Skip to main content
Log in

Effect of Molecular Weight and Substitution on Tissue Uptake of Hydroxyethyl Starch

A Meta-Analysis of Clinical Studies

  • Systematic Review
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Intravenously infused hydroxyethyl starch (HES) can be found in urine, plasma and tissues. HES remaining in plasma and tissues is thought to increase the risk of clinical complications. HES solutions of lower molecular weight and substitution have been developed to increase urinary excretion and reduce plasma persistence. However, their effect on tissue uptake of HES has not been investigated in human subjects.

Objective

Our objective was to test the hypothesis that lower molecular weight and substitution decrease tissue uptake of HES.

Data sources

Computer searches were performed of MEDLINE; EMBASE; the Cochrane Library; meeting abstract databases in surgery, anaesthesiology and intensive care; ClinicalTrials.gov; and Google. Supplementary sources were reference lists and electronic tables of journal contents. No time period or language restrictions were imposed.

Study Selection

Clinical studies were eligible for inclusion in the meta-analysis, if data were reported both for cumulative urinary excretion of HES over 24 hours after infusion and for plasma HES concentration at 24 hours.

Data Extraction

Data were extracted on 24-hour urinary excretion of HES, 24-hour HES plasma concentration, plasma volume, HES molecular weight and substitution, study design, type and demographics of subjects, indication for fluid infusion, and HES infusion regimen. Tissue uptake of HES was computed as the difference between the infused dose and the sum of urinary excretion and residual plasma HES at 24 hours.

Data Synthesis

Twenty-five clinical studies totalling 287 subjects were included. Tissue uptake of low-molecular-weight HES (≤200 kD) was 42.3% (95% confidence interval [CI] 39.6, 45.0) compared with 24.6% (CI 17.8, 31.4) for high-molecular-weight HES (p<0.001). Similarly, tissue uptake of lower-substitution HES (≤0.5) was 42.4% (CI 39.5, 45.3) versus 26.6% (CI 19.6, 33.6) for higher-substitution HES (p<0.001). Among the three most often investigated single HES solutions, tissue uptake of 130/0.4 (42.6%; CI 35.0, 50.2) and HES 200/0.5 (43.3%; CI 39.4, 47.2) closely coincided, whereas uptake of HES 450/0.7 (22.2%; CI 14.8, 29.6) was lower (p = 0.001 and p<0.001, respectively).

Conclusions

This meta-analysis did not support the hypothesis that lower molecular weight and substitution decrease tissue uptake of HES. Further clinical studies of HES tissue uptake are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Table II
Fig. 3
Fig. 4
Table III

Similar content being viewed by others

References

  1. Schortgen F, Deye N, Brochard L. Preferred plasma volume expanders for critically ill patients: results of an international survey. Intensive Care Med 2004 Dec; 30(12): 2222–9

    Article  PubMed  Google Scholar 

  2. Barron ME, Wilkes MM, Navickis RJ. A systematic review of the comparative safety of colloids. Arch Surg 2004 May; 139(5): 552–63

    Article  PubMed  CAS  Google Scholar 

  3. Bork K. Pruritus precipitated by hydroxyethyl starch: a review. Br J Dermatol 2005 Jan; 152(1): 3–12

    Article  PubMed  CAS  Google Scholar 

  4. Pfeifer U, Kult J, Förster H. Ascites als Komplikation hepatischer Speicherung von Hydroxyethylstärke (HES) bei Langzeitdialyse. Klin Wochenschr 1984 Sep 17; 62(18): 862–6

    Article  PubMed  CAS  Google Scholar 

  5. Schmidt-Hieber M, Loddenkemper C, Schwartz S, et al. Hydrops lysosomalis generalisatus — an underestimated side effect of hydroxyethyl starch therapy? Eur J Haematol 2006 Jul; 77(1): 83–5

    Article  PubMed  Google Scholar 

  6. Westphal M, James MF, Kozek-Langenecker S, et al. Hydroxyethyl starches: different products — different effects. Anesthesiology 2009 Jun 8; 111(1): 187–202

