Skip to main content
Log in

Mutations in Cardiac Sodium Channels

Clinical Implications

  • Practical Pharmacogenomics
  • Published:
American Journal of Pharmacogenomics

Abstract

Voltage-gated sodium channels (VGSCs) are critical transmembrane proteins responsible for the rapid action potential upstroke in most excitable cells. Recently discovered mutations in VGSCs, which underlie idiopathic clinical disease, have emphasized the importance of these channels in tissues such as skeletal muscle, nervous system, and myocardium. Mutations in the gene encoding the cardiac sodium channel isoform (SCN5A) have been linked to at least three abnormal phenotypes: variant 3 of the Long QT syndrome (LQT-3); Brugada’s syndrome (BrS); and isolated cardiac conduction disease (ICCD). Mutations in SCN5A manifest as one or more of these clinical phenotypes — the precise distinction between these diseases is increasingly subtle.

Clinical management of LQT-3 and diagnosis of BrS with the local anesthetic flecainide has proven promising. Channels associated with LQT-3 (D1790G) and BrS (Y1795H) both show more sensitivity to flecainide than wild-type (WT) channels, while lidocaine sensitivity is unchanged. One plausible explanation for differential drug sensitivity is that mutant channels may allow more access to a receptor site compared with WT through altered protein allosteric changes during an action potential. The high affinity binding site for local anesthetic block has been identified in the pore region of the channel. This region is not water accessible during the closed state, thus requiring channel opening for charged drug (flecainide and mexiletine) access and block. Channel mutations which disrupt inactivation biophysics lead to increased drug binding by altering the time the binding site is accessible during an action potential.

Neutral drugs (lidocaine) which are not dependent on channel opening for binding site access will not be sensitive to mutations that alter channel inactivation properties. Interestingly another LQT-3 mutant (Y1795C) shows no change in flecainide sensitivity, suggesting that although drug effects of SCN5A mutations cross disease boundaries, clinical management with flecainide will be beneficial to patients in a mutation-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldin AL, Barchi RL, Caldwell JH, et al. Nomenclature of voltage-gated sodium channels. Neuron 2000; 28(2): 365–8

    Article  PubMed  CAS  Google Scholar 

  2. Goldin AL. Resurgence of sodium channel research. Ann Rev Physiol 2001; 63: 871–94

    Article  CAS  Google Scholar 

  3. Goldin AL. Evolution of voltage-gated Na+ channels. J Exp Biol 2002; 205(5): 575–84

    PubMed  CAS  Google Scholar 

  4. Qu Y, Curtis R, Lawson D, et al. Differential modulation of sodium channel gating and persistent sodium currents by the beta 1, beta 2, and beta 3 subunits. Mol Cell Neurosci 2001; 18(5): 570–80

    Article  PubMed  CAS  Google Scholar 

  5. Qu Y, Isom LL, Westenbroek RE, et al. Modulation of cardiac Na+ channel expression in Xenopus oocytes by beta 1 subunits. J Biol Chem 1995; 270(43): 25696–701

    Article  PubMed  CAS  Google Scholar 

  6. Stuhmer W, Conti F, Suzuki H, et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 1989; 339(6226): 597–603

    Article  PubMed  CAS  Google Scholar 

  7. Kontis KJ, Goldin AL. Sodium channel inactivation in altered by substitution of voltage sensor positive charges. J Gen Physiol 1997; 110(6): 765

    Google Scholar 

  8. West JW, Patton DE, Scheuer T, et al. A cluster of hydrophobic amino acid residues required for fast Na (+)-channel inactivation. Proc Natl Acad Sci U S A 1992; 89(22): 10910–4

    Article  PubMed  CAS  Google Scholar 

  9. Smith MR, Goldin AL. Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys J 1997; 73(4): 1885–95

    Article  PubMed  CAS  Google Scholar 

  10. Goldin AL, Auld VJ, Hebert T, et al. Structural and functional-analysis of the voltage gated sodium-channel. Biophys J 1990; 57(2): A210

    Google Scholar 

  11. Cormier JW, Rivolta I, Tateyama M, et al. Secondary structure of the human cardiac Na+ channel C terminus: evidence for a role of helical structures in modulation of channel inactivation. J Biol Chem 2002; 277(11): 9233–41

    Article  PubMed  CAS  Google Scholar 

  12. Mantegazza M, Yu FH, Catterall WA, et al. Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proc Natl Acad Sci U S A 2001; 98(26): 15348–53

    Article  PubMed  CAS  Google Scholar 

  13. Sun YM, Favre I, Schild L, et al. On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel: effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. J Gen Physiol 1997; 110(6): 693–715

    Article  PubMed  CAS  Google Scholar 

  14. Yamagishi T, Li RA, Hsu K, et al. Molecular architecture of the volta re-dependent Na channel: functional evidence for at helices in the pore. J Gen Physiol 2001; 118(2): 171–81

