Skip to main content
Log in

5,6-Dimethylxanthenone-4-Acetic Acid (DMXAA)

Clinical Potential in Combination with Taxane-Based Chemotherapy

  • Leading Article
  • Published:
American Journal of Cancer

Abstract

Currently, there is a great deal of interest in drugs that target tumor vasculature and their therapeutic potential in combination regimens for the treatment of cancer. This review focuses on one of the vascular disrupting agents, 5-6-dimethylxanthenone 4-acetic acid (DMXAA), and the rationale for its combination with standard taxane-based chemotherapy. DMXAA and taxanes have different mechanisms of action and, in combination, demonstrate at least additive activity against preclinical solid tumors. Their clinical adverse-effect and pharmacologic profiles as single agents appear to render these agents suitable for use in combination. Phase I studies of DMXAA have identified a range of doses for combination clinical trials. In addition, the clinical indications and chemotherapy doses for combination clinical studies have been selected from positive randomized controlled trials of taxanes in advanced cancers. A phase II clinical trials program of combination studies with DMXAA is now underway; paclitaxel and carboplatin in patients with NSCLC and ovarian cancer and docetaxel in patients with hormone-refractory prostate cancer are being evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Table II

Similar content being viewed by others

References

  1. Siemann DW, Bibby MC, Dark GG, et al. Differentiation and definition of vascular-targeted therapies. Clin Cancer Res 2005; 11: 416–20

    PubMed  CAS  Google Scholar 

  2. Neri D, Bicknell R. Tumour vascular targeting. Nat Rev Cancer 2005; 5: 436–46

    Article  PubMed  CAS  Google Scholar 

  3. Kelland LR. Targeting established tumor vasculature: a novel approach to cancer treatment. Curr Cancer Ther Rev 2005; 1: 1–9

    Article  Google Scholar 

  4. Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer 2005; 5: 423–35

    Article  PubMed  CAS  Google Scholar 

  5. Pruijn FB, vanDaalen M, Holford NHG, et al. Mechanisms of enhancement of the antitumour activity of melphalan by the tumour-blood-flow inhibitor 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother Pharmacol 1997Apr; 39(6): 541–6

    Article  PubMed  CAS  Google Scholar 

  6. Siim BG, Baguley BC. Flavones and xanthenones as vascular-disrupting agents. In: Siemann DW, editor. Vascular-targeted therapies in oncology. Chichester: John Wiley and Sons, 2006: 159–77

    Chapter  Google Scholar 

  7. McPhail LD, McIntyre DJO, Ludwig C, et al. Rat tumour response to the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid as measured by dynamic contrast-enhanced magnetic resonance imaging, plasma 5-hydroxindoleacetic acid levels, and tumor necrosis. Neoplasia 2006; 8: 199–206

    Article  PubMed  CAS  Google Scholar 

  8. Seshadri M, Spernyak JA, Mazurchuk R, et al. Tumor vascular response to photodynamic therapy and the antivascular agent 5,6-dimethylxanthenone-4-acetic acid: implications for combination therapy. Clin Cancer Res 2005; 11: 4241–50

    Article  PubMed  CAS  Google Scholar 

  9. Zhao L, Ching L-M, Kestell P, et al. Mechanisms of tumor vascular shutdown induced by 5,6-Dimethylxanthenone-4-acetic acid (DMXAA): increased tumor vascular permeability. Int J Cancer 2005; 116: 322–6

    Article  PubMed  CAS  Google Scholar 

  10. McPhail LD, Chung Y-L, Madhu B, et al. Tumor dose response to the vascular disrupting agent, 5,6-dimethylxanthenone-4-acetic acid, using in vivo magnetic resonance spectroscopy. Clin Cancer Res 2005; 11: 3705–13

    Article  PubMed  CAS  Google Scholar 

  11. Ching L-M, Cao Z, Kieda C, et al. Induction of endothelial ceil apoptosis by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Br J Cancer 2002; 86: 1937–42

    Article  PubMed  CAS  Google Scholar 

  12. Ching L-M, Zwain S, Baguley BC. Relationship between tumour endothelial cell apoptosis and tumour blood flow shutdown following treatment with the antivascular agent DMXAA in mice. Br J Cancer 2004; 90: 906–10

    Article  PubMed  CAS  Google Scholar 

  13. Woon S-T, Zwain S, Schooltink MA, et al. NF-kappa B activation in vivo in both host and tumour cells by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Eur J Cancer 2003; 39: 1176–83

    Article  PubMed  CAS  Google Scholar 

  14. Zhao L, Edgar S, Marshall E, et al. Inhibition of vasculogenic mimicry in melanoma by the antivascular drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA). EJC Suppl 2004Sep; 2(8): 47–8

