Skip to main content
Log in

Using Bioinformatics for Drug Target Identification from the Genome

  • Genomics in Drug Development
  • Published:
American Journal of Pharmacogenomics

Abstract

Genomics and proteomics technologies have created a paradigm shift in the drug discovery process, with bioinformatics having a key role in the exploitation of genomic, transcriptomic, and proteomic data to gain insights into the molecular mechanisms that underlie disease and to identify potential drug targets. We discuss the current state of the art for some of the bioinformatic approaches to identifying drug targets, including identifying new members of successful target classes and their functions, predicting disease relevant genes, and constructing gene networks and protein interaction networks. In addition, we introduce drug target discovery using the strategy of systems biology, and discuss some of the data resources for the identification of drug targets.

Although bioinformatics tools and resources can be used to identify putative drug targets, validating targets is still a process that requires an understanding of the role of the gene or protein in the disease process and is heavily dependent on laboratory-based work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Drews J. Genomic sciences and the medicine of tomorrow. Nat Biotechnol 1996; 14: 1516–8

    Article  PubMed  CAS  Google Scholar 

  2. Drews J. Drug discovery: a historical perspective. Science 2000; 287: 1960–4

    Article  PubMed  CAS  Google Scholar 

  3. Terstappen GC, Reggiani A. In silico research in drug discovery. Trends Pharmacol Sci 2001; 22: 23–6

    Article  PubMed  CAS  Google Scholar 

  4. International Human Genome Sequence Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004; 431: 931–45

    Article  Google Scholar 

  5. Zambrowicz BP, Sands AT. Knockouts model the 100 best-selling drugs: will they model the next 100? Nat Rev Drug Discov 2003; 2: 38–51

    Article  PubMed  CAS  Google Scholar 

  6. Searls DB. Using bioinformatics in gene and drug discovery. Drug Discov Today 2000; 4: 135–43

    Article  Google Scholar 

  7. Whittaker PA. What is the relevance of bioinformatics to pharmacology? Trends Pharmacol Sci 2003; 24: 434–9

    Article  PubMed  CAS  Google Scholar 

  8. Dahl SG, Kristiansen K, Sylte I. Bioinformatics: from genome to drug targets. Ann Med 2002; 34: 306–12

    Article  PubMed  CAS  Google Scholar 

  9. Allison DB. Statistical methods for microarray research for drug target identification 2002. Proceedings of the American Statistical Association, Bi-opharmaceutical Section [CD-ROM]. Alexandria (VA): American Statistical Association, 2002

    Google Scholar 

  10. Sands AT. The rule of three: selecting the best new drug targets. Drug Discovery & Development 2003 Mar [online]. Available from URL: http://www.ddd-mag.com/ [Accessed 2005 Oct 10]

    Google Scholar 

  11. Drews J, Ryser S. Classic drug targets. Nat Biotechnol 1997; 15: 1318–9

    Article  PubMed  CAS  Google Scholar 

  12. Bouvier M. Structural and functional aspects of G protein-coupled receptor oligomerization. Biochem Cell Biol 1998; 76: 1–11

    Article  PubMed  Google Scholar 

  13. Nambi P, Aiyar N. G protein-coupled receptors in drug discovery. Assay Drug Dev Technol 2003; 1: 305–11

    Article  PubMed  CAS  Google Scholar 

  14. Fredriksson R, Schioth HB. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 2005; 67: 1414–25

    Article  PubMed  CAS  Google Scholar 

  15. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000; 289: 739–45

    Article  PubMed  CAS  Google Scholar 

  16. Clapham DE. TRP channels as cellular sensors. Nature 2003; 426: 517–24

    Article  PubMed  CAS  Google Scholar 

  17. Terstappen GC. Ion channel screening technologies today. Drug Discov Today 2005; 2: 133–40

    Article  CAS  Google Scholar 

  18. Cahalan MD, Chandy KG. Ion channels in the immune system as targets for immunosuppression. Curr Opin Biotechnol 1997; 8: 749–56

    Article  PubMed  CAS  Google Scholar 

  19. Bennett PB, Guthrie HRE. Trends in ion channel drug discovery: advances in screening technologies. Trends Biotechnol 2003: 21, 563–9