    Article  PubMed  CAS  Google Scholar 

  15. Hayward LJ, Kim JS, Jang G, et al. A Na channel mutation associated with hyperkalemic periodic paralysis causes myotonia, K-induced weakness, and myopathy in mouse skeletal muscle. Neurology 2001; 56(8): A81

    Google Scholar 

  16. Hayward LJ, Brown RH, Cannon SC. Inactivation defects caused by myotonia-associated mutations in the sodium channel III-IV linker. J Gen Physiol 1996; 107(5): 559–76

    Article  PubMed  CAS  Google Scholar 

  17. Green DS, George AL, Cannon SC. Human sodium channel gating defects caused by missense mutations in S6 segments associated with myotonia: S804F and V1293I. J Physiol 1998 Aug 1; 510 (Pt 3): 685–94

    Article  PubMed  CAS  Google Scholar 

  18. Jurkat-Rott K, Lerche H, Lehmann-Horn F. Skeletal muscle channelopathies. J Neurol 2002; 249(11): 1493–502

    Article  PubMed  CAS  Google Scholar 

  19. Jurkat-Rott K, Mitrovic N, Hang C, et al. Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc Natl Acad Sci U S A 2000; 97(17): 9549–54

    Article  PubMed  CAS  Google Scholar 

  20. Meisler MH, Kearney JA, Sprunger LK, et al. Mutations of voltage-gated sodium channels in movement disorders and epilepsy. Novartis Found Symp 2002; 241: 72–86

    Article  PubMed  CAS  Google Scholar 

  21. Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 2000; 24(4): 343–5

    Article  PubMed  CAS  Google Scholar 

  22. Meisler MH, Kearney J, Ottman R, et al. Identification of epilepsy genes in human and mouse. Annu Rev Genet 2001; 35: 567–88

    Article  PubMed  CAS  Google Scholar 

  23. Escayg A, Heils A, MacDonald BT, et al. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus: and prevalence of variants in patients with epilepsy. Am J Hum Genet 2001; 68(4): 866–73

    Article  PubMed  CAS  Google Scholar 

  24. Meisler MH, Sprunger LK, Plummer N, et al. Roles of sodium channel SCN8A (Chr 12q13) and calcium channel CACNB4 (Chr 2q23) in human and mouse movement disorders. Ann Neurol 1998; 44(3): 455

    Google Scholar 

  25. Meisler MH, Kearney J, Escayg A, et al. Sodium channels and neurological disease: insights from SCN8A mutations in the mouse. Neuroscientist 2001; 7(2): 136–45

    Article  PubMed  CAS  Google Scholar 

  26. Spampanato J, Escayg A, Meisler MH, et al. Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2. J Neurosci 2001; 21(19): 7481–90

    PubMed  CAS  Google Scholar 

  27. Lerche H, Weber YG, Baier H, et al. Generalized epilepsy with febrile seizures plus: further heterogeneity in a large family. Neurology 2001; 57(7): 1191–8

    Article  PubMed  CAS  Google Scholar 

  28. Steinlein OK. Genes and mutations in idiopathic epilepsy. Am J Med Genet 2001; 106(2): 139–45

    Article  PubMed  CAS  Google Scholar 

  29. Carmeliet E, Fozzard HA, Hiraoka M, et al. New approaches to antiarrhythmic therapy: part I. emerging therapeutic applications of the cell biology of cardiac arrhythmias. Circulation 2001; 104(23): 2865–73

    Article  Google Scholar 

  30. Chandra R, Starmer CF, Grant AO. Multiple effects of the KPQ deletion on gating of human cardiac Na+ channels expressed in mammalian cells. Am J Physiol 1998; 274(43): H1643–54

    PubMed  CAS  Google Scholar 

  31. Bennett PB, Yazawa K, Makita N, et al. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995; 376(6542): 683–5

    Article  PubMed  CAS  Google Scholar 

  32. Clancy CE, Rudy Y. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 1999; 400(6744): 566–9

    Article  PubMed  CAS  Google Scholar 

  33. Chen QY, Kirsch GE, Zhang DM, et al. Genetic basis and molecular mechanism for idiopathic: ventricular fibrillation. Nature 1998; 392(6673): 293–6

    Article  PubMed  CAS  Google Scholar 

  34. Wang DW, Makita N, Kitabatake A, et al. Enhanced Na+ channel intermediate inactivation in Brugada syndrome. Circ Res 2000; 87(8): E37–43

    Article  PubMed  CAS  Google Scholar 

  35. Rivolta I, Abriel H, Tateyama M, et al. Inherited Brugada and Long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J Biol Chem 2001; 276(33): 30623–30

    Article  PubMed  CAS  Google Scholar 

  36. Grant AO, Carboni MP, Neplioueva V, et al. Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J Clin Invest 2002; 110(8): 1201–9

