Skip to main content
Log in

Role of Neuroimaging in Analgesic Drug Development

  • Review Article
  • Published:
Drugs in R & D Aims and scope Submit manuscript

Abstract

Rapidly developing, non-invasive, neuroimaging methods provide increasingly detailed structural and functional information about the nervous system, helping advance our understanding of pain processing, chronic pain conditions and the mechanisms of analgesia. However, effective treatment for many chronic pain conditions remains a large, unmet medical need. Neuroimaging techniques may enhance our understanding of why currently available analgesics are ineffective for so many patients and aid in identifying new neural targets for pharmacological interventions of pain. This review examines how neuroimaging has enhanced our understanding of the mechanisms of chronic pain, the neural correlates of pharmacological modulation of pain, and the role of neuroimaging in analgesic development. Rather than focusing on one method, we discuss the advantages and limitations of several techniques that may each serve a unique role in aiding drug development, and we discuss current issues that exist in the design and implementation of pharmacological neuroimaging studies. Particularly, experimental design must be carefully considered as there are limitations in terms of the pharmacokinetics of the drug of interest as well as in respect to the capabilities of the neuroimaging method in use. Finally, we identify future directions including novel approaches that may also play a role in furthering our knowledge of the neural basis of analgesia. In the future, neuroimaging will certainly impact the methodology of analgesic drug development as it may lead to quicker and more efficient methods of evaluating the neural modulation of chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Melzack R. Phantom limbs and the concept of a neuromatrix. Trends Neurosci 1990 Mar; 13 (3): 88–92

    Article  PubMed  CAS  Google Scholar 

  2. Schweinhardt P, Bountra C, Tracey I. Pharmacological FMRI in the development of new analgesic compounds. NMR Biomed 2006 Oct; 19 (6): 702–11

    Article  PubMed  CAS  Google Scholar 

  3. Wise RG, Tracey I. The role of fMRI in drug discovery. J Magn Reson Imaging 2006 Jun; 23 (6): 862–76

    Article  PubMed  Google Scholar 

  4. Paulus MP, Stein MB. Role of functional magnetic resonance imaging in drug discovery. Neuropsychol Rev 2007 Jun; 17 (2): 179–88

    Article  PubMed  Google Scholar 

  5. Apkarian AV, Sosa Y, Sonty S, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004 Nov 17; 24 (46): 10410–5

    Article  PubMed  CAS  Google Scholar 

  6. Kuchinad A, Schweinhardt P, Seminowicz DA, et al. Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci 2007 Apr 11; 27 (15): 4004–7

    Article  PubMed  CAS  Google Scholar 

  7. Hadjipavlou G, Dunckley P, Behrens TE, et al. Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: a diffusion tensor imaging study in healthy controls. Pain 2006 Jul; 123 (1–2): 169–78

    Article  PubMed  Google Scholar 

  8. Grachev ID, Fredrickson BE, Apkarian AV. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 2000 Dec 15; 89 (1): 7–18

    Article  PubMed  CAS  Google Scholar 

  9. Grachev ID, Thomas PS, Ramachandran TS. Decreased levels of N-acetylaspartate in dorsolateral prefrontal cortex in a case of intractable severe sympathetically mediated chronic pain (complex regional pain syndrome, type I). Brain Cogn 2002 Jun; 49 (1): 102–13

    Article  PubMed  Google Scholar 

  10. Fukui S, Matsuno M, Inubushi T, et al. N-acetylaspartate concentrations in the thalami of neuropathic pain patients and healthy comparison subjects measured with (1)H-MRS. Magn Reson Imaging 2006 Jan; 24 (1): 75–9

    Article  PubMed  CAS  Google Scholar 

  11. Tallan HH, Moore S, Stein WH. N-acetyl-L-aspartic acid in brain. J Biol Chem 1956 Mar; 219 (1): 257–64

    PubMed  CAS  Google Scholar 

  12. Miller BL. A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed 1991 Apr; 4 (2): 47–52

    Article  PubMed  CAS  Google Scholar 

  13. Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990 Dec; 87 (24): 9868–72

