Skip to main content
Log in

Use of Inotropic Agents in Patients with Advanced Heart Failure

Lessons from Recent Trials and Hopes for New Agents

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Abnormalities of cardiac function, with high intraventricular filling pressure and low cardiac output, play a central role in patients with heart failure. Agents with inotropic properties are potentially useful to correct these abnormalities. However, with the exception of digoxin, no inotropic agent has been associated with favourable effects on outcomes. This is likely related to the mechanism of action of current agents, which is based on an increase in intracellular cyclic adenosine monophosphate and calcium concentrations. Novel agents acting through different mechanisms, such as sarcoplasmic reticulum calcium uptake, cardiac myosin and myocardial metabolism, have the potential to improve myocardial efficiency and lower myocardial oxygen consumption. These characteristics might allow a haemodynamic improvement in the absence of untoward effects on the clinical course and prognosis of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

Similar content being viewed by others

References

  1. MacIntyre K, Capewell S, Stewart S, et al. Evidence of improving prognosis in heart failure: trends in case fatality in 66,547 patients hospitalized between 1986 and 1995. Circulation 2000; 102: 1126–31

    Article  PubMed  CAS  Google Scholar 

  2. Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med 2002; 347: 1397–402

    Article  PubMed  Google Scholar 

  3. Dickstein K, Vardas PE, Auricchio A, et al. 2010 focused update of ESC guidelines on device therapy in heart failure: an update of the 2008 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure and the 2007 ESC guidelines for cardiac and resynchronization therapy. Developed with the special contribution of the Heart Failure Association and the European Heart Rhythm Association. Eur J Heart Fail 2010; 12: 1143–53

    Article  PubMed  Google Scholar 

  4. Metra M, Ponikowski P, Dickstein K, et al. Advanced chronic heart failure: a position statement from the Study Group on Advanced Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2007; 9: 684–94

    Article  PubMed  Google Scholar 

  5. Cotter G, Metra M, Milo-Cotter O, et al. Fluid overload in acute heart failure: re-distribution and other mechanisms beyond fluid accumulation. Eur J Heart Fail 2008; 10: 165–9

    Article  PubMed  Google Scholar 

  6. Zile MR, Bennett TD, St John Sutton M, et al. Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation 2008; 118: 1433–41

    Article  PubMed  Google Scholar 

  7. Stevenson LW, Zile M, Bennett TD, et al. Chronic ambulatory intracardiac pressures and future heart failure events. Circ Heart Fail 2010; 3: 580–7

    Article  PubMed  Google Scholar 

  8. Stevenson LW. Are hemodynamic goals viable in tailoring heart failure therapy? Hemodynamic goals are relevant. Circulation 2006; 113: 1020–7

    Article  PubMed  Google Scholar 

  9. Gheorghiade M, Abraham WT, Albert NM, et al. Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure. JAMA 2006; 296: 2217–26

    Article  PubMed  CAS  Google Scholar 

  10. Stevenson LW. Clinical use of inotropic therapy for heart failure: looking backward or forward? Part I: inotropic infusions during hospitalization. Circulation 2003; 108: 367–72

    Article  PubMed  Google Scholar 

  11. Nieminen MS, Böhm M, Cowie MR, et al. Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J 2005; 26: 384–416

    Article  PubMed  Google Scholar 

  12. Gheorghiade M, Pang PS. Acute heart failure syndromes. J Am Coll Cardiol 2009; 53: 557–73

    Article  PubMed  Google Scholar 

  13. Teerlink JR, Metra M, Zacà V, et al. Agents with inotropic properties for the management of acute heart failure syndromes: traditional agents and beyond. Heart Fail Rev 2009; 14: 243–53

    Article  PubMed  CAS  Google Scholar 

  14. Stevenson LW, Pagani FD, Young JB, et al. INTERMACS profiles of advanced heart failure: the current picture. J Heart Lung Transplant 2009; 28: 535–41