    PubMed  CAS  Google Scholar 

  37. Tan HL, Bink-Boelkens MTE, Bezzina CR, et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature 2001; 409(6823): 1043–7

    Article  PubMed  CAS  Google Scholar 

  38. Clancy CE, Kass RS. Defective cardiac ion channels: from mutations to clinical syndromes. J Clin Invest 2002; 110(8): 1075–7

    PubMed  CAS  Google Scholar 

  39. Shaw RM, Rudy Y. Ionic mechanisms of propagation in cardiac tissue: roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ Res 1997; 81(5): 727–41

    Article  PubMed  CAS  Google Scholar 

  40. Rohr S, Kucera JP, Kleber AG. Slow conduction in cardiac tissue: I. effects of a reduction of excitability versus a reduction of electrical coupling on microconduction. Circ Res 1998; 83(8): 781–94

    Article  PubMed  CAS  Google Scholar 

  41. Wehrens XHT, Abriel H, Cabo C, et al. Arrhythmogenic mechanism of an LQT-3 mutation of the human heart Na+ channel alpha-subunit: a computational analysis. Circulation 2000; 102(5): 584–90

    Article  PubMed  CAS  Google Scholar 

  42. Lossin C, Wang DW, Rhodes TH, et al. Molecular basis of an inherited epilepsy. Neuron 2002; 34(6): 877–84

    Article  PubMed  CAS  Google Scholar 

  43. Lossin C, Wang DW, Rhodes TH, et al. Functional expression of the human neuronal voltage-gated sodium channel SCN1A and characterization of mutants associated with familial epilepsy. Biophys J 2002; 82(1): 353a

    Google Scholar 

  44. Alekov AK, Rahman M, Mitrovic N, et al. Subtile defects in fast inactivation and activation of the sodium channel can cause epilepsy in man. Biophys J 2001; 80(1): 228a

    Google Scholar 

  45. Alekov AK, Rahman M, Mitrovic N, et al. Enhanced inactivation and acceleration of activation of the sodium channel associated with epilepsy in man. Eur J Neurosci 2001; 13(11): 2171–6

    Article  PubMed  CAS  Google Scholar 

  46. Hayward LJ, Sandoval GM, Cannon SC. Defective slow inactivation of sodium channels contributes to familial periodic paralysis. Neurology 1999; 52(7): 1447–53

    Article  PubMed  CAS  Google Scholar 

  47. Yue DT, Lawrence JH, Marban E. Two molecular transitions influence cardiac sodium channel gating. Science 1989; 244(4902): 349–52

    Article  PubMed  CAS  Google Scholar 

  48. Balser JR. Sodium “channelopathies” and sudden death: must you be so sensitive? Circ Res 1999; 85(9): 872–4

    Article  PubMed  CAS  Google Scholar 

  49. Veldkamp MW, Viswanathan PC, Bezzina C, et al. Two distinct congenital arrhythmias evoked by a multidysfunctional Na+ channel. Circ Res 2000; 86(9): E91–7

    Article  PubMed  CAS  Google Scholar 

  50. Wei J, Wang DW, Alings M, et al. Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation 1999; 99(24): 3165–71

    Article  PubMed  CAS  Google Scholar 

  51. An RH, Wang XL, Kerem B, et al. Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha-and beta1-subunits. Circ Res 1998; 83(2): 141–6

    Article  PubMed  CAS  Google Scholar 

  52. Rosen MR, Wit AL. Electropharmacology of anti-arrhythmic drugs. Am Heart J 1983; 106(4): 829–39

    Article  PubMed  CAS  Google Scholar 

  53. Rosen MR, Wit AL, Hoffman BF. Electrophysiology and pharmacology of cardiac-arrhythmias: 6. Cardiac effects of verapamil. Am Heart J 1975; 89(5): 665–73

    Article  PubMed  CAS  Google Scholar 

  54. Rosen MR, Wit AL, Hoffman BF. Electrophysiology and pharmacology of cardiac-arrhythmias: 4. Cardiac antiarrhythmic and toxic effects of digitalis. Am Heart J 1975; 89(3): 391–9

    Article  PubMed  CAS  Google Scholar 

  55. Wit AL, Rosen MR. Pathophysiologic mechanisms of cardiac-arrhythmias. Am Heart J 1983; 106(4): 798–811

    Article  PubMed  CAS  Google Scholar 

  56. Rosen MR, Wit AL. Arrhythmogenic actions of antiarrhythmic drugs. Am J Cardiol 1987; 59(11): E10–8

    Article  Google Scholar 

  57. Weissenburger J, Davy JM, Chezalviel F. Experimental models of torsades de pointes. Fundam Clin Pharmacol 1993; 7(1): 29–38

