Skip to main content
Log in

Anticalins in Drug Development

  • Drug Development
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Anticalins are a novel class of engineered ligand-binding proteins that are prepared from lipocalins — conventional plasma proteins in humans —via targeted random mutagenesis and selection against prescribed haptens or antigens. The first anticalins were selected to bind to small ligands, such as the cardioactive drug digoxin. Recently, libraries that also permit the generation of anticalins with high affinities and specificities for protein targets, especially disease-related cell-surface receptors, have been constructed. Anticalins are much smaller than antibodies or their antigen-binding fragments, lack glycosylation as well as immunological effector functions, and consist of a single, stably folded polypeptide chain. Thus, they offer benefits as biopharmaceuticals in several areas of medical therapy, for example as receptor antagonists or as effective antidotes against toxic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement

References

  1. Flower DR. The lipocalin protein family: structure and function. Biochem J 1996; 318 (Pt 1): 1–14

    PubMed  CAS  Google Scholar 

  2. Skerra A. Lipocalins as a scaffold. Biochim Biophys Acta 2000; 1482(1–2): 337–50

    Article  PubMed  CAS  Google Scholar 

  3. Newcomer ME, Jones TA, Aqvist J, et al. The three-dimensional structure of retinol-binding protein. EMBO J 1984; 3(7): 1451–4

    PubMed  CAS  Google Scholar 

  4. Bishop RE, Weiner JH. ’Outlier’ lipocalins more than peripheral. Trends Biochem Sci 1996; 21(4): 127

    PubMed  CAS  Google Scholar 

  5. Flower DR. Multiple molecular recognition properties of the lipocalin protein family. J Mol Recognit 1995; 8(3): 185–95

    Article  PubMed  CAS  Google Scholar 

  6. Cowan S, Newcomer M, Jones T. Crystallographic refinement of human serum retinol binding protein at 2Å resolution. Proteins 1990; 8(1): 44–61

    Article  PubMed  CAS  Google Scholar 

  7. Bocskei Z, Groom CR, Flower DR, et al. Pheromone binding to two rodent urinary proteins revealed by x-ray crystallography. Nature 1992; 360(6400): 186–8

    Article  PubMed  CAS  Google Scholar 

  8. Bianchet MA, Bains G, Pelosi P, et al. The three-dimensional structure of bovine odorant binding protein and its mechanism of odor recognition. Nat Struct Biol 1996; 3(11): 934–9

    Article  PubMed  CAS  Google Scholar 

  9. Urade Y, Hayaishi O. Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta 2000; 1482(1-2): 259–71

    Article  PubMed  CAS  Google Scholar 

  10. Schmid K, Kaufmann H, Isemura S, et al. Structure of α1-acid glycoprotein: the complete amino acid sequence, multiple amino acid substitutions, and homology with the immunoglobulins. Biochemistry 1973; 12(14): 2711–24

    Article  PubMed  CAS  Google Scholar 

  11. Skerra A. Imitating the humoral immune response. Curr Opin Chem Biol 2003; 7(6): 683–93

    Article  PubMed  CAS  Google Scholar 

  12. Goetz DH, Holmes MA, Borregaard N, et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 2002; 10(5): 1033–43

    Article  PubMed  CAS  Google Scholar 

  13. Holmes MA, Paulsene W, Jide X, et al. Siderocalin (Lcn 2) also binds carboxymy-cobactins, potentially defending against mycobacterial infections through iron sequestration. Structure (Camb) 2005; 13(1): 29–41

    Article  CAS  Google Scholar 

  14. Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004; 432(7019): 917–21

    Article  PubMed  CAS  Google Scholar 

  15. Breustedt DA, Korndorfer IP, Redl B, et al. The 1.8-Å crystal structure of human tear lipocalin reveals an extended branched cavity with capacity for multiple ligands. J Biol Chem 2005; 280(1): 484–93

    PubMed  CAS  Google Scholar 

  16. Redl B. Human tear lipocalin. Biochim Biophys Acta 2000; 1482(1–2): 241–8

    Article  PubMed  CAS  Google Scholar 

  17. Fluckinger M, Haas H, Merschak P, et al. Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrob Agents Chemother 2004; 48(9): 3367–72

    Article  PubMed  CAS  Google Scholar 

  18. Gasymov OK, Abduragimov AR, Gasimov EO, et al. Tear lipocalin: potential for selective delivery of rifampin. Biochim Biophys Acta 2004; 1688(2): 102–11