    Article  PubMed  CAS  Google Scholar 

  20. Duarte J, Perrière G, Laudet V, et al. NUREBASE: database of nuclear hormone receptors. Nucl Acids Res 2002; 30: 364–8

    Article  PubMed  CAS  Google Scholar 

  21. Inpharmatica successfully closes GBP13.9m (USD25m) third round financing. 2004 Nov 8 [press release; online]. Available from URL: http://www.inpharmatica.com/news/2004/081104.htm [Accessed 2005 Nov15]

  22. Docherty AJ, Crabbe T, O’Connell JP, et al. Proteases as drug targets. Biochem Soc Symp 2003; 70: 147–61

    PubMed  CAS  Google Scholar 

  23. Leung D, Abbenante G, Fairlie DP. Protease inhibitors: current status and future prospects. J Med Chem 2000; 43: 305–41

    Article  PubMed  CAS  Google Scholar 

  24. Cohen P. Protein kinases: the major drug targets of the twenty-first century. Nat Rev Drug Discov 2002; 1: 309–15

    Article  PubMed  CAS  Google Scholar 

  25. Shears SB. Rounding up the usual suspects: protein kinases as therapeutic targets. Drug Discovery Today 2005; 10: 240–2

    Article  PubMed  Google Scholar 

  26. Lau LF, Seymour PA, Sanner MA, et al. Cdk5 as a drug target for the treatment of Alzheimer’s disease. J Mol Neurosci 2002; 19(3): 267–73

    Article  PubMed  CAS  Google Scholar 

  27. Smith C. Drug target identification: a question of biology. Nature 2004; 428: 225–31

    Article  CAS  Google Scholar 

  28. Augen J. The evolving role of information technology in the drug discovery process. Drug Discov Today 2002; 7: 315–23

    Article  PubMed  CAS  Google Scholar 

  29. Head-Gordon T, Wooley JC. Computational challenges in structural and functional genomics. IBM Systems J 2001; 40(2): 265–96

    Article  Google Scholar 

  30. Horn F, Bettler E, Oliveira L, et al. GPCRDB information system for G proteincoupled receptors. Nucleic Acids Res 2003; 31: 294–7

    Article  PubMed  CAS  Google Scholar 

  31. Le Novère N, Changeux J-P. LGICdb: the ligand-gated ion channel database. Nucleic Acids Res 2001; 29: 294–5

    Article  PubMed  Google Scholar 

  32. IUPHAR receptor database [online]. Available from URL: http://www.iuphar-db.org/iuphar-rd [Accessed 2005 Oct 10]

  33. Rawlings ND, O’Brien E, Barrett AJ. MEROPS: the protease database. Nucleic Acids Res 2002; 30: 343–6

    Article  PubMed  CAS  Google Scholar 

  34. Krupa A, Abhinandan KR, Srinivasan N. KinG: a database of protein kinases in genome. Nucleic Acids Res 2004; 32: 153–5

    Article  Google Scholar 

  35. Horn F, Vriend G, Cohen FE. Collecting and harvesting biological data: the GPCRDB and NucleaRDB information systems. Nucleic Acids Res 2001; 29: 346–9

    Article  PubMed  CAS  Google Scholar 

  36. Duarte J, Perrière G, Laudet V, Robinson-Rechavi M. NUREBASE: database of nuclear hormone receptors Nucleic Acids Res 2002; 30: 364–368

    CAS  Google Scholar 

  37. Chen X, Ji ZL, Chen YZ. TTD: therapeutic target database. Nucleic Acids Res 2002; 30: 412–5

    Article  PubMed  CAS  Google Scholar 

  38. Aureus Pharma website [online]. Available from URL: http://www.aureus-pharma.com [Accessed 2005 Oct 10]

  39. LifeSpan Biosciences website [online]. Available from URL: http://www.lsbio.com [Accessed 2005 Oct 10]

  40. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28: 27–30

    Article  PubMed  CAS  Google Scholar 

  41. Zheng CJ, Zhou H, Xie B, et al. TRMP: a database of therapeutically relevant multiple-pathways. Bioinformatics 2004; 20(14): 2236–41