    Article  PubMed  CAS  Google Scholar 

  14. Otte A, Halsband U. Brain imaging tools in neurosciences. J Physiol Paris 2006 Jun; 99 (4–6): 281–92

    Article  PubMed  Google Scholar 

  15. Petrovic PP, Ghatan PH, Stone-Elander S, et al. Pain-related cerebral activation is altered by a distracting cognitive task. Pain 2000 Apr; 4 (2): 47–52

    Google Scholar 

  16. Koyama T, McHaffie JG, Laurienti PJ, et al. The subjective experience of pain: where expectations become reality. Proc Natl Acad Sci U S A 2005 Sep 6; 102 (36): 12950–5

    Article  PubMed  CAS  Google Scholar 

  17. Ochsner KN, Ludlow DH, Knierim K, et al. Neural correlates of individual differences in pain-related fear and anxiety. Pain 2006 Jan; 120 (1–2): 69–77

    Article  PubMed  Google Scholar 

  18. deCharms RC, Maeda F, Glover GH, et al. Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A 2005 Dec 20; 102 (51): 18626–31

    Article  PubMed  CAS  Google Scholar 

  19. Iannetti GD, Zambreanu L, Wise RG, et al. Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc Natl Acad Sci U S A 2005 Dec 13; 102 (50): 18195–200

    Article  PubMed  CAS  Google Scholar 

  20. Mackey SC, Maeda F. Functional imaging and the neural systems of chronic pain. Neurosurg Clin N Am 2004 Jul; 15 (3): 269–88

    Article  PubMed  Google Scholar 

  21. Witting N, Kupers RC, Svensson P, et al. A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain 2006 Jan; 120 (1–2): 145–54

    Article  PubMed  Google Scholar 

  22. Zubieta JK, Smith YR, Bueller JA, et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 2001 Jul 13; 293 (5528): 311–5

    Article  PubMed  CAS  Google Scholar 

  23. Zubieta JK, Heitzeg MM, Smith YR, et al. COMT val158met affects mu-opioid neurotransmitter responses to a pain stressor. Science 2003 Feb 21; 299 (5610): 1240–3

    Article  PubMed  CAS  Google Scholar 

  24. Zubieta JK, Smith YR, Bueller JA, et al. mu-opioid receptor-mediated antinociceptive responses differ in men and women. J Neurosci 2002 Jun 15; 22 (12): 5100–7

    PubMed  CAS  Google Scholar 

  25. Jones AK, Watabe H, Cunningham VJ, et al. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur J Pain 2004 Oct; 8 (5): 479–85

    Article  PubMed  CAS  Google Scholar 

  26. Maarrawi J, Peyron R, Mertens P, et al. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 2007 Jan; 127 (1–2): 183–94

    Article  PubMed  CAS  Google Scholar 

  27. Willoch F, Schindler F, Wester HJ, et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 2004 Apr; 108 (3): 213–20

    Article  PubMed  CAS  Google Scholar 

  28. Scott DJ, Domino EF, Heitzeg MM, et al. Smoking modulation of mu-opioid and dopamine D2 receptor-mediated neurotrans-mission in humans. Neuropsychopharmacology 2007 Feb; 32 (2): 450–7

    Article  PubMed  CAS  Google Scholar 

  29. Adler LJ, Gyulai FE, Diehl DJ, et al. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesth Analg 1997 Jan; 84 (1): 120–6

    PubMed  CAS  Google Scholar 

  30. Casey KL, Svensson P, Morrow TJ, et al. Selective opiate modulation of nociceptive processing in the human brain. J Neurophysiol 2000 Jul; 84 (1): 525–33

    PubMed  CAS  Google Scholar 

  31. Wagner KJ, Sprenger T, Kochs EF, et al. Imaging human cerebral pain modulation by dose-dependent opioid analgesia: a positron emission tomography activation study using remifentanil. Anesthesiology 2007 Mar; 106 (3): 548–56

    Article  PubMed  CAS  Google Scholar 

  32. Otte AH, Taylor K, Rubens R. The intracranial distribution of eletriptan: a combined [11C]-eletriptan/[15O]CO/[15O]H2O positron emission tomography (PET) study [abstract]. Eur J Nucl Med Mol Imaging 2003; 30 Suppl. 2: S292

