Skip to main content
Log in

SSRIs and Intraocular Pressure Modifications

Evidence, Therapeutic Implications and Possible Mechanisms

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

SSRIs are the most commonly prescribed antidepressant drugs, in part because of their favourable safety profile compared with older antidepressants. However, the widespread use of SSRIs leads to an increased occurrence of rare adverse effects. This review, based on data from published experimental research, clinical studies and case reports, describes the role of serotonin in the control of intraocular pressure (IOP) and the evidence for IOP modifications in patients receiving SSRIs.

In a small percentage of patients with depression, the cause of SSRI withdrawal has been the occurrence of ill-defined visual disturbances. It can be speculated that in some of these patients, the iatrogenic ocular alterations could have been due to changes in IOP. There have also been a limited number of case reports of acute attacks of glaucoma occurring during treatment with SSRIs. Although causality is not exactly specified, the relationship between SSRIs and this ocular adverse event is strongly implied. Nevertheless, in a small clinical study assessing the effect of a single dose of fluoxetine on IOP, the drug was shown to increase this parameter, although the effect was asymptomatic. The clinical signs of unexpected adverse drug effects are often disregarded, with the exception of those characterised by serious symptoms (such as acute angle-closure glaucoma in the case of IOP modifications). Also, the distribution of iridocorneal angle configurations in the general population implies that an adverse effect on IOP will be paucior asymptomatic in most patients (intermittent, sub-acute or progressive angle-closure glaucoma). As a result, it is likely that the incidence of SSRI-related IOP modifications is underestimated.

Until the involvement of SSRIs in IOP modifications is better understood, ophthalmological consultations should be considered before starting and during treatment with any SSRI in patients with glaucomatous risk factors, especially those who are elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II

Similar content being viewed by others

References

  1. Hyttel J. Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). Int Clin Psychopharmacol 1994; 9Suppl. 1: 19–26

    Article  PubMed  Google Scholar 

  2. Pacher P, Kohegyi E, Kecskemeti V, et al. Current trends in the development of new antidepressants. Curr Med Chem 2001; 8: 89–100

    Article  PubMed  CAS  Google Scholar 

  3. Perry PJ. Pharmacotherapy for major depression with melancholic features: relative efficacy of tricyclic versus selective serotonin reuptake inhibitor antidepressants. J Affect Disord 1996; 39: 1–6

    Article  PubMed  CAS  Google Scholar 

  4. Edwards JG, Anderson I. Systematic review and guide to selection of selective serotonin reuptake inhibitors. Drugs 1999; 57: 507–33

    Article  PubMed  CAS  Google Scholar 

  5. Preskorn SH. Antidepressant options in primary care. Clin Cornerstone 1999; 1: 31–55

    Article  PubMed  CAS  Google Scholar 

  6. Hakanson R. The preclinical observation that escitalopram possesses a faster time to onset of efficacy than citalopram. Pharmacol Toxicol 2002; 90: 3–4

    Article  PubMed  CAS  Google Scholar 

  7. Baldessarini RJ. Drugs and the treatment of psychiatric disorders. In: Goodman Gilman A, Hardman JG, Limbird LE, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill Medical Publishing Division, 2001: 447–83

    Google Scholar 

  8. Baldessarini RJ. Fifty years of biomedical psychiatry and psychopharmacology in America. In: Menninger R, Nemiah J, editors. American psychiatry after World War II: (1944–1994). Washington: American Psychiatric Press, 2000: 369–410

    Google Scholar 

  9. Baldwin D, Johnson RN. Tolerability and safety of citalopram. Rev Contemp Pharmacother 1995; 6: 315–25

    CAS  Google Scholar 

  10. Cooper GL. The safety of fluoxetine: an update. Br J Psychiatry 1988; 15Suppl. 3: 77–86

    Google Scholar 

  11. Wagner W, Zaborny BA, Gray TE. Fluvoxamine: a review of its safety profile in world-wide studies. Int Clin Psychopharmacol 1994; 9: 223–7

    Article  PubMed  CAS  Google Scholar 

  12. Boyer WF, Blumhardt CL. The safety profile of paroxetine. J Clin Psychiatry 1992; 53Suppl. 2: 61–6

    PubMed  Google Scholar 

  13. Doogan DP. Toleration and safety of sertraline: experience worldwide. Int Clin Psychopharmacol 1991; 6Suppl. 2: 47–56