    Article  PubMed  CAS  Google Scholar 

  42. Krieger CJ, Zhang P, Mueller LA, et al. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 2004; 32: 438–42

    Article  Google Scholar 

  43. Goto S, Okuno Y, Hattori M, et al. LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res 2002; 30: 402–4

    Article  PubMed  CAS  Google Scholar 

  44. Hamosh A, Scott AF, Amberger J, et al. Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2002; 30: 52–5

    Article  PubMed  CAS  Google Scholar 

  45. Human Protein Interaction Database [online]. Available from URL: http://www.hpid.org [Accessed 2005 Oct 10]

  46. PhRMA website [online]. Available from URL: http://www.phrma.org/ [Accessed 2005 Oct 10]

  47. Bader GD, Betel D, Hogue CWV. BIND: the biomolecular interaction network database. Nucleic Acids Res 2003; 31: 248–50

    Article  PubMed  CAS  Google Scholar 

  48. Heart High-Performance 2-DE Database [online]. Available from URL: http://www.mdc-berlin.de/~emu/heart/ [Accessed Nov 15]

  49. Hewett M, Oliver DE, Rubin DL, et al. PharmGKB: the pharmacogenetics knowledge base. Nucleic Acids Res 2002; 30: 163–5

    Article  PubMed  CAS  Google Scholar 

  50. Foord SM. Receptor classification: post genome. Curr Opin Pharmacol 2002; 2: 561–6

    Article  PubMed  CAS  Google Scholar 

  51. Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science 2002; 298: 1912–34

    Article  PubMed  CAS  Google Scholar 

  52. Lapinsh M, Gutcaits A, Prusis P, et al. Classification of G-protein coupled receptors by alignment-independent extraction of principal chemical properties of primary amino acid sequences. Protein Sci 2002; 11: 795–805

    Article  PubMed  CAS  Google Scholar 

  53. Takeda S, Kadowaki S, Haga T, et al. Identification of G protein-coupled receptor genes from the human genome sequence. FEBS Lett 2002; 520: 97–101

    Article  PubMed  CAS  Google Scholar 

  54. Karchin R, Karplus K, Haussler D. Classifying G-protein coupled receptors with support vector machines. Bioinformatics 2002; 18: 147–59

    Article  PubMed  CAS  Google Scholar 

  55. Bhasin M, Raghava GP. GPCRpred: an SVM-based method for prediction of families and subfamilies of G-protein coupled receptors. Nucleic Acids Res 2004; 32: W383–9

    Article  PubMed  CAS  Google Scholar 

  56. Sugiyama Y, Poluliakh N, Shimizu T. Identification of transmembrane protein functions by binary topology patterns. Protein Eng 2003; 16: 479–88

    Article  PubMed  CAS  Google Scholar 

  57. Inoue Y, Ikeda M, Shimizu T. Proteome-wide classification and identification of mammalian-type GPCRs by binary topology pattern. Comput Biol Chem 2004; 28: 39–49

    Article  PubMed  CAS  Google Scholar 

  58. Zhou YH, Yang L, Wang H, et al. Prediction of eukaryotic gene structures based on multilevel optimization. Chin Sci Bull 2004; 49(4): 321–8

    CAS  Google Scholar 

  59. Adams MD, Kerlavage AR, Fields C, et al. 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nat Genet 1993; 4: 256–67

    Article  PubMed  CAS  Google Scholar 

  60. Allikmets R, Gerrard B, Glavac D, et al. Characterization and mapping of three new mammalian ATP-binding transporter genes from an EST database. Mamm Genome 1995; 6: 114–7

    Article  PubMed  CAS  Google Scholar 

  61. Boguski MS, Lowe TM, Tolstoshev CM. dbEST: database for “expressed sequence tags”. Nat Genet 1993; 4(4): 332–3

    Article  PubMed  CAS  Google Scholar 

  62. Wittenberger T, Schaller HC, Hellebrand S. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors. J Mol Biol 2001; 307: 799–813