    Article  PubMed  Google Scholar 

  15. Nohria A, Lewis E, Stevenson LW. Medical management of advanced heart failure. JAMA 2002; 287: 628–40

    Article  PubMed  Google Scholar 

  16. Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail 2008; 10: 933–89

    Article  PubMed  Google Scholar 

  17. Jessup M, Abraham WT, Casey DE, et al. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 2009; 119: 1977–2016

    Google Scholar 

  18. Lindenfeld J, Albert NM, Boehmer JP, et al. Executive summary: HFSA 2010 Comprehensive Heart Failure Practice Guideline. J Card Fail 2010; 16: 475–539

    Article  Google Scholar 

  19. Jaarsma T, Beattie JM, Ryder M, et al. Palliative care in heart failure: a position statement from the palliative care workshop of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2009; 11: 433–43

    Article  PubMed  Google Scholar 

  20. Nieminen MS, Brutsaert D, Dickstein K, et al. EuroHeart Failure Survey II (EHFSII): a survey on hospitalized acute heart failure patients. Description of population. Eur Heart J 2006; 27: 2725–36

    Google Scholar 

  21. Abraham WT, Adams KF, Fonarow GC, et al. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol 2005; 46: 57–64

    Article  PubMed  Google Scholar 

  22. Leier CV, Binkley PF. Parenteral inotropic support for advanced congestive heart failure. Prog Cardiovasc Dis 1998; 41: 207–24

    Article  PubMed  CAS  Google Scholar 

  23. Beohar N, Erdogan AK, Lee DC, et al. Acute heart failure syndromes and coronary perfusion. J Am Coll Cardiol 2008; 52: 13–6

    Article  PubMed  Google Scholar 

  24. Schulz R, Rose J, Martin C, et al. Development of short-term myocardial hibernation: its limitation by the severity of ischemia and inotropic stimulation. Circulation 1993; 88: 684–95

    Article  PubMed  CAS  Google Scholar 

  25. Felker GM, Benza RL, Chandler AB, et al. Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J Am Coll Cardiol 2003; 41: 997–1003

    Article  PubMed  CAS  Google Scholar 

  26. Captopril-Digoxin Multicenter Research Group. Comparative effects of therapy with captopril and digoxin in patients with mild to moderate heart failure. JAMA 1988; 259: 539–44

    Article  Google Scholar 

  27. Young JB, Gheorghiade M, Uretsky BF, et al. Superiority of “triple” drug therapy in heart failure: insights from the PROVED and RADIANCE trials. J Am Coll Cardiol 1998; 32: 686–92

    Article  PubMed  CAS  Google Scholar 

  28. The Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 1997; 336: 525–33

    Article  Google Scholar 

  29. Ahmed A, Rich MW, Love TE, et al. Digoxin and reduction in mortality and hospitalization in heart failure: a comprehensive post hoc analysis of the DIG trial. Eur Heart J 2006; 27: 178–86

    Article  PubMed  CAS  Google Scholar 

  30. Ahmed A, Waagstein F, Pitt B, et al. Effectiveness of digoxin in reducing one year mortality in chronic heart failure in the Digoxin Investigation Group trial. Am J Cardiol 2009; 103: 82–7

    Article  PubMed  CAS  Google Scholar 

  31. The Digitalis Investigation Group. Rationale, design, implementation, and baseline characteristics of patients in the DIG trial: a large, simple, long-term trial to evaluate the effect of digitalis on mortality in heart failure. Control Clin Trials 1996; 17: 77–97

    Article  Google Scholar 

  32. Gheorghiade M, Braunwald E. Reconsidering the role for digoxin in the management of acute heart failure syndromes. JAMA 2009 Nov 18; 302(19): 2146–7

    Article  PubMed  Google Scholar 

  33. Felker GM, O’Connor CM. Inotropic therapy for heart failure: an evidence-based approach. Am Heart J 2001; 142: 393–401