    Article  PubMed  CAS  Google Scholar 

  58. Brugada R, Brugada J, Antzelevitch C, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 2000; 101(5): 510–5

    Article  PubMed  CAS  Google Scholar 

  59. Brugada J, Brugada R, Brugada P. Pharmacological and device approach to therapy of inherited cardiac diseases associated with cardiac arrhythmias and sudden death. J Electrocardiol 2000; 33: 41–7

    Article  PubMed  Google Scholar 

  60. Priori SG, Napolitano C, Schwartz PJ, et al. The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge. Circulation 2000; 102(9): 945–7

    Article  PubMed  CAS  Google Scholar 

  61. Abriel H, Wehrens XHT, Benhorin J, et al. Molecular pharmacology of the sodium channel mutation D1790G linked to the long-QT syndrome. Circulation 2000; 102(8): 921–5

    Article  PubMed  CAS  Google Scholar 

  62. Grant AO, Chandra R, Keller C, et al. Block of wild-type and inactivation-deficient cardiac sodium channels IFM/QQQ stably expressed in mammalian cells. Biophys J 2000; 79(6): 3019–35

    Article  PubMed  CAS  Google Scholar 

  63. Liu HJ, Tateyama M, Clancy CE, et al. Channel openings are necessary but not sufficient for use-dependent block of cardiac Na+ channels by flecainide: evidence from the analysis of disease-linked mutations. J Gen Physiol 2002; 120(1): 39–51

    Article  PubMed  CAS  Google Scholar 

  64. Viswanathan PC, Bezzina CR, George AL, et al. Gating-dependent mechanisms for flecainide action in SCN5A-linked arrhythmia syndromes. Circulation 2001; 104(10): 1200–5

    Article  PubMed  CAS  Google Scholar 

  65. Nagatomo T, January CT, Makielski JC. Preferential block of late sodium current in the LQT3 DeltaKPQ mutant by the class I (C) antiarrhythmic flecainide. Mol Pharmacol 2000; 57(1): 101–7

    PubMed  CAS  Google Scholar 

  66. Wang DW, Yazawa K, Makita N, et al. Pharmacological targeting of long QT mutant sodium channels. J Clin Invest 1997; 99(7): 1714–20

    Article  PubMed  CAS  Google Scholar 

  67. Strichartz GR, Sanchez V, Arthur GR, et al. Fundamental properties of local anesthetics: II. Measured octanol:buffer partition coefficients and pKa values of clinically used drugs. Anesth Analg 1990; 71(2): 158–7

    Article  PubMed  CAS  Google Scholar 

  68. Schwarz W, Palade PT, Hille B. Local-anesthetics: effect of Ph on use-dependent block of sodium channels in frog muscle. Biophys J 1977; 20(3): 343–68

    Article  PubMed  CAS  Google Scholar 

  69. Hille B. Ph-dependent rate of action of local-anesthetics on node of ranvier. J Gen Physiol 1977; 69(4): 475–96

    Article  PubMed  CAS  Google Scholar 

  70. Hille B. Local-anesthetics: hydrophilic and hydrophobic pathways for drug-receptor reaction. J Gen Physiol 1977; 69(4): 497–515

    Article  PubMed  CAS  Google Scholar 

  71. Hille B. Interactions of ionic movement and gating processes in ionic channels of excitable membranes. Biophys J 1977; 17(2): A264

    Article  Google Scholar 

  72. Ragsdale DS, McPhee JC, Scheuer T, et al. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 1996; 93(17): 9270–5

    Article  PubMed  CAS  Google Scholar 

  73. Ragsdale DS, Mcphee JC, Scheuer T, et al. Molecular determinants of state-dependent block of Na+ channels by local-anesthetics. Science 1994; 265(5179): 1724–8

    Article  PubMed  CAS  Google Scholar 

  74. Weiser T, Qu YS, Catterall WA, et al. Differential interaction of R-mexiletine with the local anesthetic receptor site on brain and heart sodium channel alpha-subunits. Mol Pharmacol 1999; 56(6): 1238–44

    PubMed  CAS  Google Scholar 

  75. Weiser T, Ou Y, Catterall WA, et al. Differential effects of (R)-mexiletine on cardiac and neuronal Na+ channels depend on PHE1762/4 in transmembrane segment IVS6 [abstract]. Eur J Neurosci 1998; 10: 70

    Google Scholar 

Download references

Acknowledgements

The authors have no conflicts of interest directly relevant to the content of this review. This manuscript was in part supported by grants (1R01-HL 56810-5 and 1P01-HL 67849-02) from the National Institutes of Health and National Heart, Lung, and Blood Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Kass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Clancy, C.E., Cormier, J.W. et al. Mutations in Cardiac Sodium Channels. Am J Pharmacogenomics 3, 173–179 (2003). https://doi.org/10.2165/00129785-200303030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200303030-00003

Keywords

Navigation