    Article  PubMed  CAS  Google Scholar 

  7. Ferber HP, Nitsch E, Förster H. Studies on hydroxyethyl starch: part II. Changes of the molecular weight distribution for hydroxyethyl starch types 450/0.7, 450/0.5, 450/0.3, 300/0.4, 200/0.7, 200/0.5, 200/0.3 and 200/0.1 after infusion in serum and urine of volunteers. Arzneimittelforschung 1985; 35(3): 615–22

    PubMed  CAS  Google Scholar 

  8. Treib J, Haass A, Pindur G, et al. HES 200/0.5 is not HES 200/0.5: influence of the C2/C6 hydroxyethylation ratio of hydroxyethyl starch (HES) on hemorheology, coagulation and elimination kinetics. Thromb Haemost 1995; 74(6): 1452–6

    PubMed  CAS  Google Scholar 

  9. Thompson WL, Fukushima T, Rutherford RB, et al. Intravascular persistence, tissue storage, and excretion of hydroxyethyl starch. Surg Gynecol Obstet 1970 Nov; 131(5): 965–72

    PubMed  CAS  Google Scholar 

  10. Lindblad G, Falk J. Konzentrationsverlauf von Hydroxyäthylstärke und Dextran in Serum und Lebergewebe von Kaninchen und die histopathologischen Folgen der Speicherung von Hydroxyäthylstärke. Infusionstherapie 1976; 3(5): 301–3

    CAS  Google Scholar 

  11. Paulini K, Sonntag W. Veränderungen des RHS der Ratte nach parenteraler Gabe von Dextran (Mw 40000) und Hydroxyäthylstärke (Mw 40000): Chemische, licht- und elektronenmikroskopische Untersuchungen. Infusionstherapie 1976; 3(5): 294–9

    Google Scholar 

  12. Jesch F, Hübner G, Zumtobel V, et al. Hydroxyäthylstärke (HÄS 450/0,7) in Plasma und Leber: Konzentrationsverlauf und histologische Veränderungen beim Menschen. Infusionsther Klin Ernahr 1979 Apr; 6(2): 112–7

    PubMed  CAS  Google Scholar 

  13. Förster H, Wicarkzyk C, Dudziak R. Bestimmung der Plasmaelimination von Hydroxyaethylstärke und von Dextran mittels verbesserter analytischer Methodik. Infusionstherapie 1981 Apr; 2(2): 88–94

    Google Scholar 

  14. Jungheinrich C, Scharpf R, Wargenau M, et al. The pharmacokinetics and tolerability of an intravenous infusion of the new hydroxyethyl starch 130/0.4 (6%, 500mL) in mild-to-severe renal impairment. Anesth Analg 2002 Sep; 95(3): 544–51

    PubMed  CAS  Google Scholar 

  15. Waitzinger J, Bepperling F, Pabst G, et al. Hydroxyethyl starch (HES) [130/0.4], a new HES specification: pharmacokinetics and safety after multiple infusions of 10% solution in healthy volunteers. Drugs R D 2003; 4(3): 149–57

    Article  PubMed  CAS  Google Scholar 

  16. Kalhorn TF, Yacobi A, Sum CY. Biliary excretion of hydroxyethyl starch in man. Biomed Mass Spectrom 1984 Apr; 11(4): 164–6

    Article  PubMed  CAS  Google Scholar 

  17. Lenz K, Schimetta W, Pölz W, et al. Intestinal elimination of hydroxyethyl starch? Intensive Care Med 2000 Jun; 26(6): 733–9

    Article  PubMed  CAS  Google Scholar 

  18. Sirtl C, Laubenthal H, Zumtobel V, et al. Tissue deposits of hydroxyethyl starch (HES): dose-dependent and time-related. Br J Anaesth 1999 Apr; 82(4): 510–5

    Article  PubMed  CAS  Google Scholar 

  19. Ständer S, Szépfalusi Z, Bohle B, et al. Differential storage of hydroxyethyl starch (HES) in the skin: an immunoelectron-microscopical long-term study. Cell Tissue Res 2001 May; 304(2): 261–9

