Skip to main content
Log in

Predicting Drug Candidate Victims of Drug-Drug Interactions, using Microdosing

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objective

The aim of this crossover human male volunteer study was to investigate the utility of microdosing in the investigation of drug-drug interactions.

Methods

A mixture of midazolam, tolbutamide, caffeine and fexofenadine were administered as a micro-dose (25 mg each) before and after administration of a combined pharmacological dose of ketoconazole (400 mg) and fluvoxamine (100 mg) to inhibit P-glycoprotein and metabolism by cytochrome P450 (CYP) 1A2, CYP3A4 and CYP2C9.

Results

When administered alone, pharmacokinetics for all four microdosed compounds scaled well with those reported for therapeutic doses and with previously performed microdose studies. The pharmacokinetics of each compound administered as a microdose were significantly altered after the administration of ketoconazole and fluvoxamine, showing statistically significant (p < 0.01) 12.8-, 8.1- and 3.2-fold increases in the area under the plasma concentration-time curve from time zero to infinity (AUC∞) for midazolam, caffeine and fexofenadine, respectively. A 1.8-fold increase (not statistically significant) in AUC∞ was observed for tolbutamide. The changes in pharmacokinetics mediated by ketoconazole and fluvoxamine were quantitatively consistent with previously reported, non-microdose, drug-drug interaction data from studies including the same compounds.

Conclusion

The initial data reported here demonstrate the utility of microdosing to investigate the risk of development drugs being victims of drug-drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Fig. 2
Fig. 3
Fig. 4
Table III

Similar content being viewed by others

References

  1. Hosea NA, Collard WT, Cole S, et al. Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches. J Clin Pharmacol 2009 May; 49(5): 513–33

    Article  PubMed  CAS  Google Scholar 

  2. Nagilla R, Ward KW. A comprehensive analysis of the role of correction factors in the allometric predictivity of clearance from rat, dog, and monkey to humans. J Pharm Sci 2004 Oct; 93(10): 2522–34

    Article  PubMed  CAS  Google Scholar 

  3. Ings R. Microdosing: a valuable tool for accelerating drug development and the role of bioanalytical methods in meeting the challenge. Bioanalysis 2009; 1(17): 1293–305

    Article  PubMed  CAS  Google Scholar 

  4. Lappin G. Microdosing: current and the future. Bioanalysis 2010 Mar; 2(3): 509–17

    Article  PubMed  CAS  Google Scholar 

  5. Rowland M. Interview: interview with Professor Malcolm Rowland. Bioanalysis 2010 Mar; 2(3): 385–91

    Article  PubMed  Google Scholar 

  6. International Conference on Harmonisation. ICH Topic M3 note for guidance on non-clinical safety pharmacology studies for human pharmaceuticals CPMP/ICH/286/95 (December 2009) [document reference: CPMP/ICH/286/95 2009; online]. Available from URL: http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002720.pdf [Accessed 2012 Jan 24]

  7. Oosterhuis B. Trends in microdosing and other exploratory human pharmacokinetic studies for early drug development. Bioanalysis 2010 Mar; 2(3): 377–9

    Article  PubMed  CAS  Google Scholar 

  8. Yap YG, Camm J. Risk of torsades de pointes with non-cardiac drugs: doctors need to be aware that many drugs can cause QT prolongation. BMJ 2000 Apr 29; 320(7243): 1158–9

    Article  PubMed  CAS  Google Scholar 

  9. Yin OQ, Lam SS, Lo CM, et al. Rapid determination of five probe drugs and their metabolites in human plasma and urine by liquid chromatography/ tandem mass spectrometry: application to cytochrome P450 phenotyping studies. Rapid Commun Mass Spectrom 2004; 18(23): 2921–33

    Article  PubMed  CAS  Google Scholar 

  10. Lappin G, Shishikura Y, Jochemsen R, et al. Pharmacokinetics of fexofenadine: evaluation of a microdose and assessment of absolute oral bioavailability. Eur J Pharm Sci 2010; 40: 125–31

    Article  PubMed  CAS  Google Scholar 

  11. Lappin G, Kuhnz W, Jochemsen R, et al. Use of microdosing to predict pharmacokinetics at the therapeutic dose: experience with 5 drugs. Clin Pharmacol Ther 2006 Sep; 80(3): 203–15

    Article  PubMed  CAS  Google Scholar 

  12. Vogel JS, Turteltaub KW. Accelerator mass spectrometry as a bioanalytical tool for nutritional research. In: Clifford AJ, Mueller SM, editors. Mathematical modelling in experimental nutrition. New York: Plenum Press, 1998: 397–410

    Google Scholar 

  13. Lappin G, Simpson M, Shishikura Y, et al. High-performance liquid chromatography accelerator mass spectrometry: correcting for losses during analysis by internal standardization. Anal Biochem 2008 Mar 22; 378: 93–5

    Article  PubMed  CAS  Google Scholar 

  14. Simpson M. Development of 2D chiral chromatography with accelerator mass spectrometry for quantification of 14C-labeled R- and S-verapamil in plasma. Bioanalysis 2010; 2(3): 397–405

    Article  PubMed  CAS  Google Scholar 

  15. Young G, Ellis W, Ayrton J, et al. Accelerator mass spectrometry (AMS): recent experience of its use in a clinical study and the potential future of the technique. Xenobiotica 2001 Aug–Sep; 31(8–9): 619–32

    Article  PubMed  CAS  Google Scholar 

  16. Ogasawara A, Kume T, Kazama E. Effect of oral ketoconazole on intestinal first-pass effect of midazolam and fexofenadine in cynomolgus monkeys. Drug Metab Dispos 2007 Mar; 35(3): 410–8