    Google Scholar 

  33. Maihofner C, Ringler R, Herrndobler F, et al. Brain imaging of analgesic and antihyperalgesic effects of cyclooxygenase inhibition in an experimental human pain model: a functional MRI study. Eur J Neurosci 2007 Sep; 26 (5): 1344–56

    Article  PubMed  Google Scholar 

  34. Wise RG, Rogers R, Painter D, et al. Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage 2002 Aug; 16 (4): 999–1014

    Article  PubMed  Google Scholar 

  35. Wise RG, Williams P, Tracey I. Using fMRI to quantify the time dependence of remifentanil analgesia in the human brain. Neuropsychopharmacology 2004 Mar; 29 (3): 626–35

    Article  PubMed  CAS  Google Scholar 

  36. Rogers R, Wise RG, Painter DJ, et al. An investigation to dissociate the analgesic and anesthetic properties of ketamine using functional magnetic resonance imaging. Anesthesiology 2004 Feb; 100 (2): 292–301

    Article  PubMed  CAS  Google Scholar 

  37. Baliki M, Katz J, Chialvo DR, et al. Single subject pharmacological-MRI (phMRI) study: modulation of brain activity of psoriatic arthritis pain by cyclooxygenase-2 inhibitor. Mol Pain 2005 Nov 2; 1: 32

    Article  PubMed  CAS  Google Scholar 

  38. Morgan V, Pickens D, Gautam S, et al. Amitriptyline reduces rectal pain related activation of the anterior cingulate cortex in patients with irritable bowel syndrome. Gut 2005 May; 54 (5): 601–7

    Article  PubMed  CAS  Google Scholar 

  39. Becerra L, Harter K, Gonzalez RG, et al. Functional magnetic resonance imaging measures of the effects of morphine on central nervous system circuitry in opioid-naive healthy volungenoteers. Anesth Analg 2006 Jul; 103 (1): 208–16

    Article  PubMed  CAS  Google Scholar 

  40. Sprenger T, Valet M, Woltmann R, et al. Imaging pain modulation by subanesthetic S-(+)-ketamine. Anesth Analg 2006 Sep; 103 (3): 729–37

    Article  PubMed  CAS  Google Scholar 

  41. Geha PY, Baliki MN, Chialvo DR, et al. Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain 2007 Mar; 128 (1–2): 88–100

    Article  PubMed  CAS  Google Scholar 

  42. Hauck M, Bischoff P, Schmidt G, et al. Clonidine effects on evoked SII activity in humans. Eur J Pain 2006 Nov; 10 (8): 757–65

    Article  PubMed  CAS  Google Scholar 

  43. Audenaert K, Brans B, Van Laere K, et al. Verbal fluency as a prefrontal activation probe: a validation study using 99mTc-ECD brain SPET. Eur J Nucl Med 2000 Dec; 27 (12): 1800–8

    Article  PubMed  CAS  Google Scholar 

  44. Wise RG, Lujan BJ, Schweinhardt P, et al. The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI. Magn Reson Imaging 2007 Jul; 25 (6): 801–10

    Article  PubMed  CAS  Google Scholar 

  45. Collins SL, Moore RA, McQuay HJ, et al. Antidepressants and anticonvulsants for diabetic neuropathy and postherpetic neuralgia: a quantitative systemic review. J Pain Symptom Manage 2000; 20 (6): 449–58

    Article  PubMed  CAS  Google Scholar 

  46. Katz J, Finnerup NB, Dworkin RH. Clinical trial outcome in neuropathic pain: relationship to study characteristics. Neurology 2008 Jan 22; 70 (4): 263–72

    Article  PubMed  Google Scholar 

  47. Otte A, Rose C, Zahringer A, et al. New clinical technologies in drug development. Der Internist 2008 Feb; 49 (2): 232–7

    Article  PubMed  CAS  Google Scholar 

  48. Otte A, Audenaert K, Peremans K, et al. Functional neuroimaging endpoints in drug development. Nucl Med Commun 2005 Sep; 26 (9): 755–6