    Article  PubMed  Google Scholar 

  20. Nohé B, Burchard M, Zanke C, et al. Endothelial accumulation of hydroxyethyl starch and functional consequences on leukocyte-endothelial interactions. Eur Surg Res 2002 Sep–Oct; 34(5): 364–72

    Article  PubMed  Google Scholar 

  21. Asskali F, Förster H. Zur Kumulation unterschiedlich substituierter Hydroxyethylstärke (HES) nach repetitiver Infusion bei gesunden Versuchspersonen. Anästhesiol Intensivmed Notfallmed Schmerzther 1999 Sep; 34(9): 537–41

    Article  PubMed  CAS  Google Scholar 

  22. Ballinger 2nd WF, Murray GF, Morse EE. Preliminary report on the use of hydroxyethyl starch solution in man. J Surg Res 1966 Apr; 6(4): 180–3

    Article  PubMed  Google Scholar 

  23. Lee Jr WH, Cooper N, Weidner Jr MG, et al. Clinical evaluation of a new plasma expander hydroxyethyl starch. J Trauma 1968 May; 8(3): 381–93

    Article  PubMed  Google Scholar 

  24. Solanke TF. Clinical trial of 6 per cent hydroxyethyl starch (a new plasma expander). Br Med J 1968 Sep 28; 3(621): 783–5

    Article  PubMed  CAS  Google Scholar 

  25. Metcalf W, Papadopoulos A, Tufaro R, et al. A clinical physiologic study of hydroxyethyl starch. Surg Gynecol Obstet 1970 Aug; 131(2): 255–67

    PubMed  CAS  Google Scholar 

  26. Mishler JM, Borberg H, Emerson PM, et al. Hydroxyethyl starch: an agent for hypovolemic shock treatment. I: serum concentrations in normal volunteers following three consecutive daily infusions. J Surg Res 1977 Oct; 23(4): 239–45

    Article  PubMed  CAS  Google Scholar 

  27. Mishler JM, Borberg H, Emerson PM, et al. Hydroxyethyl starch: an agent for hypovolaemic schock treatment. II: urinary excretion in normal volunteers following three consecutive daily infusions. Br J Clin Pharmacol 1977 Oct; 4(5): 591–5

    Article  PubMed  CAS  Google Scholar 

  28. Mishler IV JM, Parry ES, Petrie A, et al. Plasma clearance and renal excretion of erythrocyte cryoprotectant hydroxyethylated amylopectin. Br J Haematol 1978 Oct; 40(2): 231–7

    Article  PubMed  CAS  Google Scholar 

  29. Mishler JM, Parry ES, Sutherland BA, et al. A clinical study of low molecular weight-hydroxyethyl starch, a new plasma expander. Br J Clin Pharmacol 1979 Jun; 7(6): 619–22

    Article  PubMed  CAS  Google Scholar 

  30. Mishler JM, Ricketts CR, Parkhouse EJ, et al. Catabolism of low-molecular-weight hydroxyethylated amylopectin in man: I. Changes in the circulating molecular composition. J Lab Clin Med 1979 Dec; 94(6): 841–7

    PubMed  CAS  Google Scholar 

  31. Mishler IV JM. Pharmakokinetik mittelmolekularer Hydroxyäthylstärke (HÄS 200/0,5). Infusionsther Klin Ernahr 1980 Apr; 7(2): 96–102

    PubMed  CAS  Google Scholar 

  32. Mishler JM, Ricketts CR, Parkhouse EJ, et al. The catabolism of low molecular weight-hydroxyethylated amylopectin in man: II. Changes in the urinary molecular profiles. Int J Clin Pharmacol Ther Toxicol 1980 Jan; 18(1): 5–9

    PubMed  CAS  Google Scholar 

  33. Mishler JM, Ricketts CR, Parkhouse EJ. Urinary excretion kinetics of hydroxyethyl starch 350/0.60 in normovolaemic man. J Clin Pathol 1981 Apr; 34(4): 361–5

    Article  PubMed  CAS  Google Scholar 

  34. Köhler H, Zschiedrich H, Linfante A, et al. Die Elimination von Hydroxyäthylstärke 200/0,5, Dextran 40 und Oxypolygelatine. Klin Wochenschr 1982 Mar; 60(6): 293–301