    Article  PubMed  Google Scholar 

  14. Waugh J, Goa KL. Escitalopram: a review of its use in the management of major depressive and anxiety disorders. CNS Drugs 2003; 17: 343–62

    Article  PubMed  CAS  Google Scholar 

  15. Preskorn SH. Comparison of the tolerability of bupropion, fluoxetine, imipramine, nefazodone, paroxetine, sertraline and venlafaxine. J Clin Psychiatry 1995; 56Suppl. 6: 12–21

    PubMed  Google Scholar 

  16. Trindade E, Menon D, Topfer LA, et al. Adverse effects associated with selective serotonin reuptake inhibitors and tricyclic antidepressants: a meta-analysis. CMAJ 1998; 159: 1245–52

    PubMed  CAS  Google Scholar 

  17. Ahmad S. Fluoxetine and glaucoma [letter]. DICP 1991; 25: 436

    PubMed  CAS  Google Scholar 

  18. Kirwan JF, Subak-Sharpe I, Teimory M. Bilateral acute angle closure glaucoma after administration of paroxetine [letter]. Br J Ophthalmol 1997; 81: 252

    Article  PubMed  CAS  Google Scholar 

  19. Lewis CF, DeQuardo JR, DuBose C, et al. Acute angle-closure glaucoma and paroxetine. J Clin Psychiatry 1997; 58: 123–4

    Article  PubMed  CAS  Google Scholar 

  20. Eke T, Bates AK. Acute angle closure glaucoma associated with paroxetine [letter]. BMJ 1997; 314: 1387

    Article  PubMed  CAS  Google Scholar 

  21. Bennett HG, Wyllie AM. Paroxetine and acute angle-closure glaucoma. Eye 1999; 13: 691–2

    Article  PubMed  Google Scholar 

  22. Browning AC, Reck AC, Chisholm IH, et al. Acute angle closure glaucoma presenting in a young patient after administration of paroxetine. Eye 2000; 14: 406–8

    Article  PubMed  Google Scholar 

  23. Jimenez-Jimenez FJ, Orti-Pareja M, Zurdo JM. Aggravation of glaucoma with fluvoxamine. Ann Pharmacother 2001; 35: 1565–6

    Article  PubMed  CAS  Google Scholar 

  24. Adverse Drug Reactions Advisory Committee (ADRAC). SSRIs and increased intraocular pressure. Australian Adverse Drugs Reaction Bulletin 2001; 20/1: 3

    Google Scholar 

  25. Costagliola C, Mastropasqua L, Steardo L, et al. Fluoxetine oral administration increases intraocular pressure [letter to the editor]. Br J Ophthalmol 1996; 80: 678

    Article  PubMed  CAS  Google Scholar 

  26. Murray CJ, Lopez AD. Evidence-based health policy-lessons from the Global Burden of Disease Study. Science 1996; 274: 740–3

    Article  PubMed  CAS  Google Scholar 

  27. Lopez AD, Murray CJ. The global burden of disease, 1990–2020. Nat Med 1998; 4: 1241–3

    Article  PubMed  CAS  Google Scholar 

  28. Murray CJ, Lopez AD. On the comparable quantification of health risks: lessons from the Global Burden of Disease Study. Epidemiology 1999; 10: 594–605

    Article  PubMed  CAS  Google Scholar 

  29. Blazer DG, Kessler RC, McGonagle KA, et al. The prevalence and distribution of major depression in a national community sample: the National Comorbidity Survey. Am J Psychiatry 1994; 151: 979–86

    PubMed  CAS  Google Scholar 

  30. Kessler RC, McGonagle KA, Zhao S, et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey. Arch Gen Psychiatry 1994; 51: 8–19

    Article  PubMed  CAS  Google Scholar 

  31. Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Human cytochromes and some newer antidepressants: kinetics, metabolism, and drug interactions. J Clin Psychopharmacol 1999; 19Suppl. 1:23S–35S

    Article  PubMed  CAS  Google Scholar 

  32. Cadieux RJ. Antidepressant drug interactions in the elderly: understanding the P-450 system is half the battle in reducing risks. Postgrad Med 1999; 106: 231–2, 237-40, 245-9

    Article  PubMed  CAS  Google Scholar 

  33. Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors: an overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 1997; 32Suppl. 1: 1–21

    Article  PubMed  CAS  Google Scholar 

  34. Alfaro CL, Lam YW, Simpson J, et al. CYP2D6 status of extensive metabolizers after multiple-dose fluoxetine, fluvoxamine, paroxetine, or sertraline. J Clin Psychopharmacol 1999; 19: 155–63