    Article  Google Scholar 

  15. Joseph WR, Cao Z, Mountjoy KG, et al. Stimulation of tumors to synthesize tumor necrosis factor-alpha in situ using 5,6-dimethylxanthenone-4-acetic acid: a novel approach to cancer therapy. Cancer Res 1999; 59: 633–8

    PubMed  CAS  Google Scholar 

  16. Rustin GJS, Bradley C, Galbraith S, et al. 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a novel antivascular agent: phase 1 clinical and pharmacokinetic study. Br J Cancer 2003; 88: 1160–7

    Article  PubMed  CAS  Google Scholar 

  17. Jameson MB, Thompson PI, Baguley BC, et al. Clinical aspects of a phase I trial of 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a novel antivascuiar agent. Br J Cancer 2003; 88: 1844–50

    Article  PubMed  CAS  Google Scholar 

  18. McKeage MJ, Fong P, Jeffery M, et al. 5,6-dimethylxanthenone-4-acetic acid in the treatment of refractory tumors: a phase I safety study of a vascular disrupting agent. Clin Cancer Res 2006Mar 15; 12(6): 1776–84

    Article  PubMed  CAS  Google Scholar 

  19. Kestell P, Zhao L, Jameson MB, et al. Measurement of plasma 5-hydroxy-indoleacetic acid as a possible clinical surrogate marker for the action of antivascular agents. Clin Chim Acta 2001; 314: 159–66

    Article  PubMed  CAS  Google Scholar 

  20. Galbraith SM, Rustin GJS, Lodge MA, et al. Effects of 5,6-Dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast enhanced magnetic resonance imaging. J Clin Oncol 2002Sep; 20(18): 3826–40

    Article  PubMed  CAS  Google Scholar 

  21. Siim BG, Lee AE, Shalal-Zwain S, et al. Marked potentiation of the antitumour activity of chemotherapeutic drags by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Cancer Chemother Pharmacol 2003; 51: 43–52

    Article  PubMed  CAS  Google Scholar 

  22. Green C, Griffiths-Johnson D, Djeha H, et al. Marked potentiation of the in vivo antitumor activity of docetaxel in a human prostate cancer xenograft by the vascular targeting agent 5,6 dimethyl xanthenone acetic acid, DMXAA [abstract no. 2990]. American Association for Cancer Research Proceedings of the Annual Scientific Meeting; 2005 Apr 16–20; Anaheim (CA). Linthicum (MD): Cadmus Professional Publications, 2006

  23. Wilson WR, Li AE, Cowan DSM, et al. Enhancement of tumor radiation response by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Int J Radiat Oncol Biol Phys 1998; 42: 905–8

    Article  PubMed  CAS  Google Scholar 

  24. Murata R, Overgaard J, Horsman MR. Potentiation of the anti-tumour effect of hyperthermia by combining with the vascular targeting agent 5,6-dimethylxanthenone-4-acetic acid. Int J Hyperthermia 2001; 17: 508–19

    Article  PubMed  CAS  Google Scholar 

  25. Pedley RB, Boden JA, Boden R, et al. Ablation of colorectai xenografts with combined radioimmunotherapy and tumor blood flow-modifying agents. Cancer Res 1996; 56: 3293–300

    PubMed  CAS  Google Scholar 

  26. Kelland LR, Baguley BC, Zhao L, et al. Plasma levels of 5-hydroxyindole-3-acetic acid (5HIAA) as a pharmacodynamic marker of blood flow changes induced by the vascular targeting agent (VTA) 5,6 dimethyl xanthenone acetic acid, DMXAA [abstract no. 3123]. American Society of Clinical Oncology Annual Meeting Proceedings; 2005 May 13-17; Orlando (EL). Linthicum (MD): Cadmus Professional Publications, 2006

    Google Scholar 

  27. Tannock IF, deWit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004; 351(15): 1502–12

    Article  PubMed  CAS  Google Scholar 

  28. Bonomi P, Kim KM, Fairclough D, et al. Comparison of survival and quality of life in advanced non-small-cell lung cancer patients treated with two dose levels of paclitaxel combined with cisplatin versus etoposide with cisplatin: results of an Eastern Cooperative Oncology Group trial. J Clin Oncol 2000Feb; 18(3): 623–31

    PubMed  CAS  Google Scholar 

  29. Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002Jan 10; 346(2): 92–8

    Article  PubMed  CAS  Google Scholar 

  30. Parmar MK, Ledermann JA, Colombo N, et al. The ICON and AGO Collaborators. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet 2003; 361: 2099–106

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

LR Kelland is an employee of Antisoma. Antisoma have provided support for some of the work described in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. McKeage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKeage, M.J., Kelland, L.R. 5,6-Dimethylxanthenone-4-Acetic Acid (DMXAA). Am J Cancer 5, 155–162 (2006). https://doi.org/10.2165/00024669-200605030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200605030-00002

Keywords

Navigation