    Article  PubMed  CAS  Google Scholar 

  34. O’Connor CM, Gattis WA, Uretsky BF, et al. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J 1999; 138: 78–86

    Article  PubMed  Google Scholar 

  35. Thackray S, Easthaugh J, Fremantle N, et al. The effectiveness and relative effectiveness of intravenous inotropic drugs acting through the adrenergic pathway in patients with heart failure: meta-regression analysis. Eur J Heart Fail 2002; 4: 515–29

    Article  PubMed  CAS  Google Scholar 

  36. Friedrich JO, Adhikari N, Herridge MS, et al. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med 2005; 142: 510–24

    PubMed  CAS  Google Scholar 

  37. Dei Cas L, Metra M, Visioli O. Clinical pharmacology of inodilators. J Cardiovasc Pharmacol 1989; 14 Suppl. 8: S60–71

    Google Scholar 

  38. Metra M, Nodari S, D’Aloia A, et al. Beta-blocker therapy influences the hemodynamic response to inotropic agents in patients with heart failure: a randomized comparison of dobutamine and enoximone before and after chronic treatment with metoprolol or carvedilol. J Am Coll Cardiol 2002; 40: 1248–58

    Article  PubMed  CAS  Google Scholar 

  39. Elkayam U, Tasissa G, Binanay C, et al. Use and impact of inotropes and vasodilator therapy in hospitalized patients with severe heart failure. Am Heart J 2007; 153: 98–104

    Article  PubMed  Google Scholar 

  40. Cuffe MS, Califf RM, Adams Jr KF, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA 2002; 287: 1541–7

    Article  PubMed  CAS  Google Scholar 

  41. Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure: the PROMISE Study Research Group. N Engl J Med 1991; 325: 1468–75

    Article  PubMed  CAS  Google Scholar 

  42. Cohn JN, Goldstein SO, Greenberg BH, et al. A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure: Vesnarinone Trial Investigators. N Engl J Med 1998; 339: 1810–6

    Article  PubMed  CAS  Google Scholar 

  43. Uretsky BF, Jessup M, Konstam MA, et al. Multicenter trial of oral enoximone in patients with moderate to moderately severe congestive heart failure: lack of benefit compared with placebo. Enoximone Multicenter Trial Group. Circ 1990; 82: 774–80

    CAS  Google Scholar 

  44. Metra M, Eichhorn E, Abraham WT, et al. Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials. Eur Heart J 2009; 30: 3015–26

    Article  PubMed  CAS  Google Scholar 

  45. Pollesello P, Ovaska M, Kaivola J, et al. Binding of a new Ca2+ sensitizer, levosimendan, to recombinant human cardiac troponin C: a molecular modelling, fluorescence probe and proton nuclear magnetic resonance study. J Biol Chem 1994 18; 269(46): 28584–90

    PubMed  CAS  Google Scholar 

  46. Cleland JG, Freemantle N, Coletta AP, et al. Clinical trials update from the American Heart Association: REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE, and PROACTIVE. Eur J Heart Fail 2006; 8: 105–10

    Article  PubMed  CAS  Google Scholar 

  47. Mebazaa A, Nieminen MS, Packer M, et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE randomized trial. JAMA 2007; 297: 1883–91

    Article  PubMed  CAS  Google Scholar 

  48. Mebazaa A, Nieminen MS, Filippatos GS, et al. Levosimendan vs. dobutamine: outcomes for acute heart failure patients on β-blockers in SURVIVE. Eur J Heart Fail 2009; 11: 304–11

    CAS  Google Scholar 

  49. Nieminen MS, Cleland JG, Eha J, et al. Oral levosimendan in patients with severe chronic heart failure: the PERSIST study. Eur J Heart Fail 2008; 10: 1246–54