    Article  PubMed  Google Scholar 

  35. Köhler H, Zschiedrich H, Clasen R, et al. Blutvolumen, kolloidosmotischer Druck und Nierenfunktion von Probanden nach Infusion mittelmolekularer 10% Hydroxyäthylstärke 200/0,5 und 10% Dextran 40. Anaesthesist 1982 Feb; 31(2): 61–7

    PubMed  Google Scholar 

  36. Yacobi A, Stoll RG, Sum CY, et al. Pharmacokinetics of hydroxyethyl starch in normal subjects. J Clin Pharmacol 1982 Apr; 22(4): 206–12

    Article  PubMed  CAS  Google Scholar 

  37. Korttila K, Gröhn P, Gordin A, et al. Effect of hydroxyethyl starch and dextran on plasma volume and blood hemostasis and coagulation. J Clin Pharmacol 1984 Jul; 24(7): 273–82

    Article  PubMed  CAS  Google Scholar 

  38. Waitzinger J, Bepperling F, Pabst G, et al. Pharmacokinetics and tolerability of a new hydroxyethyl starch (HES) specification [HES (130/0.4)] after single-dose infusion of 6% or 10% solutions in healthy volunteers. Clin Drug Investig 1998; 16(2): 151–60

    Article  PubMed  CAS  Google Scholar 

  39. Asskali F, Warnken U, Förster H. Acetylstärke als Volumenersatz, eine mögliche Alternative zu HES. Dtsch Med Wochenschr 2001 Jan 5; 126(1–2): 1–6

    Article  PubMed  CAS  Google Scholar 

  40. Förster H, Lehmann G, Asskali F. Das in vivo mittlere Molekular-gewicht und die Nierenschwelle von Hydroxyethylstärke am Beispiel mittelsubstituierter HES (HES 70/0,5). Anästhesiol Intensivmed Notfallmed Schmerzther 2001 Jan; 36(1): 31–7

    Article  PubMed  Google Scholar 

  41. Wilkes NJ, Woolf RL, Powanda MC, et al. Hydroxyethyl starch in balanced electrolyte solution (Hextend®) — pharmacokinetic and pharmacodynamic profiles in healthy volunteers. Anesth Analg 2002 Mar; 94(3): 538–44

    Article  PubMed  CAS  Google Scholar 

  42. Lehmann G, Asskali F, Förster H. Pharmacokinetics of hydroxyethyl starch (70/0.5) following repeated infusions. Transfus Med Hemother 2003 Mar; 30(2): 72–7

    Article  Google Scholar 

  43. Lesch A. Hydroxyethylstärke (HES) im Urin nach Mehrfachinfusion von HES (450/0,7): Physiko-chemische Veränderungen der Substanzcharakteristika einer hochsubstituierten, hochmolekularen HES [dissertation]. Frankfurt: Johann Wolfgang Goethe-Universitä, 2003

    Google Scholar 

  44. Lehmann GB, Asskali F, Boll M, et al. HES 130/0.42 shows less alteration of pharmacokinetics than HES 200/0.5 when dosed repeatedly. Br J Anaesth 2007 May; 98(5): 635–44

    Article  PubMed  CAS  Google Scholar 

  45. Lehmann G, Marx G, Förster H. Bioequivalence comparison between hydroxyethyl starch 130/0.42/6:1 and hydroxyethyl starch 130/0.4/9:1. Drugs R D 2007; 8(4): 229–40

    Article  PubMed  CAS  Google Scholar 

  46. Bogan RK, Gale GR, Walton RP. Fate of 14C-labeled hydroxyethyl starch in animals. Toxicol Appl Pharmacol 1969; 15(1): 206–11

    Article  CAS  Google Scholar 

  47. Eisenbach C, Schönfeld AH, Vogt N, et al. Pharmacodynamics and organ storage of hydroxyethyl starch in acute hemodilution in pigs: influence of molecular weight and degree of substitution. Intensive Care Med 2007 Jun 7; 33(9): 1637–44