    Article  PubMed  CAS  Google Scholar 

  19. Hvidberg V, Jacobsen C, Strong RK, et al. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 2005; 579(3): 773–7

    Article  PubMed  CAS  Google Scholar 

  20. Mori K, Lee HT, Rapoport D, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 2005; 115(3): 610–21

    PubMed  CAS  Google Scholar 

  21. Wojnar P, Lechner M, Merschak P, et al. Molecular cloning of a novel lipocalin-1 interacting human cell membrane receptor using phage display. J Biol Chem 2001; 276(23): 20206–12

    Article  PubMed  CAS  Google Scholar 

  22. Flower DR. Beyond the superfamily: the lipocalin receptors. Biochim Biophys Acta 2000; 1482(1-2): 327–36

    Article  PubMed  CAS  Google Scholar 

  23. Rassart E, Bedirian A, Do Carmo S, et al. Apolipoprotein D. Biochim Biophys Acta 2000; 1482(1–2): 185–98

    Article  PubMed  CAS  Google Scholar 

  24. Akerstrom B, Logdberg L, Berggard T, et al. α1-Microglobulin: a yellow-brown lipocalin. Biochim Biophys Acta 2000; 1482(1–2): 172–84

    Article  PubMed  CAS  Google Scholar 

  25. Schlehuber S, Skerra A. Lipocalins in drug discovery: from natural ligand-binding proteins to ‘anticalins’. Drug Discov Today 2005; 10(1): 23–33

    Article  PubMed  CAS  Google Scholar 

  26. Paesen GC, Adams PL, Harlos K, et al. Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Mol Cell 1999; 3(5): 661–71

    Article  PubMed  CAS  Google Scholar 

  27. Kemp DH, Bourne A. Boophilus microplus: the effect of histamine on the attachment of cattle-tick larvae. Studies in vivo and in vitro. Parasitology 1980; 80(3): 487–96

    Article  PubMed  CAS  Google Scholar 

  28. Couillin I, Maillet I, Vargaftig BB, et al. Arthropod-derived histamine-binding protein prevents murine allergic asthma. J Immunol 2004; 173(5): 3281–6

    PubMed  CAS  Google Scholar 

  29. Michaud GA, Salcius M, Zhou F, et al. Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol 2003; 21(12): 1509–12

    Article  PubMed  CAS  Google Scholar 

  30. Walsh G. Biopharmaceutical benchmarks: 2003. Nat Biotechnol 2003; 21(8): 865–70

    Article  PubMed  CAS  Google Scholar 

  31. Knappik A, Ge L, Honegger A, et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 2000; 296(1): 57–86

    Article  PubMed  CAS  Google Scholar 

  32. Soderlind E, Strandberg L, Jirholt P, et al. Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol 2000; 18(8): 852–6

    Article  PubMed  CAS  Google Scholar 

  33. Kay BK, Kasanov J, Yamabhai M. Screening phage-displayed combinatorial peptide libraries. Methods 2001; 24(3): 240–6

    Article  PubMed  CAS  Google Scholar 

  34. Schlehuber S, Beste G, Skerra A. A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin. J Mol Biol 2000; 297(5): 1105–20

    Article  PubMed  CAS  Google Scholar 

  35. Groves MA, Osbourn JK. Applications of ribosome display to antibody drug discovery. Expert Opin Biol Ther 2005; 5(1): 125–35

    Article  PubMed  CAS  Google Scholar 

  36. Lipovsek D, Pluckthun A. In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 2004; 290(1–2): 51–67

    Article  PubMed  CAS  Google Scholar 

  37. Feldhaus MJ, Siegel RW, Opresko LK, et al. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 2003; 21(2): 163–70

    Article  PubMed  CAS  Google Scholar 

  38. Jain RK, Baxter LT. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 1988; 48 (24 Pt 1): 7022–32

    PubMed  CAS  Google Scholar 

  39. Skerra A. ’Anticalins’: a new class of engineered ligand-binding proteins with antibody-like properties. J Biotechnol 2001; 74(4): 257–75

    PubMed  CAS  Google Scholar 

  40. Schmidt FS, Skerra A. The bilin-binding protein of Pieris brassicae: cDNA sequence and regulation of expression reveal distinct features of this insect pigment protein. Eur J Biochem 1994; 219(3): 855–63

    Article  PubMed  CAS  Google Scholar 

  41. Beste G, Schmidt FS, Stibora T, et al. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc Natl Acad Sci U S A 1999; 96(5): 1898–903

    Article  PubMed  CAS  Google Scholar 

  42. Huber R, Schneider M, Mayr I, et al. Molecular structure of the bilin binding protein (BBP) from Pieris brassicae after refinement at 2.0 Å resolution. J Mol Biol 1987; 198(3): 499–513