    Article  PubMed  CAS  Google Scholar 

  50. Khan H, Metra M, Blair JE, et al. Istaroxime, a first in class new chemical entity exhibiting SERCA-2 activation and Na-K-ATPase inhibition: a new promising treatment for acute heart failure syndromes? Heart Fail Rev 2009; 14: 277–87

    Article  PubMed  CAS  Google Scholar 

  51. Gheorghiade M, Blair JE, Filippatos GS, et al. Hemodynamic, echocardiographic, and neurohormonal effects of istaroxime, a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure. J Am Coll Cardiol 2008; 51: 2276–85

    Article  PubMed  CAS  Google Scholar 

  52. Shah SJ, Blair JE, Filippatos GS, et al. Effects of istaroxime on diastolic stiffness in acute heart failure syndromes: results from the Hemodynamic, Echocardiographic, and Neurohormonal Effects of Istaroxime, a Novel Intravenous Inotropic and Lusitropic Agent: a Randomized Controlled Trial in Patients Hospitalized with Heart Failure (HORIZON-heart failure) trial. Am Heart J 2009; 157: 1035–41

    Article  PubMed  CAS  Google Scholar 

  53. Dec GW. Istaroxime in heart failure: new hope or more hype. J Am Coll Cardiol 2008; 51: 2286–8

    Article  PubMed  CAS  Google Scholar 

  54. Teerlink JR. A novel approach to improve cardiac performance: cardiac myosin activators. Heart Fail Rev 2009; 14: 289–98

    Article  PubMed  CAS  Google Scholar 

  55. Shen YT, Malik FI, Zhao X, et al. Improvement of cardiac function by a cardiac myosin activator in conscious dogs with systolic heart failure. Circ Heart Fail 2010; 3: 522–7

    Article  PubMed  Google Scholar 

  56. Bax JJ, Casadei B, Di Mario C, et al. Highlights of the 2009 scientific sessions of the European Society of Cardiology. J Am Coll Cardiol 2009; 54: 2447–58

    Article  PubMed  Google Scholar 

  57. Vaughan J, Donaldson C, Bittencourt J, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 1995; 378: 287–92

    Article  PubMed  CAS  Google Scholar 

  58. Rademaker MT, Cameron VA, Charles CJ, et al. Integrated hemodynamic, hormonal, and renal actions of urocortin 2 in normal and paced sheep: beneficial effects in heart failure. Circulation 2005; 112: 3624–32

    Article  PubMed  CAS  Google Scholar 

  59. Rademaker MT, Charles CJ, Espiner EA, et al. Beneficial hemodynamic, endocrine, and renal effects of urocortin in experimental heart failure: comparison with normal sheep. J Am Coll Cardiol 2002; 40: 1495–505

    Article  PubMed  CAS  Google Scholar 

  60. Rademaker MT, Cameron VA, Charles CJ, et al. Urocortin 3: haemodynamic, hormonal, and renal effects in experimental heart failure. Eur Heart J 2006; 27: 2088–98

    Article  PubMed  CAS  Google Scholar 

  61. Rademaker MT, Charles CJ, Nicholls MG, et al. Urocortin 2 inhibits furosemide-induced activation of renin and enhances renal function and diuretic responsiveness in experimental heart failure. Circ Heart Fail 2009; 2: 532–40

    Article  PubMed  CAS  Google Scholar 

  62. Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 2004; 25: 634–41

    Article  PubMed  CAS  Google Scholar 

  63. Soukoulis V, Dihu JB, Sole M, et al. Micronutrient deficiencies an unmet need in heart failure. J Am Coll Cardiol 2009; 54: 1660–73

    Article  PubMed  CAS  Google Scholar 

  64. Opie LH, Knuuti J. The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol 2009; 54: 1637–46

    Article  PubMed  CAS  Google Scholar 

  65. Horowitz JD, Chirkov YY, Kennedy JA, et al. Modulation of myocardial metabolism: an emerging therapeutic principle. Curr Opin Cardiol 2010; 25: 329–34

