Skip to main content
Log in

Selectivity of Cholinesterase Inhibition

Clinical Implications for the Treatment of Alzheimer’s Disease

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The deterioration in cognitive function that is characteristic of Alzheimer’s disease is related to a reduction in cholinergic transmission in the basal forebrain, and the appearance of neurofibrillatory tangles and plaques containing β-amyloid (Aβ). Some plaques are neurotoxic and contain acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). AChE consists of different molecular forms: G1, G2 and G4. In the cortex and hippocampus, G4 is located presynaptically and comprises about 70 to 80% of the AChE present. The remainder is in the G1 form which is present in postsynaptic neurons. G4 is the predominant type of AChE that is reduced in Alzheimer’s disease. Skeletal muscle contains mainly G4 and G2.

Eight cholinesterase inhibitors that reduce the inactivation of acetylcholine (ACh) have been tested in placebo-controlled trials in patients with Alzheimer’s disease. All these agents were found to improve cognitive function, or delay its rate of decline, in a significant proportion of patients. Tacrine, eptastigmine and rivastigmine also significantly improved activities of daily living. Furthermore, most of these drugs increased cerebral blood flow and glucose metabolism, parameters that are decreased in the basal forebrain of individuals with Alzheimer’s disease. This latter effect may contribute to the therapeutic effect of cholinesterase inhibitors and may delay the formation of Aβ.

Currently available cholinesterase inhibitors differ in the incidence and severity of adverse effects produced at clinical doses. Reversible liver damage, seen with tacrine and velnacrine, and cholinergic hyperactivity, such as nausea, vomiting and muscle cramps, with these and other drugs can prevent the attainment of an optimum dose.

The selectivity of cholinesterase inhibitors for AChE versus BuChE, and for the different molecular forms of AChE, may have an influence on both therapeutic and adverse effects. Donepezil and galantamine (galanthamine) are selective inhibitors of AChE, while the other agents also inhibit BuChE. The adverse effects associated with cholinergic hyperactivity are not due to blockade of BuChE as previously suggested, since they are seen with the AChE-selective inhibitors and not with those inhibitors that only inhibit BuChE. The advantage of nonselective inhibitors is that they may also increase ACh levels by inhibiting BuChE in glial cells.

Selective inhibitors of the G1 form of AChE, such as rivastigmine, are more likely to elevate ACh levels in the brain of patients with Alzheimer’s disease and may be less likely to cause skeletal muscle cramps than nonselective inhibitors such as metrifonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitehouse PJ, Price DL, Strable RG, et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 1982; 215: 1237–9

    Article  PubMed  CAS  Google Scholar 

  2. Hoyer S. Oxidative energy metabolism in Alzheimer brain. Studies in early-onset and late-onset cases. Mol Chem Neuro-pathol 1992; 16: 207–24

    CAS  Google Scholar 

  3. Swedlow R, Marcus DL, Landman J, et al. Brain glucose metabolism in Alzheimer’s disease. Am J Med Sci 1994; 308: 141–4

    Article  Google Scholar 

  4. De la Torre JC. Impaired brain microcirculation may trigger Alzheimer’s disease. Neurosci Biobehav Revs 1994; 18: 397–401

    Article  Google Scholar 

  5. Guillozet AL, Smiley JF, Mash DC, et al. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol 1997; 42: 909–18

    Article  PubMed  CAS  Google Scholar 

  6. Enz A, Amstutz R, Boddeke H, et al. Brain selective inhibition of acetylcholinesterase: a novel approach to therapy for Alzheimer’s disease. Prog Brain Res 1993; 98: 431–8

    Article  PubMed  CAS  Google Scholar 

  7. Weinstock M, Razin M, Chorev M, et al. Pharmacological evaluation of phenyl-carbamates as CNS selective acetylcholinesterase inhibitors. J Neural Transm 1994; s43: 219–25

    CAS  Google Scholar 

  8. Bryson HM, Benfield P. Donepezil. Drugs Aging 1997; 10: 234–9

    Article  PubMed  CAS  Google Scholar 

  9. Antuono PG. Effectiveness and safety of velnacrine for the treatment of Alzheimer’s disease. Arch Int Med 1995; 155: 1766–72