    Article  PubMed  CAS  Google Scholar 

  43. Voss EWJ. Fluorescein hapten: an immunological probe. Boca Raton (FL): CRC Press, 1984

    Google Scholar 

  44. McCreery T. Digoxigenin labeling. Mol Biotechnol 1997; 7(2): 121–4

    Article  PubMed  CAS  Google Scholar 

  45. Hauptman PJ, Kelly RA. Digitalis. Circulation 1999; 99(9): 1265–70

    Article  PubMed  CAS  Google Scholar 

  46. Mercader JV, Skerra A. Generation of anticalins with specificity for a nonsym-metric phthalic acid ester. Anal Biochem 2002; 308(2): 269–77

    Article  PubMed  CAS  Google Scholar 

  47. Korndörfer IP, Beste G, Skerra A. Crystallographic analysis of an ‘anticalin’ with tailored specificity for fluorescein reveals high structural plasticity of the lipocalin loop region. Proteins 2003; 53(1): 121–9

    Article  PubMed  Google Scholar 

  48. Korndörfer IP, Schlehuber S, Skerra A. Structural mechanism of specific ligand recognition by a lipocalin tailored for the complexation of digoxigenin. J Mol Biol 2003; 330(2): 385–96

    Article  PubMed  Google Scholar 

  49. Jeffrey PD, Schildbach JF, Chang CY, et al. Structure and specificity of the anti-digoxin antibody 40–50. J Mol Biol 1995; 248(2): 344–60

    PubMed  CAS  Google Scholar 

  50. McMillin GA, Owen WE, Lambert TL, et al. Comparable effects of DIGIBIND and DigiFab in thirteen digoxin immunoassays. Clin Chem 2002; 48(9): 1580–4

    PubMed  CAS  Google Scholar 

  51. Ward SB, Sjostrom L, Ujhelyi MR. Comparison of the pharmacokinetics and in vivo bioaffinity of DigiTAb versus Digibind. Ther Drug Monit 2000; 22(5): 599–607

    Article  PubMed  CAS  Google Scholar 

  52. Lechat P, Mudgett-Hunter M, Margolies MN, et al. Reversal of lethal digoxin toxicity in guinea pigs using monoclonal antibodies and Fab fragments. J Pharmacol Exp Ther 1984; 229(1): 210–3

    PubMed  CAS  Google Scholar 

  53. Kelly R, Peim A, Walz A, et al. Reversal of digoxin cardiac toxicity by an anticalin (digical II) in the anaesthetized guinea pig [online]. Available from URL: http://www.physoc.org/publications/proceedings/archive/article.asp?id=560ppc7 [Accessed 2005 Aug 25]

  54. Skerra A, Schlehuber S. Muteins of human neutrophil gelatinase-associated lipocalin and related proteins [patent application]. 2003; WO 03/029463 A2

  55. Vogt M, Skerra A. Construction of an artificial receptor protein (’anticalin’) based on the human apolipoprotein D. Chem Bio Chem 2004; 5(2): 191–9

    PubMed  CAS  Google Scholar 

  56. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271(5256): 1734–6

    Article  PubMed  CAS  Google Scholar 

  57. Davis SJ, Ikemizu S, Evans EJ, et al. The nature of molecular recognition by T cells. Nat Immunol 2003; 4(3): 217–24

    Article  PubMed  CAS  Google Scholar 

  58. Madrenas J, Chau LA, Teft WA, et al. Conversion of CTLA-4 from inhibitor to activator of T cells with a bispecific tandem single-chain Fv ligand. J Immunol 2004; 172(10): 5948–56

    PubMed  CAS  Google Scholar 

  59. Keler T, Halk E, Vitale L, et al. Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol 2003; 171(11): 6251–9

    PubMed  CAS  Google Scholar 

  60. Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 2003; 100(14): 8372–7

    Article  PubMed  CAS  Google Scholar 

  61. Camacho LH, Ribas A, Glaspy JA, et al. Phase 1 clinical trial of anti-CTLA4 human monoclonal antibody CP-675,206 in patients (pts) with advanced solid malignancies [online]. Available from URL: http://meeting.jco.org/cgi/content/abstract/22/14_suppl/2505 [Accessed 2005 Aug 25]

  62. Lane P. Regulation of T and B cell responses by modulating interactions between CD28/CTLA4 and their ligands, CD80 and CD86. Ann N Y Acad Sci 1997; 815: 392–400

    Article  PubMed  CAS  Google Scholar 

  63. Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 2001; 1(2): 118–29

    Article  PubMed  CAS  Google Scholar 

  64. Rastetter W, Molina A, White CA. Rituximab: expanding role in therapy for lymphomas and autoimmune diseases. Annu Rev Med 2004; 55: 477–503