    Article  PubMed  CAS  Google Scholar 

  35. von Bahr C, Ursing C, Yasui N, et al. Fluvoxamine but not citalopram increases serum melatonin in healthy subjects: an indication that cytochrome P450 CYP1A2 and CYP2C19 hydroxylate melatonin. Eur J Clin Pharmacol 2000; 56: 123–7

    Article  Google Scholar 

  36. von Moltke LL, Greenblatt DJ, Giancarlo GM, et al. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos 2001; 29: 1102–9

    Google Scholar 

  37. Liston HL, DeVane CL, Boulton DW, et al. Differential time course of cytochrome P450 2D6 enzyme inhibition by fluoxetine, sertraline, and paroxetine in healthy volunteers. J Clin Psychopharmacol 2002; 22: 169–73

    Article  PubMed  CAS  Google Scholar 

  38. Settle Jr EC. Antidepressant drugs: disturbing and potentially dangerous adverse effects. J Clin Psychiatry 1998; 59Suppl. 16: 25–30

    PubMed  CAS  Google Scholar 

  39. Lohmann PL, Rao ML, Ludwig M, et al. Influence of CYP2D6 genotype and medication on the sparteine metabolic ratio of psychiatric patients. Eur J Clin Pharmacol 2001; 57: 289–95

    Article  PubMed  CAS  Google Scholar 

  40. Steimer W, Muller B, Leucht S, et al. Pharmacogenetics: a new diagnostic tool in the management of antidepressive drug therapy. Clin Chim Acta 2001; 308: 33–41

    Article  PubMed  CAS  Google Scholar 

  41. Black K, Shea C, Dursun S, et al. Selective serotonin reuptake inhibitor discontinuation syndrome: proposed diagnostic criteria. J Psychiatry Neurosci 2000; 25: 255–61

    PubMed  CAS  Google Scholar 

  42. Davson H. Physiology of the aqueous humour. In: Davson H, editor. Physiology of the eye. London: Churchill Livingstone, 1980: 9–82

    Google Scholar 

  43. Morrison JC, Freddo TF. Anatomy, microcirculation, and ultrastructure of the ciliary body. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas: clinical science. Vol. 1. 2nd ed. St Louis: Mosbly-Year Book Inc, 1996: 125–38

    Google Scholar 

  44. Krupin T, Civan MM. Physiologic basis of aqueous humour formation. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas: clinical science. Vol. 1. 2nd ed. St Louis: Mosbly-Year Book Inc, 1996: 251–80

    Google Scholar 

  45. Bonomi L, Marchini G, Marraffa M, et al. Prevalence of glaucoma and intraocular pressure distribution in a defined population. The Egna-Neumarkt Study. Ophthalmology 1998; 105: 209–15

    CAS  Google Scholar 

  46. Boles Carenini B, Brogliatti B. Intraocular pressure as a risk factor in glaucoma. In: Bucci MG, editor. Glaucoma: decision making in therapy. Milan: Springer-Verlag, 1996: 9–14

    Google Scholar 

  47. Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21: 359–93

    Article  PubMed  Google Scholar 

  48. European Glaucoma Society. Terminology and guidelines for glaucoma. Savona: Editrice DOGMA® S.r.1., 1998

  49. Shields MB, Ritch R, Krupin T. Classifications of the glaucomas. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas: clinical science. Vol. 2. 2nd ed. St Louis: Mosbly-Year Book Inc, 1996: 717–25

    Google Scholar 

  50. Bonomi L, Marchini G, Marraffa M, et al. Epidemiology of angle-closure glaucoma: prevalence, clinical types, and association with peripheral anterior chamber depth in the Egna-Neumarket Glaucoma Study. Ophthalmology 2000; 107: 998–1003

    Article  PubMed  CAS  Google Scholar 

  51. Rapport MM, Green AA, Page IH. Serum vasoconstrictor (serotonin) IV: isolation and characterization. J Biol Chem 1948; 176: 1243–51

    PubMed  CAS  Google Scholar 

  52. Sanders-Bush E, Mayer SE. 5-hydroxytryptamine (serotonin): receptor, agonists and antagonists. In: Goodman Gilman A, Hardman JG, Limbird LE, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill Medical Publishing Division, 2001: 269–90