    Article  CAS  Google Scholar 

  10. Thal LJ, Fergusen JM, Mintzer J, et al. A 24-week randomized trial of controlled release physostigmine in patients with Alzheimer’s disease. Neurology 1999; 52: 1146–52

    Article  PubMed  CAS  Google Scholar 

  11. Canal N, Imbimbo BP. Relationship between pharmacodynamic activity and cognitive effects of eptastigmine in patients with Alzheimer’s disease. Clin Pharmacol Ther 1996; 60: 218–28

    Article  PubMed  CAS  Google Scholar 

  12. Corey-Bloom J, Anand R, Veach J, et al. A randomized trial evaluating efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer’s disease, Int J Geriatric Psychopharmacol 1998; 1: 55–65

    CAS  Google Scholar 

  13. Rogers SL, Farlow MR, Doody RS, et al. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology 1998; 50: 136–45

    Article  PubMed  CAS  Google Scholar 

  14. Cummings JL, Cyrus PA, Bieber F, et al. Metrifonate treatment of the cognitive deficits of Alzheimer’s disease. Neurology 1998; 50: 1214–21

    Article  PubMed  CAS  Google Scholar 

  15. Quin DM, Selwood T, Pryor AN, et al. Cryptic catalysis and cholinesterase function. In: Shafferman A, Velan B, editors. Multidisciplinary approaches to cholinesterase function. New York (NY): Plenum Press, 1992: 141–8

    Chapter  Google Scholar 

  16. Appleyard ME. Secreted acetylcholinesterase: non-classical aspects of a classical enzyme. Trends Neurosci 1992; 15(12): 485–90

    Article  PubMed  CAS  Google Scholar 

  17. Small DH. Non-cholinergic actions of acetylcholinesterases: proteases regulating cell growth and development. Trends Biochem Sci 1990; 15(6): 213–6

    Article  PubMed  CAS  Google Scholar 

  18. Ehrlich G, Viegas-Pequignot E, Ginzberg D, et al. Mapping the human acetycholinesterase gene to chromosome 7q22 by fluorescent in situ hybridization coupled with selective PCR amplification from a somatic hybrid cell panel and chromosome-sorted DNA libraries. Genomics 1992; 13: 1192–7

    Article  PubMed  CAS  Google Scholar 

  19. Massoulie J, Pezzementi L, Bon S, et al. Molecular and cellular biology of cholinesterases. Progr Neurobiol 1993; 41: 31–91

    Article  CAS  Google Scholar 

  20. Atack JR, Perry EK, Bonham JR, et al. Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J Neurochem 1986; 47(1): 263–77

    Article  PubMed  CAS  Google Scholar 

  21. Siek GC, Katz LS, Fishman EB, et al. Molecular forms of acetylcholinesterase in subcortical areas of normal and Alzheimer disease brain. Biol Psychiatry 1990; 27: 573–80

    Article  PubMed  CAS  Google Scholar 

  22. Sussman JL, Harel M, Frolow F, et al. Atomic structure of acetylcholinesterase from Torpedo califomica: a prototypic acetylcholine-binding protein. Science 1991; 253: 872–9

    Article  PubMed  CAS  Google Scholar 

  23. Changeux J-R Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol Pharmacol 1966; 2: 369–92

    PubMed  CAS  Google Scholar 

  24. Cullumbine H. Actions at autonomie effector sites. In: Eichler O, Farah A, Koelle GB, editors. Handbuch der experimentellen pharmakologie: cholinesterases and anti-cholinesterase agents. Berlin: Springer-Verlag, 1963: 515–6

    Google Scholar 

  25. Harel M, Sussman JL, Krejci E, et al. Conversion of acetylcholinesterase to butyryl-cholinesterase. Modeling and mutagenesis. Proc Natl Acad Sci U S A 1992; 89(22): 10827–31