    Article  PubMed  Google Scholar 

  66. Killalea SM, Krum H. Systematic review of the efficacy and safety of perhexiline in the treatment of ischemic heart disease. Am J Cardiovasc Drugs 2001; 1: 193–204

    Article  PubMed  CAS  Google Scholar 

  67. Lee L, Campbell R, Scheuermann-Freestone M, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 2005; 112: 3280–8

    Article  PubMed  CAS  Google Scholar 

  68. Fragasso G, Piatti Md PM, Monti L, et al. Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am Heart J 2003; 146: E18

    Article  PubMed  CAS  Google Scholar 

  69. Fragasso G, Palloshi A, Puccetti P, et al. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol 2006; 48: 992–8

    Article  PubMed  CAS  Google Scholar 

  70. Tuunanen H, Engblom E, Naum A, et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation 2008; 118: 1250–8

    Article  PubMed  CAS  Google Scholar 

  71. Di Napoli P, Di Giovanni P, Gaeta MA, et al. Trimetazidine and reduction in mortality and hospitalization in patients with ischemic dilated cardiomyopathy: a post hoc analysis of the Villa Pini d’Abruzzo Trimetazidine Trial. J Cardiovasc Pharmacol 2007; 50: 585–9

    Article  PubMed  Google Scholar 

  72. Fragasso G, Perseghin G, De Cobelli F, et al. Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatine/adenosine triphosphate ratio in patients with heart failure. Eur Heart J 2006; 27: 942–8

    Article  PubMed  CAS  Google Scholar 

  73. Sossalla S, Wagner S, Rasenack EC, et al. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts: role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol 2008; 45: 32–43

    Article  PubMed  CAS  Google Scholar 

  74. Wu Y, Song Y, Belardinelli L, et al. The late Na+ current (INa) inhibitor ranolazine attenuates effects of palmitoyl-L-carnitine to increase late INa and cause ventricular diastolic dysfunction. J Pharmacol Exp Ther 2009; 330: 550–7

    Article  PubMed  CAS  Google Scholar 

  75. Rastogi S, Sharov VG, Mishra S, et al. Ranolazine combined with enalapril or metoprolol prevents progressive LV dysfunction and remodeling in dogs with moderate heart failure. Am J Physiol Heart Circ Physiol 2008; 295: H2149–55

    Article  PubMed  CAS  Google Scholar 

  76. Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 2004; 110: 955–61

    Article  PubMed  CAS  Google Scholar 

  77. Sokos GG, Nikolaidis LA, Mankad S, et al. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 2006; 12: 694–9

    Article  PubMed  CAS  Google Scholar 

  78. Halbirk M, Nørrelund H, Møller N, et al. Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure. Am J Physiol Heart Circ Physiol 2010; 298: H1096–102

    Article  PubMed  CAS  Google Scholar 

  79. Lehnart SE, Maier LS, Hasenfuss G. Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail Rev 2009; 14(4): 213–24

    Article  PubMed  CAS  Google Scholar 

  80. Jaski BE, Jessup ML, Mancini DM, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial. J Card Fail 2009; 15: 171–81

    Article  PubMed  CAS  Google Scholar 

  81. Rengo G, Lymperopoulos A, Leosco D, et al. GRK2 as a novel gene therapy target in heart failure. J Mol Cell Cardiol. Epub 2010 Aug 25

Download references

Acknowledgements

No funding was provided for the preparation of this paper. Marco Metra has received honoraria for speeches and participation to advisory boards from Cardiokine, Corthera, Merck, Novartis and Servier. No potential conflicts of interest are reported by the other authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Metra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metra, M., Bettari, L., Carubelli, V. et al. Use of Inotropic Agents in Patients with Advanced Heart Failure. Drugs 71, 515–525 (2011). https://doi.org/10.2165/11585480-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11585480-000000000-00000

Keywords

Navigation