    Article  PubMed  CAS  Google Scholar 

  63. Marvanová M, Törönen P, Storvik M, et al. Synexpression analysis of ESTs in the rat brain reveals distinct patterns and potential drug targets. Mol Brain Res 2002; 104: 176–83

    Article  PubMed  Google Scholar 

  64. Zhou YH, Jing H, Li YE, et al. Identification of true EST alignments and exon regions of gene sequences. Chin Sci Bull 2004; 49(23): 2463–9

    CAS  Google Scholar 

  65. Aggarwal K, Lee KH. Functional genomics and proteomics as a foundation for systems biology. Brief Funct Genomic Proteomic 2003; 2: 175–84

    Article  PubMed  CAS  Google Scholar 

  66. Gabaldon T, Huynen MA. Prediction of protein function and pathways in the genome era. Cell Mol Life Sci 2004; 61: 930–44

    Article  PubMed  CAS  Google Scholar 

  67. Hennig S, Groth D, Lehrach H. Automated gene ontology annotation for anonymous sequence data. Nucleic Acids Res 2003; 31: 3712–5

    Article  PubMed  CAS  Google Scholar 

  68. Jensen LJ, Gupta R, Staerfeldt HH, et al. Prediction of human protein function according to gene ontology categories. Bioinformatics 2003; 19: 635–42

    Article  PubMed  CAS  Google Scholar 

  69. Schug J, Diskin S, Mazzarelli J, et al. Predicting gene ontology functions from ProDom and CDD protein domains. Genome Res 2002; 12: 648–55

    Article  PubMed  CAS  Google Scholar 

  70. Guffanti A. Modeling molecular networks: a systems biology approach to gene function. Genome Biol 2002; 3(10): 4031.1–4031.3

    Article  Google Scholar 

  71. Meltzer PS. Spotting the target: microarrays for disease gene discovery. Curr Opin Genet Dev 2001; 11: 258–63

    Article  PubMed  CAS  Google Scholar 

  72. Marton MJ, De Risi JL, Bennet HA, et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 1998; 4: 1293–301

    Article  PubMed  CAS  Google Scholar 

  73. Miklos GL, Maleszka R. Microarray reality checks in the context of a complex disease. Nat Biotechnol 2004; 22: 615–21

    Article  PubMed  CAS  Google Scholar 

  74. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001; 98: 5116–21

    Article  PubMed  CAS  Google Scholar 

  75. Schulze A, Downward J. Navigating gene expression using microarrays: a technology review. Nat Cell Biol 2001; 3: E190–5

    Article  PubMed  CAS  Google Scholar 

  76. Draghici S, Khatri P, Martins RP, et al. Global functional profiling of gene expression. Genomics 2003; 81: 98–104

    Article  PubMed  CAS  Google Scholar 

  77. Volinia S, Evangelisti R, Francioso F, et al. GOAL: automated Gene Ontology analysis of expression profiles. Nucleic Acids Res 2004; 32: W492–9

    Article  PubMed  CAS  Google Scholar 

  78. Wang WQ, Zhou YH, Bi R. Correlating genes and functions to diseases by systematic differential analysis of expression profiles. Lecture Notes Comput Sci 2005; 3645: 11–20

    Article  Google Scholar 

  79. Pericak-Vance MA, Yamaoka LH, Haynes CS, et al. Genetic linkage studies in Alzheimer’s disease families. Exp Neurol 1988; 102: 271–9

    Article  PubMed  CAS  Google Scholar 

  80. Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261: 921–3

    Article  PubMed  CAS  Google Scholar 

  81. Freudenberg J, Propping P. A similarity-based method for genome-wide prediction of disease-relevant human genes. Bioinformatics 2002; 18Suppl. 2: S110–5

    Article  PubMed  Google Scholar 

  82. Van Driel MA, Cuelenaere K, Kemmeren PP, et al. A new web-based data mining tool for the identification of candidate genes for human genetic disorders. Eur J Hum Genet 2003; 11: 57–63

    Article  PubMed  Google Scholar 

  83. Perez-Iratxeta C, Bork P, Andrade MA. Association of genes to genetically inherited diseases using data mining. Nat Genet 2002; 31: 316–9