    Article  PubMed  CAS  Google Scholar 

  17. Ieiri I, Doi Y, Maeda K, et al. Microdosing clinical study: pharmacokinetic, pharmacogenomic (SLCO2B1), and interaction (grapefruit juice) profiles of celiprolol following the oral microdose and therapeutic dose. J Clin Pharmacol. Epub 2011 May 18

  18. Lappin G, Seymour M, Young G, et al. AMS method validation for quantitation in pharmacokinetic studies with concomitant extravascular and intravenous administration. Bioanalysis 2011 Feb; 3(4): 393–405

    Article  PubMed  CAS  Google Scholar 

  19. He K, Qian M, Wong H, et al. N-in-1 dosing pharmacokinetics in drug discovery: experience, theoretical and practical considerations. J Pharm Sci 2008 Jul; 97(7): 2568–80

    Article  PubMed  CAS  Google Scholar 

  20. Culm-Merdek KE, von Moltke LL, Harmatz JS, et al. Fluvoxamine impairs single-dose caffeine clearance without altering caffeine pharmacodynamics. Br J Clin Pharmacol 2005 Nov; 60(5): 486–93

    Article  PubMed  CAS  Google Scholar 

  21. Fredholm BB, Battig K, Holmen J, et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 1999 Mar; 51(1): 83–133

    PubMed  CAS  Google Scholar 

  22. Robbins DK, Castles MA, Pack DJ, et al. Dose proportionality and comparison of single and multiple dose pharmacokinetics of fexofenadine (MDL 16455) and its enantiomers in healthy male volunteers. Biopharm Drug Dispos 1998 Oct; 19(7): 455–63

    Article  PubMed  CAS  Google Scholar 

  23. Brunton LL, Lazo JS, Parker KL. Goodman and Gilman’s: the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill, 2006

    Google Scholar 

  24. Uchida S, Yamada H, Li XD, et al. Effects of Ginkgo biloba extract on pharmacokinetics and pharmacodynamics of tolbutamide and midazolam in healthy volunteers. J Clin Pharmacol 2006 Nov; 46(11): 1290–8

    Article  PubMed  CAS  Google Scholar 

  25. Balani SK, Nagaraja NV, Qian MG, et al. Evaluation of microdosing to assess pharmacokinetic linearity in rats using liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 2006 Mar; 34(3): 384–8

    PubMed  CAS  Google Scholar 

  26. Chen C. Some pharmacokinetic aspects of the lipophilic terfenadine and zwitterionic fexofenadine in humans. Drugs R&D 2007; 8(5): 301–14

    Article  CAS  Google Scholar 

  27. Yamane N, Tozuka Z, Sugiyama Y, et al. Microdose clinical trial: quantitative determination of fexofenadine in human plasma using liquid chromatography/ electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2007 Oct 15; 858(1-2): 118–28

    Article  PubMed  CAS  Google Scholar 

  28. Krishnaiah YS, Satyanarayana S, Visweswaram D. Interaction between tolbutamide and ketoconazole in healthy subjects. Br J Clin Pharmacol 1994 Feb; 37(2): 205–7

    Article  PubMed  CAS  Google Scholar 

  29. Tsunoda SM, Velez RL, von Moltke LL, et al. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999 Nov; 66(5): 461–71

    Article  PubMed  CAS  Google Scholar 

  30. Eap CB, Buclin T, Cucchia G, et al. Oral administration of a low dose of midazolam (75 microg) as an in vivo probe for CYP3A activity. Eur J Clin Pharmacol 2004 Jun; 60(4): 237–46

    PubMed  CAS  Google Scholar 

  31. Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharmacol Exp Ther 2006 Sep; 318(3): 1220–9

    Article  PubMed  CAS  Google Scholar 

  32. Madsen H, Enggaard TP, Hansen LL, et al. Fluvoxamine inhibits the CYP2C9 catalyzed biotransformation of tolbutamide. Clin Pharmacol Ther 2001 Jan; 69(1): 41–7

    Article  PubMed  CAS  Google Scholar 

  33. Davit B, Reynolds K, Yuan R, et al. FDA evaluations using in vitro metabolism to predict and interpret in vivo metabolic drug-drug interactions: impact on labeling. J Clin Pharmacol 1999 Sep; 39(9): 899–910

    Article  PubMed  CAS  Google Scholar 

  34. Li J, Wen SY, Wang R, et al. Influence of cytochrome P450 CYP2C9 polymorphism on the pharmacokinetics of tolbutamide metabolism using oligonucleotide genotyping microarray [in Chinese]. Acta Pharm Sinica 2005 Aug; 40(8): 695–9

    CAS  Google Scholar 

  35. Lucksiri A, Vuppalanchi R, Hilligoss JK, et al. Dose dependent inhibition of midazolam elimination by ketoconazole: effect of CYP3A5 genotype. Clin Pharmacol Ther 2005; 77: 35

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC), UK grant number BB/D525580/1. The clinical study was carried out at Simbec Research Limited (Merthyr Tydfil, UK). M. Croft and G. Lappin are employees of, and hold stock in, Xceleron Ltd, a company conducting commercial microdose studies. None of the other authors have any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Croft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croft, M., Keely, B., Morris, I. et al. Predicting Drug Candidate Victims of Drug-Drug Interactions, using Microdosing. Clin Pharmacokinet 51, 237–246 (2012). https://doi.org/10.2165/11597070-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11597070-000000000-00000

Keywords

Navigation