    Google Scholar 

  53. Glennon RA, Dukat M. Serotonin receptors and drugs affecting serotonergic neurotransmission. In: Williams DA, Lemke T, editors. Foye’s textbook of medical chemistry. Baltimore: Williams and Wilkins Inc, 2002: 315–37

    Google Scholar 

  54. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 2002; 71: 533–54

    Article  PubMed  CAS  Google Scholar 

  55. Hoyer D, Clarke DE, Fozard JR, et al. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 1994; 46: 157–204

    PubMed  CAS  Google Scholar 

  56. Zifa E, Fillion G. 5-hydroxytryptamine receptors. Pharmacol Rev 1992; 44: 401–58

    PubMed  CAS  Google Scholar 

  57. Boess FG, Martin IL. Molecular biology of 5-HT receptors. Neuropharmacology 1994; 33: 275–317

    Article  PubMed  CAS  Google Scholar 

  58. Osborne NN, Meyer-Bothling U, Barnett NL. Serotonin receptors in the eye. In: Anderson DR, Drance SM, editors. Encounters in glaucoma research 1: receptor biology and glaucoma. Milan: Fogliazza Editore, 1994: 331–64

    Google Scholar 

  59. Ullmer C, Schmuck K, Kalkman HO, et al. Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett 1995; 370: 215–21

    Article  PubMed  CAS  Google Scholar 

  60. Somer E, Snyderman NL. Food and mood: the complete guide to eating well and feeling your best. 2nd ed. New York: Henry Holt & Company Inc, 1999

    Google Scholar 

  61. Klyce SD, Palkama KA, Harkonen M, et al. Neural serotonin stimulates chloride transport in rabbit corneal epithelium. Invest Ophthalmol Vis Sci 1982; 23: 181–92

    PubMed  CAS  Google Scholar 

  62. Uusitalo H, Lehtosalo J, Laakso J, et al. Immunocytochemical and biochemical evidence for 5-hydroxytryptamine containing nerves in the anterior part of the eye. Exp Eye Res 1982; 35: 671–5

    Article  PubMed  CAS  Google Scholar 

  63. Tobin AB, Unger W, Osborne NN. Evidence for the presence of serotonergic neurons and receptors in the iris-ciliary body complex of the rabbit. J Neurosci 1988; 8: 3713–21

    PubMed  CAS  Google Scholar 

  64. Chidlow G, Le Corre S, Osborne NN. Localization of 5-hydroxytryptamine1A and 5-hydroxytryptamine7 receptors in rabbit ocular and brain tissues. Neuroscience 1998; 87: 675–89

    Article  PubMed  CAS  Google Scholar 

  65. Ehinger B, Holmgren I. Electron microscopy of the indoleamine accumulating neurons in the rabbit retina. Cell Tissue Res 1979; 197: 175–94

    Article  PubMed  CAS  Google Scholar 

  66. Osborne NN. The occurrence of serotonergic nerves in the bovine cornea. Neurosci Lett 1983 Jan 31; 35: 15–8

    Article  PubMed  CAS  Google Scholar 

  67. Osborne NN. Indoleamines in the eye with special reference to the serotonergic neurones of the retina. In: Osborne NN, Chader J, editors. Progress in retinal research. Vol. 3. Oxford: Pergamon Press, 1984: 61–103

    Google Scholar 

  68. Osborne NN, Tobin AB. Serotonin-accumulating cells in the iris-ciliary body and cornea of various species. Exp Eye Res 1987; 44: 731–45

    Article  PubMed  CAS  Google Scholar 

  69. Martin XD, Malina HZ, Brennan MC, et al. The ciliary body: the third organs found to synthesize indoleamines in humans. Eur J Ophthalmol 1992; 2: 67–72

    PubMed  CAS  Google Scholar 

  70. Osborne NN, Chidlow G. Do beta-adrenoceptors and serotonin 5-HT1a receptors have similar functions in the control of intraocular pressure in the rabbit? Ophthalmologica 1996; 210: 308–14

    Article  PubMed  CAS  Google Scholar 

  71. Barnett NL, Osborne NN. The presence of serotonin (5-HT1) receptors negatively coupled to adenylate cyclase in rabbit and human iris-ciliary processes. Exp Eye Res 1993; 57: 209–16

    Article  PubMed  CAS  Google Scholar 

  72. Tobin AB, Osborne NN. Evidence for the presence of serotonin receptors negatively coupled to adenylate cyclase in the rabbit iris-ciliary body. J Neurochem 1989; 53: 686–91

