Skip to main content
Log in

Inflammatory Bowel Disorders

Current and Future Drugs That Modulate Adhesion Molecules

  • Review Article
  • Biopharmaceuticals
  • Published:
BioDrugs Aims and scope Submit manuscript

Summary

Infiltration of leucocytes into the mucosa is a hallmark feature of a number of inflammatory bowel disorders, most notably Crohn’s disease and ulcerative colitis. The interactions between circulating leucocytes and the vascular endothelium that permit leucocyte migration to a site of injury or infection are mediated via a variety of adhesion molecules. There is now ample evidence for alterations in adhesion molecule expression and function in inflammatory bowel disorders. This raises the possibility that adhesion molecules could be targets for novel therapies. Indeed, many existing anti-inflammatory drugs are capable of modulating adhesion molecule expression or function. Moreover, intensive research is under way to develop more selective and effective modulators of adhesion molecules, in the hope that they will be useful for treating various inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yoshida N, Granger DN, Evans Jr DJ, et al. Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology 1993; 105: 1431–40

    Article  PubMed  CAS  Google Scholar 

  2. Wallace JL, Arfors K-E, McKnight GW. A monoclonal antibody against the CD 18 leukocyte adhesion molecule prevents indomethacin-induced gastric damage in the rabbit. Gastroenterology 1991; 100: 878–83

    PubMed  CAS  Google Scholar 

  3. Wallace JL, McKnight W, Miyasaka M, et al. Role of endothelial adhesion molecules in NSAID-induced gastric mucosal injury. Am J Physiol 1993; 265: G993–8

    PubMed  CAS  Google Scholar 

  4. Wallace JL, Reuter B, Cicala C, et al. Novel nonsteroidal antiinflammatory drug derivatives with markedly reduced ulcerogenic properties in the rat. Gastroenterology 1994; 107: 173–9

    PubMed  CAS  Google Scholar 

  5. Shanahan F, Targan SR. Mechanisms of tissue injury in inflammatory bowel disease. In: Targan SR, Shanahan F, editors. Inflammatory bowel disease: from bench to bedside. Baltimore: Williams & Wilkins, 1994: 78–88

    Google Scholar 

  6. Pedersen G, Brynskov J, Nielsen OH, et al. Adhesion molecules in inflammatory and neoplastic intestinal disease. Dig Dis 1995; 13: 322–36

    Article  PubMed  CAS  Google Scholar 

  7. Norgard-Sunmicht KE, Varki NM, Varki A. Calcium-dependent heparin-like ligands for L-selectin in nonlymphoid endothelial cells. Science 1993; 261: 480–3

    Article  Google Scholar 

  8. Dejana E, Corada M, Lampugnani MG. Endothelial cell-to-cell junctions. FASEB J 1995; 9: 910–8

    PubMed  CAS  Google Scholar 

  9. Muller WA, Weigl SA, Deng X, et al. PEC AM-1 is required for transendothelial migration of leukocytes. J Exp Med 1993; 178: 449–60

    Article  PubMed  CAS  Google Scholar 

  10. Ayalon O, Sabanai H, Lampugnani MG, et al. Spatial and temporal relationships between Cadherins and PEC AM-1 in cell-cell junctions of human endothelial cells. J Cell Biol 1994; 126: 247–58

    Article  PubMed  CAS  Google Scholar 

  11. Malizia G, Calabrese A, Cottone M, et al. Expression of leukocyte adhesion molecules by mucosal mononuclear phagocytes in inflammatory bowel disease. Gastroenterology 1991; 100: 150–9

    PubMed  CAS  Google Scholar 

  12. Ohtani H, Nakamura S, Watanabe Y, et al. Light and electron microscopic immunolocalization of endothelial leucocyte adhesion molecule-1 in inflammatory bowel disease: morphological evidence of active synthesis and secretion into vascular lumen. Virchows Arch A Pathol Anat Histopathol 1992; 420: 403–9

    Article  PubMed  CAS  Google Scholar 

  13. Koizumi M, King N, Lobb R, et al. Expression of vascular adhesion molecules in inflammatory bowel disease. Gastroenterology 1992; 103: 840–7

    PubMed  CAS  Google Scholar 

  14. Nakamura S, Ohtani H, Watanabe Y, et al. In situ expression of the cell adhesion molecules in inflammatory bowel disease: evidence of immunologic activation of vascular endothelial cells. Lab Invest 1993; 69: 77–85

    PubMed  CAS  Google Scholar 

  15. Schürmann GM, Bishop AE, Facer P, et al. Increased expression of cell adhesion molecule P-selectin in active inflammatory bowel disease. Gut 1995; 36: 411–8

    Article  PubMed  Google Scholar 

  16. Burgio VL, Fais S, Boirivant M, et al. Peripheral monocyte and naive T-cell recruitment and activation in Crohn’s disease. Gastroenterology 1995; 109: 1029–38