    Article  PubMed  CAS  Google Scholar 

  48. Lukasewitz P, Kroh U, Löwenstein O, et al. Quantitative Untersuchungen zur Gewebsspeicherung von mittelmolekularer Hydroxyethylstärke 200/0,5 bei Patienten mit Multiorganversagen. J Anaesth Intensivbeh 1998; 3(3): 42–6

    Google Scholar 

  49. Cittanova ML, Leblanc I, Legendre C, et al. Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet 1996 Dec 14; 348(9042): 1620–2

    Article  PubMed  CAS  Google Scholar 

  50. de Labarthe A, Jacobs F, Blot F, et al. Acute renal failure secondary to hydroxyethylstarch administration in a surgical patient. Am J Med 2001 Oct 1; 111(5): 417–8

    Article  PubMed  Google Scholar 

  51. Dickenmann M, Oettl T, Mihatsch MJ. Osmotic nephrosis: acute kidney injury with accumulation of proximal tubular lysosomes due to administration of exogenous solutes. Am J Kidney Dis 2008 Mar; 51(3): 491–503

    Article  PubMed  Google Scholar 

  52. Kiehl P, Metze D, Kresse H, et al. Decreased activity of acid α-glucosidase in a patient with persistent periocular swelling after infusions of hydroxyethyl starch. Br J Dermatol 1998 Apr; 138(4): 672–7

    Article  PubMed  CAS  Google Scholar 

  53. Metze D, Reimann S, Szepfalusi Z, et al. Persistent pruritus after hydroxyethyl starch infusion therapy: a result of long-term storage in cutaneous nerves. Br J Dermatol 1997 Apr; 136(4): 553–9

    Article  PubMed  CAS  Google Scholar 

  54. Christidis C, Mal F, Ramos J, et al. Worsening of hepatic dysfunction as a consequence of repeated hydroxyethylstarch infusions. J Hepatol 2001 Dec; 35(6): 726–32

    Article  PubMed  CAS  Google Scholar 

  55. Wilkes MM, Navickis RJ, Sibbald WJ. Albumin versus hydroxyethyl starch in cardiopulmonary bypass surgery: a meta-analysis of postoperative bleeding. Ann Thorac Surg 2001 Aug; 72(2): 527–33

    Article  PubMed  CAS  Google Scholar 

  56. Wiedermann CJ. Hydroxyethyl starch - can the safety problems be ignored? Wien Klin Wochenschr 2004 Sep 30; 116(17-18): 583–94

    Article  PubMed  CAS  Google Scholar 

  57. Davidson IJ. Renal impact of fluid management with colloids: a comparative review. Eur J Anaesthesiol 2006 Sep; 23(9): 721–38

    Article  PubMed  CAS  Google Scholar 

  58. Wiedermann CJ. Systematic review of randomized clinical trials on the use of hydroxyethyl starch for fluid management in sepsis. BMC Emerg Med 2008 Jan 24; 8(1): 1–8

    Article  PubMed  Google Scholar 

  59. Zarychanski R, Turgeon AF, Fergusson DA, et al. Renal outcomes and mortality following hydroxyethyl starch resuscitation of critically ill patients: systematic review and meta-analysis of randomized trials. Open Med 2009; 3(4): E196–209

    PubMed  Google Scholar 

  60. Dart AB, Mutter TC, Ruth CA, et al. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev 2010; (1): CD007594

    PubMed  Google Scholar 

Download references

Acknowledgements

This meta-analysis was conducted and the paper was prepared with no financial support from any funding organization or sponsor. Professor Wiedermann has received fees for speaking and travel reimbursements from manufacturers of plasma-derived therapies (CSL Behring, Baxter, Kedrion). Professor Bellmann has received research support from Torrex Chiesi and from Pfizer Inc. Doctor Feistritzer declares that he has no potential conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian J. Wiedermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellmann, R., Feistritzer, C. & Wiedermann, C.J. Effect of Molecular Weight and Substitution on Tissue Uptake of Hydroxyethyl Starch. Clin Pharmacokinet 51, 225–236 (2012). https://doi.org/10.2165/11594700-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11594700-000000000-00000

Keywords

Navigation