    Article  PubMed  CAS  Google Scholar 

  73. Mallorga P, Sugrue MF. Characterization of serotonin receptors in the iris+ciliary body of the albino rabbits. Curr Eye Res 1987; 6: 527–32

    Article  PubMed  CAS  Google Scholar 

  74. Ritch R, Lowe RF. Angle-closure glaucoma: clinical types. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas: clinical science. Vol. 2. 2nd ed. St. Louis: Mosbly-Year Book Inc, 1996: 821–40

    Google Scholar 

  75. Chidlow G, Nash MS, De Santis LM, et al. The 5-HT(1a) receptor agonist 8-OH-DPAT lowers intraocular pressure in normotensive NZW rabbits. Exp Eye Res 1999; 69: 587–93

    Article  PubMed  CAS  Google Scholar 

  76. Meyer-Bothling U, Bron AJ, Osborne NN. Topical application of serotonin or the 5-HT1-agonist 5-CT intraocular pressure in rabbits. Invest Ophthalmol Vis Sci 1993; 34: 3035–42

    PubMed  CAS  Google Scholar 

  77. Osborne NN, Wood JP, Melena J, et al. 5-Hydroxytryptamine1A agonists: potential use in glaucoma: evidence from animal studies. Eye 2000; 14: 454–63

    Article  PubMed  Google Scholar 

  78. Tian RX, Kimura S, Kondou N, et al. DOI, a 5-HT2 receptor agonist, induces renal vasodilation via nitric oxide in anesthetized dogs. Eur J Pharmacol 2002; 437: 79–84

    Article  PubMed  CAS  Google Scholar 

  79. Costagliola C, Mastropasqua L, Capone D, et al. Effect of fluoxetine on intraocular pressure in the rabbit. Exp Eye Res 2000; 70: 551–5

    Article  PubMed  CAS  Google Scholar 

  80. Costagliola C, Iuliano G, Rinaldi M, et al. Effect of topical ketanserin administration on intraocular pressure. Br J Ophthalmol 1993; 77: 344–8

    Article  PubMed  CAS  Google Scholar 

  81. Goldmann H. On pseudofacility. Bibl Ophthalmol 1968; 76: 1–14

    PubMed  CAS  Google Scholar 

  82. Bill A, Barany EH. Gross facility, facility of conventional routes and pseudofacility of aqueous humour outflow in the cynomolgus monkey. Arch Ophthalmol 1966; 75: 665–73

    Article  PubMed  CAS  Google Scholar 

  83. Lutjen-Drecoll E, Shimizu T, Rohrbach M, et al. Quantitative analysis of ‘plaque material’ in the inner- and outer wall of Schlemm’s canal in normal- and glaucomatous eyes. Exp Eye Res 1986; 42: 443–55

    Article  PubMed  CAS  Google Scholar 

  84. Beasley Jr CM, Koke SC, Nilsson ME, et al. Adverse events and treatment discontinuations in clinical trials of fluoxetine in major depressive disorder: an updated meta-analysis. Clin Ther 2000; 22: 1319–30

    Article  PubMed  CAS  Google Scholar 

  85. Thompson C, Peveler RC, Stephenson D, et al. Compliance with antidepressant medication in the treatment of major depressive disorder in primary care: a randomized comparison of fluoxetine and a tricyclic antidepressant. Am J Psychiatry 2000; 157: 338–43

    Article  PubMed  CAS  Google Scholar 

  86. Palmberg P. Gonioscopy. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas: clinical science. Vol. 1. 2nd ed. St Louis: Mosbly-Year Book Inc, 1996: 455–69

    Google Scholar 

  87. Lieberman E, Stoudemire A. Use of tricyclic antidepressants in patients with glaucoma: assessment and appropriate precautions. Psychosomatics 1987; 28: 145–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Enrico Mantovani MD, Division of Ophthalmology, Camposampiero Hospital (Padova), Italy, for the computer-assisted image-processing technique of figure 1. The authors have no financial interest in any entity that is related to the products or subject matter discussed in this manuscript. They also did not receive any financial support for this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Costagliola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costagliola, C., Parmeggiani, F. & Sebastiani, A. SSRIs and Intraocular Pressure Modifications. CNS Drugs 18, 475–484 (2004). https://doi.org/10.2165/00023210-200418080-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200418080-00001

Keywords

Navigation