    Article  PubMed  CAS  Google Scholar 

  17. Yacyshyn BR, Lazarovits A, Tsai V, et al. Crohn’s disease, ulcerative colitis, and normal intestinal lymphocytes express integrins in dissimilar patterns. Gastroenterology 1994; 107: 1364–71

    PubMed  CAS  Google Scholar 

  18. Salmi M, Granfors K, MacDermott R, et al. Aberrant binding of lamina propria lymphocytes to vascular endothelium in inflammatory bowel diseases. Gastroenterology 1994; 106: 596–605

    PubMed  CAS  Google Scholar 

  19. Pooley N, Ghosh L, Sharon P. Up-regulation of E-selectin and intercellular adhesion molecule-1 differs between Crohn’s disease and ulcerative colitis. Dig Dis Sci 1995; 40: 219–25

    Article  PubMed  CAS  Google Scholar 

  20. Nielsen OH, Langholz E, Hendel J, et al. Circulating soluble intercellular adhesion molecule-1 (ICAM-1) in active inflammatory bowel disease. Dig Dis Sci 1994; 39: 1918–23

    Article  PubMed  CAS  Google Scholar 

  21. Yang H, Vora DK, Targan SR, et al. Intercellular adhesion molecule. Gastroenterology 1995; 109: 440–8

    Article  PubMed  CAS  Google Scholar 

  22. Cronstein BN, Kimmel SC, Levin RI, et al. A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci USA 1992; 89: 9991–5

    Article  PubMed  CAS  Google Scholar 

  23. Haynes RC. Adrenocorticotropic hormone; adrenocortical steroids and their synthetic analogs; inhibitors of the synthesis and actions of adrenocortical hormones. In: Gilman AG, Rail TW, Nies AS, et al., editors. The pharmacological basis of therapeutics. 8th ed. New York: Pergamon Press, 1990: 1431–62

    Google Scholar 

  24. Sackstein R, Borenstein M. The effects of corticosteroids on lymphocyte recirculation in humans: analysis of the mechanism of impaired lymphocyte migration to lymph node following methylprednisolone administration. J Invest Med 1995; 43: 68–77

    CAS  Google Scholar 

  25. Kitahora T, Guth PH. Effect of aspirin plus hydrochloric acid on the gastric mucosal microcirculation. Gastroenterology 1987; 93: 810–7

    PubMed  CAS  Google Scholar 

  26. Santucci L, Fiorucci S, Giansanti M, et al. Pentoxifylline prevents indomethacin induced acute gastric mucosal damage in rats: role of tumour necrosis factor alpha. Gut 1994; 35: 909–15

    Article  PubMed  CAS  Google Scholar 

  27. Asako H, Kubes P, Wallace JL, et al. Modulation of leukocyte adhesion in rat mesenteric venules by aspirin and salicylate. Gastroenterology 1992; 103: 146–52

    PubMed  CAS  Google Scholar 

  28. Asako H, Kubes P, Wallace JL, et al. Indomethacin-induced leukocyte adhesion in mesenteric venules: role of lipoxygenase products. Am J Physiol 1992; 262: G903–8

    PubMed  CAS  Google Scholar 

  29. Andrews FJ, Malcontenti-Wilson C, O’Brien PE. Effect of nonsteroidal anti-inflammatory drugs on LFA-1 and ICAM-1 expression in gastric mucosa. Am J Physiol 1994; 266: G657–64

    PubMed  CAS  Google Scholar 

  30. Wallace JL, Granger DN. Pathogenesis of NSAID-gastropathy: are neutrophils the culprits? Trends Pharmacol Sci 1992; 13: 129–31

    Article  PubMed  CAS  Google Scholar 

  31. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88: 4651–5

    Article  PubMed  CAS  Google Scholar 

  32. Davenpeck KL, Gauthier TW, Lefer AM. Inhibition of endothelial-derived nitric oxide promotes P-selectin expression and actions in the rat microcirculation. Gastroenterology 1994; 107: 1050–8

    PubMed  CAS  Google Scholar 

  33. Cronstein BN. Adenosine: an endogenous anti-inflammatory agent. J Appl Physiol 1994; 76: 5–13

    PubMed  CAS  Google Scholar 

  34. Hirschhorn R, Roegner-Maniscalco V, Kuritsky L, et al. Bone marrow transplantation only partially restores purine metabolites to normal in adenosine deaminase-deficient patients. J Clin Invest 1981; 68: 1387–93

    Article  PubMed  CAS  Google Scholar 

  35. Cronstein BN, Naime D, Ostad E. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest 1993; 92: 2675–82

    Article  PubMed  CAS  Google Scholar 

  36. Matherne GP, Headrick JP, Coleman SD, et al. Interstitial transudate purines in normoxic and hypoxic immature and mature rabbit hearts. Pediatr Res 1990; 28: 348–53