    Article  PubMed  CAS  Google Scholar 

  65. Toi M, Takada M, Bando H, et al. Current status of antibody therapy for breast cancer. Breast Cancer 2004; 11(1): 10–4

    Article  PubMed  Google Scholar 

  66. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2(10): 750–63

    Article  PubMed  CAS  Google Scholar 

  67. Ghetie V, Ward ES. Transcytosis and catabolism of antibody. Immunol Res 2002; 25(2): 97–113

    Article  PubMed  CAS  Google Scholar 

  68. Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 2005; 19(2): 176–82

    Article  PubMed  CAS  Google Scholar 

  69. Giles F, Estey E, O’Brien S. Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia. Cancer 2003; 98(10): 2095–104

    Article  PubMed  CAS  Google Scholar 

  70. Pastan I. Immunotoxins containing Pseudomonas exotoxin A: a short history. Cancer Immunol Immunother 2003; 52(5): 338–41

    PubMed  Google Scholar 

  71. ClinicalTrials.gov. US National Institutes of Health [online]. Available from URL: http://clinicaltrials.gov [Accessed 2005 Aug 9]

  72. Schlehuber S, Skerra A. Duocalins: engineered ligand-binding proteins with dual specificity derived from the lipocalin fold. Biol Chem 2001; 382(9): 1335–42

    Article  PubMed  CAS  Google Scholar 

  73. Syrigos KN, Epenetos AA. Antibody directed enzyme prodrug therapy (ADEPT): a review of the experimental and clinical considerations. Anticancer Res 1999; 19(1A): 605–13

    PubMed  CAS  Google Scholar 

  74. Wilde MI, Goa KL. Muromonab CD3: a reappraisal of its pharmacology and use as prophylaxis of solid organ transplant rejection. Drugs 1996; 51(5): 865–94

    Article  PubMed  CAS  Google Scholar 

  75. Reichert J, Pavolu A. Monoclonal antibodies market. Nat Rev Drug Discov 2004; 3(5): 383–4

    Article  PubMed  CAS  Google Scholar 

  76. Nygren PA, Skerra A. Binding proteins from alternative scaffolds. J Immunol Methods 2004; 290(1–2): 3–28

    Article  PubMed  CAS  Google Scholar 

  77. Keating GM, Perry CM. Infliximab: an updated review of its use in Crohn’ s disease and rheumatoid arthritis. BioDrugs 2002; 16(2): 111–48

    Article  PubMed  CAS  Google Scholar 

  78. Bain B, Brazil M. Adalimumab. Nat Rev Drug Discov 2003; 2(9): 693–4

    Article  PubMed  CAS  Google Scholar 

  79. Bonnefoy A, Vermylen J, Hoylaerts MF. Inhibition of von Willebrand factor-GPIb/IX/V interactions as a strategy to prevent arterial thrombosis. Expert Rev Cardiovasc Ther 2003; 1(2): 257–69

    Article  PubMed  CAS  Google Scholar 

  80. Cauwenberghs N, Meiring M, Vauterin S, et al. Antithrombotic effect of platelet glycoprotein Ib-blocking monoclonal antibody Fab fragments in nonhuman primates. Arterioscler Thromb Vasc Biol 2000; 20(5): 1347–53

    Article  PubMed  CAS  Google Scholar 

  81. Goodman DS. Plasma retinol-binding protein. In: Sporn M, Roberts AB, Goodman DS, editors. The retinoids. New York: Academic Press, 1984: 41–87

    Google Scholar 

  82. Axelsson L, Bergenfeldt M, Ohlsson K. Studies of the release and turnover of a human neutrophil lipocalin. Scand J Clin Lab Invest 1995; 55(7): 577–88

    Article  PubMed  CAS  Google Scholar 

  83. Mishra J, Mori K, Ma Q, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 2004; 15(12): 3073–82

    Article  PubMed  Google Scholar 

  84. Harris JM, Chess RB. Effect of pegylation on Pharmaceuticals. Nat Rev Drug Discov 2003; 2(3): 214–21

    Article  PubMed  CAS  Google Scholar 

  85. Schellekens H. Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin Ther 2002; 24(11): 1720–40

    Article  PubMed  CAS  Google Scholar 

  86. Samama MM, Gerotziafas GT. Evaluation of the pharmacological properties and clinical results of the synthetic pentasaccharide (fondaparinux). Thromb Res 2003; 109(1): 1–11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are associated with PIERIS Proteolab AG, a biopharmaceutical company focused on the development and commercialization of ANTICALINS® for therapeutic use. No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Skerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlehuber, S., Skerra, A. Anticalins in Drug Development. BioDrugs 19, 279–288 (2005). https://doi.org/10.2165/00063030-200519050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200519050-00001

Keywords

Navigation