    PubMed  CAS  Google Scholar 

  84. Zhou YH, Zhou QX, Liu HL, et al. Predicting disease genes for familial dilated cardiomyopathy based on the codon usage bias. Chin Sci Bull 2005; 50(18): 2028–32

    Article  Google Scholar 

  85. Pettipher R, Mangion J, Hunter MG. et al. Identification of G-protein-coupled receptors involved in inflammatory disease by genetic association studies. Curr Opin Pharmacol 2005: 5, 412–7

    Article  PubMed  CAS  Google Scholar 

  86. Richard M, Bruskiewich AB, Cosico WE, et al. Linking genotype to phenotype: the International Rice Information System (IRIS). Bioinformatics 2003; 19: 63–5

    Article  Google Scholar 

  87. Lindpaintner K. Science and society: the impact of pharmacogenetics and pharmacogenomics on drug discovery. Nature Rev Drug Discovery 2002; 1: 463–9

    Article  CAS  Google Scholar 

  88. Lindpaintner K. Pharmacogenetics and pharmacogenomics in drug discovery and development: an overview. Clin Chem Lab Med 2003; 41(4): 398–410

    Article  PubMed  CAS  Google Scholar 

  89. Campbell DA, Valdes AM, Spurr N. Making drug discovery a SN(i)P. Drug Discov Today 2000; 5: 388–96

    Article  CAS  Google Scholar 

  90. Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 2003; 348: 538–49

    Article  PubMed  CAS  Google Scholar 

  91. Cabusora L, Sutton E, Fulmer A, et al. Differential network expression during drug and stress response. Bioinformatics 2005; 21: 2898–905

    Article  PubMed  CAS  Google Scholar 

  92. Shmulevich I, Dougherty ER, Kim S, et al. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 2002; 18: 261–74

    Article  PubMed  CAS  Google Scholar 

  93. Akutsu T, Miyano S, Kuhara S. Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 2000; 16: 727–34

    Article  PubMed  CAS  Google Scholar 

  94. Imoto S, Savoie CJ, Aburatani S, et al. Use of gene networks for identifying and validating drug targets. J Bioinform Comput Biol 2003; 1: 459–74

    Article  PubMed  CAS  Google Scholar 

  95. Gardner TS, di Bernardo D, Lorenz D, et al. Inferring gene networks and identifying compound mode of action via expression profiling. Science 2003; 301: 102–5

    Article  PubMed  CAS  Google Scholar 

  96. Stagljar I, Hottiger MO, Auerbach D, et al. Protein-protein interactions as a basis for drug target identification. Innov Pharm Technol 2002; 1: 66–9

    Google Scholar 

  97. Rain JC, Selig L, De Reuse H, et al. The protein-protein interaction map of Helicobacter pylori. Nature 2001; 409: 211–5

    Article  PubMed  CAS  Google Scholar 

  98. Luan Y, Li H. Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data. Bioinformatics 2004; 20: 332–9

    Article  PubMed  CAS  Google Scholar 

  99. Nariai N, Kim S, Imoto S, et al. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks. Pac Symp Sympos Biocomput World Sci 2004; 9: 336–47

    Google Scholar 

  100. Bader JS, Chaudhuri A, Rothberg JM, et al. Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 2004; 22: 78–85

    Article  PubMed  CAS  Google Scholar 

  101. Butcher EC, Berg EL, Kunkel EJ. Systems biology in drug discovery. Nat Bi-otechnol 2003; 22: 1253–9

    Article  Google Scholar 

  102. Hood L, Galas D. The digital code of DNA. Nature 2003; 421: 444–8

    Article  PubMed  Google Scholar 

  103. Nicholson JK, Wilson ID. Understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2004; 2: 668–76

    Article  Google Scholar 

  104. Parsons AB, Brost RL, Ding H, et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 2003; 22: 62–9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grants no. 90203011 and no. 30370354), and the Ministry of Education of China (grant no. 505010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenran Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Zhou, Y. Using Bioinformatics for Drug Target Identification from the Genome. Am J Pharmacogenomics 5, 387–396 (2005). https://doi.org/10.2165/00129785-200505060-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200505060-00005

Keywords

Navigation