    Article  PubMed  CAS  Google Scholar 

  37. Green PG, Basbaum AI, Helms C, et al. Purinergic regulation of bradykinin-induced plasma extravasation and adjuvant-induced arthritis in rat. Proc Natl Acad Sci USA 1991; 88: 412–6

    Google Scholar 

  38. Schrier DJ, Lesch ME, Wright CD, et al. The antiinflammatory effects of adenosine receptor agonists on the carrageenan-induced pleural inflammatory response in rats. J Immunol 1990; 145: 1874–9

    PubMed  CAS  Google Scholar 

  39. Cronstein BN, Eberle MA, Gruber HE, et al. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci USA 1991; 88: 2441–5

    Article  PubMed  CAS  Google Scholar 

  40. Asako H, Wolf RE, Granger DN. Leukocyte adherence in rat mesenteric venules: effects of adenosine and methotrexate. Gastroenterology 1993; 104: 31–7

    PubMed  CAS  Google Scholar 

  41. Baggott JE, Morgan SL, Ha T, et al. Antifolates in rheumatoid arthritis: a hypothetical mechanism of action. Clin Exp Rheumatol 1993; 11Suppl. 8: S101–5

    PubMed  Google Scholar 

  42. Asako H, Kubes P, Baethge BA, et al. Colchicine and methotrexate reduce leukocyte adherence and emigration in rat mesenteric venules. Inflammation 1992; 16: 45–56

    Article  PubMed  CAS  Google Scholar 

  43. Molad Y, Reibman J, Levin RI, et al. A new mode of action for an old drug: colchicine decreases surface expression of adhesion molecules on both neutrophils (PMNs) and endothelium. Arthritis Rheum 1992; 35Suppl. 9: S35

    Google Scholar 

  44. Arndt H, Palitsch K-D, Grisham MB, et al. Metronidazole inhibits leukocyte-endothelial cell adhesion in rat mesenteric venules. Gastroenterology 1994; 106: 1271–6

    PubMed  CAS  Google Scholar 

  45. Asako H, Kubes P, Baethge BA, et al. Reduction of leukocyte adherence and emigration by cyclosporine and L683,590 (FK506) in postcapillary venules. Transplantation 1992; 54: 686–90

    Article  PubMed  CAS  Google Scholar 

  46. Koskinen PK, Lemström KB, Häyry PJ. How cyclosporine modifies histological and molecular events in the vascular wall during chronic rejection of rat cardiac allografts. Am J Pathol 1995; 146: 972–80

    PubMed  CAS  Google Scholar 

  47. Kubes P, Hunter J, Granger DN. Effects of cyclosporin A and FK506 on ischemia/reperfusion-induced neutrophil infiltration in the cat. Dig Dis Sci 1991; 36: 1469–72

    Article  PubMed  CAS  Google Scholar 

  48. Wallace JL, Higa A, McKnight GW, et al. Prevention and reversal of experimental colitis by a monoclonal antibody which inhibits leukocyte adherence. Inflammation 1992; 16: 343–54

    Article  PubMed  CAS  Google Scholar 

  49. Podolsky DK, Lobb R, King N, et al. Attenuation of colitis in the cotton-top tamarin by anti-ß4 integrin monoclonal antibody. J Clin Invest 1993; 92: 372–80

    Article  PubMed  CAS  Google Scholar 

  50. Van Dullemen HM, Van Deventer SJH, Hommes DW, et al. Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology 1995; 109: 129–35

    Article  PubMed  Google Scholar 

  51. McCafferty D-M, Kubes P, Wallace JL. Inhibition of platelet-activating factor-induced leukocyte adhesion in vivo by a leumedin. Eur J Pharmacol 1993; 232: 169–72

    Article  PubMed  CAS  Google Scholar 

  52. Burch RM, Connor JR, Bator JM, et al. NPC 15669, an inhibitor of neutrophil recruitment, is efficacious in acetic acid-induced colitis in rats. Gastroenterology 1993; 104: 1021–9

    PubMed  Google Scholar 

  53. Bator JM, Weitzberg M, Burch RM. N-[9H-(2,7-dimethyl-fluorenyl-9-methoxy)-carbonyl]-L-leucine, NPC 15669, prevents neutrophil adherence to endothelium and inhibits CDllb/CD18 upregulation. Immunopharmacology 1992; 23: 139–49

    Article  PubMed  CAS  Google Scholar 

  54. Gaffney PR, O’Leary JJ, Doyle CT, et al. Response to heparin in patients with ulcerative colitis. Lancet 1991; 337: 238–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, C.J., Wallace, J.L. Inflammatory Bowel Disorders. BioDrugs 7, 273–284 (1997). https://doi.org/10.2165/00063030-199707040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199707040-00004

Keywords

Navigation