    Article  PubMed  CAS  Google Scholar 

  49. Dworkin R, Katz J, Gitlin MJ. Placebo response in clinical trials of depression and its implications for research on chronic neuropathic pain. 2005 Dec 29; 65 (12 Suppl. 4): S7–19

  50. Apkarian AV, Krauss BR, Fredrickson BE, et al. Imaging the pain of low back pain: functional magnetic resonance imaging in combination with monitoring subjective pain perception allows the study of clinical pain states. Neurosci Lett 2001 Feb 16; 299 (1–2): 57–60

    Article  PubMed  CAS  Google Scholar 

  51. Iannetti GD, Wise RG. BOLD functional MRI in disease and pharmacological studies: room for improvement? Magn Reson Imaging 2007 Jul; 25 (6): 978–88

    Article  PubMed  CAS  Google Scholar 

  52. Pattinson KT, Rogers R, Mayhew SD, et al. Pharmacological FMRI: measuring opioid effects on the BOLD response to hypercapnia. J Cereb Blood Flow Metab 2007 Feb; 27 (2): 414–23

    Article  PubMed  CAS  Google Scholar 

  53. Finnerup NB, Jensen TS. Spinal cord injury pain: mechanisms and treatment. Eur J Neurol 2004 Feb; 11 (2): 73–82

    Article  PubMed  CAS  Google Scholar 

  54. Siddall PJ, Cousins MJ, Otte A, et al. Pregabalin in central neuropathic pain associated with spinal cord injury: a place-bocontrolled trial. Neurology 2006 Nov 28; 67 (10): 1792–800

    Article  PubMed  CAS  Google Scholar 

  55. Greicius MD, Flores BH, Menon V, et al. Resting-state funcpain tional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 2007 Sep 1; 62 (5): 429–37

    Article  PubMed  Google Scholar 

  56. Zhao XH, Wang PJ, Li CB, et al. Altered default mode network activity in patient with anxiety disorders: an fMRI study. Eur J Radiol 2007 Sep; 63 (3): 373–8

    Article  PubMed  Google Scholar 

  57. Schwarz AJ, Gozzi A, Reese T, et al. In vivo mapping of functional connectivity in neurotransmitter systems using pharmacological MRI. Neuroimage 2007 Feb 15; 34 (4): 1627–36

    Article  PubMed  Google Scholar 

  58. Kofke WA, Blissitt PA, Rao H, et al. Remifentanil-induced cerebral blood flow effects in normal humans: dose and ApoE genotype. Anesth Analg 2007 Jul; 105 (1): 167–75

    Article  PubMed  CAS  Google Scholar 

  59. Gage HD, Gage JC, Tobin JR, et al. Morphine-induced spinal cholinergic activation: in vivo imaging with positron emission tomography. Pain 2001 Mar; 91 (1–2): 139–45

    Article  PubMed  CAS  Google Scholar 

  60. Stroman PW, Kornelsen J, Bergman A, et al. Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging. Spinal Cord 2004 Feb; 42 (2): 59–66

    Article  PubMed  CAS  Google Scholar 

  61. Kornelsen J, Mackey S. Potential clinical applications for spinal functional MRI. Curr Pain Headache Rep 2007 Jun; 11 (3): 165–70

    Article  PubMed  Google Scholar 

  62. Christmann C, Koeppe C, Braus DF, et al. A simultaneous EEG-fMRI study of painful electric stimulation. Neuroimage 2007 Feb 15; 34 (4): 1428–37

    Article  PubMed  Google Scholar 

  63. Iannetti GD, Niazy RK, Wise RG, et al. Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans. Neuroimage 2005 Nov 15; 28 (3): 708–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support by a grant from the John and Dodie Rosekranz Endowment (SCM) and grant NS053961 from the US National Institutes of Health National Institute of Neurological Disorders and Stroke (SCM). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean C. Mackey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, J., Mackey, S.C. Role of Neuroimaging in Analgesic Drug Development. Drugs R D 9, 323–334 (2008). https://doi.org/10.2165/00126839-200809050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-200809050-00003

Keywords

Navigation