; Bosco, G.L.; Celso, F.L.; Kamm, A.; Daca, A.; Kostrzewa, T.; Gorska-Ponikowska, M. PTP1B phosphatase as a novel target of oleuropein activity in MCF-7 breast cancer model. Toxicol. In Vitro, 2019, 61, 104624.
[http://dx.doi.org/10.1016/j.tiv.2019.104624] [PMID: 31419504]
[60]
Sirianni, R.; Chimento, A.; De Luca, A.; Casaburi, I.; Rizza, P.; Onofrio, A.; Iacopetta, D.; Puoci, F.; Andò, S.; Maggiolini, M.; Pezzi, V. Oleuropein and hydroxytyrosol inhibit MCF‐7 breast cancer cell proliferation interfering with ERK1/2 activation. Mol. Nutr. Food Res., 2010, 54(6), 833-840.
[http://dx.doi.org/10.1002/mnfr.200900111] [PMID: 20013881]
[61]
Han, J.; Talorete, T.P.N.; Yamada, P.; Isoda, H. Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology, 2009, 59(1), 45-53.
[http://dx.doi.org/10.1007/s10616-009-9191-2] [PMID: 19353300]
[62]
Sepporta, M.V.; Fuccelli, R.; Rosignoli, P.; Ricci, G.; Servili, M.; Morozzi, G.; Fabiani, R. Oleuropein inhibits tumour growth and metastases dissemination in ovariectomised nude mice with MCF-7 human breast tumour xenografts. J. Funct. Foods, 2014, 8, 269-273.
[http://dx.doi.org/10.1016/j.jff.2014.03.027]
[63]
Milanizadeh, S.; Bigdeli, M.R.; Rasoulian, B.; Amani, D. The effects of olive leaf extract on antioxidant enzymes activity and tumor growth in breast cancer. Thrita, 2014, 3(1), e12914.
[http://dx.doi.org/10.5812/thrita.12914]
[64]
Choupani, J.; Alivand, M.R.; Derakhshan, M.S.; Zaeifizadeh, M.; S. Khaniani, M. Oleuropein inhibits migration ability through suppression of epithelial-mesenchymal transition and synergistically enhances doxorubicin-mediated apoptosis in MCF-7 cells. J. Cell. Physiol., 2019, 234(6), 9093-9104.
[http://dx.doi.org/10.1002/jcp.27586] [PMID: 30317622]
[65]
Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A.; Balsano, C. Effects of the olive-derived polyphenol oleuropein on human health. Int. J. Mol. Sci., 2014, 15(10), 18508-18524.
[http://dx.doi.org/10.3390/ijms151018508] [PMID: 25318054]
[66]
El-azem, N.; Pulido-Moran, M.; Ramirez-Tortosa, C.L.; Quiles, J.L.; Cara, F.E.; Sanchez-Rovira, P.; Granados-Principal, S.; Ramirez-Tortosa, M.C. Modulation by hydroxytyrosol of oxidative stress and antitumor activities of paclitaxel in breast cancer. Eur. J. Nutr., 2019, 58(3), 1203-1211.
[http://dx.doi.org/10.1007/s00394-018-1638-9] [PMID: 29468462]
[67]
Arı M.; Karul, A.; Sakarya, S. Investigation of antiproliferative, apoptotic and antioxidant effects of oleuropein and vitamin D on breast cancer cell lines (MCF-7). Proceedings, 2018, 2, 1534.
[http://dx.doi.org/10.3390/proceedings2251534]
[68]
Milanizadeh, S.; Reza, B.M. Pro-apoptotic and anti-angiogenesis effects of olive leaf extract on spontaneous mouse mammary tumor model by balancing vascular endothelial growth factor and endostatin levels. Nutr. Cancer, 2019, 71(8), 1374-1381.
[http://dx.doi.org/10.1080/01635581.2019.1609054] [PMID: 31074644]
[69]
Dalton, T.P.; Chen, Y.; Schneider, S.N.; Nebert, D.W.; Shertzer, H.G. Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic. Biol. Med., 2004, 37(10), 1511-1526.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.06.040] [PMID: 15477003]
[70]
Estrela, J.M.; Ortega, A.; Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci., 2006, 43(2), 143-181.
[http://dx.doi.org/10.1080/10408360500523878] [PMID: 16517421]
[71]
Franco, R.; Cidlowski, J.A. Apoptosis and glutathione: Beyond an antioxidant. Cell Death Differ., 2009, 16(10), 1303-1314.
[http://dx.doi.org/10.1038/cdd.2009.107] [PMID: 19662025]
[72]
Ortega, A.L.; Mena, S.; Estrela, J.M. Glutathione in cancer cell death. Cancers, 2011, 3(1), 1285-1310.
[http://dx.doi.org/10.3390/cancers3011285] [PMID: 24212662]
[73]
Cui, X.Y.; Park, S.H.; Park, W.H. Anti-cancer effects of auranofin in human lung cancer cells by increasing intracellular ROS levels and depleting GSH levels. Molecules, 2022, 27(16), 5207.
[http://dx.doi.org/10.3390/molecules27165207] [PMID: 36014444]
[74]
You, B.R.; Kim, S.Z.; Kim, S.H.; Park, W.H. Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion. Mol. Cell. Biochem., 2011, 357(1-2), 295-303.
[http://dx.doi.org/10.1007/s11010-011-0900-8] [PMID: 21625953]
[75]
Niki, E. Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products? FEBS Lett., 2012, 586(21), 3767-3770.
[http://dx.doi.org/10.1016/j.febslet.2012.09.025] [PMID: 23022561]
[76]
Celep, A.G.S.; Yilmaz, S.; Coruh, N. Antioxidant capacity and cytotoxicity of Aesculus hippocastanum on breast cancer MCF-7 cells. Yao Wu Shi Pin Fen Xi, 2012, 20.
[http://dx.doi.org/10.6227/jfda.2012200318]
[77]
Timur, M.; Akbas, S.H.; Ozben, T. The effect of Topotecan on oxidative stress in MCF-7 human breast cancer cell line. Acta Biochim. Pol., 2005, 52(4), 897-902.
[http://dx.doi.org/10.18388/abp.2005_3404] [PMID: 16273129]
[78]
Wang, C.; Yu, J.; Wang, H.; Zhang, J.; Wu, N. Lipid peroxidation and altered anti-oxidant status in breast adenocarcinoma patients. Drug Res., 2014, 64(12), 690-692.
[http://dx.doi.org/10.1055/s-0034-1372580] [PMID: 25050522]
[79]
de Oliveira, S.T.; Bessani, M.P.; Scandolara, T.B.; Silva, J.C.; Kawassaki, A.C.B.; Fagotti, P.A.F.; Maito, V.T.; de Souza, J.A.; Rech, D.; Panis, C. Systemic lipid peroxidation profile from patients with breast cancer changes according to the lymph nodal metastasis status. Oncoscience, 2022, 9, 1-10.
[http://dx.doi.org/10.18632/oncoscience.550] [PMID: 35233438]

© 2024 Bentham Science Publishers | Privacy Policy