    Article  CAS  Google Scholar 

  26. Snape MF, Misra A, Murray TK, et al. A comparative study in rats of the in vitro and in vivo pharmacology of the acetylcholinesterase inhibitors tacrine, donepezil and NXX-066. Neuropharmacology 1999; 38: 181–93

    Article  PubMed  CAS  Google Scholar 

  27. Giacobini E. From molecular structure to Alzheimer therapy. Jpn J Pharmacol 1997; 74: 225–41

    Article  PubMed  CAS  Google Scholar 

  28. Fulton B, Benfield P. Galanthamine. Drugs Aging 1996; 9: 60–5

    Article  PubMed  CAS  Google Scholar 

  29. Kryger G, Silman I, Sussman JL. Three-dimensional structure of a complex of E2020 with acetylcholinesterase from Torpedo califomica. J Physiol Paris 1998; 92: 191–4

    Article  PubMed  CAS  Google Scholar 

  30. Doody RS. Clinical profile of donepezil in the treatment of Alzheimer’s disease. Gerontology 1999; 45: 23–32

    Article  PubMed  CAS  Google Scholar 

  31. Knapp MJ, Gracon SI, Davis CS, et al. Efficacy and safety of high-dose tacrine: a 30-week evaluation. Alz Dis Assoc Disord 1994; 8: s22–s31

    Article  Google Scholar 

  32. Weinstock M. Possible role of the cholinergic system and disease models. J Neural Transm 1997; Suppl. 49: 93–102

    CAS  Google Scholar 

  33. Thomsen T, Kaden B, Fischer JP, et al. Inhibition of acetylcholinesterase activity in human brain tissue and erythrocytes by galanthamine, physostigmine and tacrine. Eur J Clin Chem Clin Biochem 1991; 29: 487–92

    PubMed  CAS  Google Scholar 

  34. Morris JC, Cyrus PA, Orazem J, et al. Metrifonate benefits cognitive, behavioral, and global function in patients with Alzheimer’s disease. Neurology 1998; 50: 1222–30

    Article  PubMed  CAS  Google Scholar 

  35. Farlow MR, Hake AM. Mechanism of action and metabolism of acetylcholinesterase inhibitors: implications for treatment. Int J Ger Psychopharmacol 1998; 1 Suppl. 1: s2–s6

    CAS  Google Scholar 

  36. Enz A, Florsheim P. Cholinesterase inhibitors: an overview of their mechanism of action. In: Becker R, Giacobini E, editors. Alzheimer’s disease. From molecular biology to therapy. Boston (MA): Birkhauser, 1996: 211–5

    Google Scholar 

  37. Cutler NR, Polinsky RJ, Sramek JJ, et al. Dose-dependent CSF acetylcholinesterase inhibition by SDZ ENA 713 in Alzheimer’s disease. Acta Neurol Scand 1998; 97: 244–50

    Article  PubMed  CAS  Google Scholar 

  38. Sramek JJ, Block GA, Reines SA, et al. A multiple-dose safety trial of eptastigmine in Alzheimer’s disease, with pharmaco-dynamic observations of red blood cell cholinesterase. Life Sci 1995; 56(5): 319–26

    Article  PubMed  CAS  Google Scholar 

  39. Organe N, Giacobini E, Messamore E. Preferential inhibition of acetylcholinesterase forms in rat brain. Neurochem Res 1992; 17: 485–95

    Google Scholar 

  40. Barner EL, Gray SL. Donepezil use in Alzheimer disease. Ann Pharmacother 1998; 32(1): 70–7

    Article  PubMed  CAS  Google Scholar 

  41. Lamb HM, Faulds D. Metrifonate. Drugs Aging 1997; 11: 490–6

    Article  PubMed  CAS  Google Scholar 

  42. Summers WK, Majovski LV, Marsh GM, et al. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. New Engl J Med 1986; 315: 1241–5

    Article  PubMed  CAS  Google Scholar 

  43. McNally WP, Pool WF, Sinz MW, et al. Distribution of tacrine and metabolites in rat brain and plasma after single- and multiple-dose regimens: evidence for the accumulation of tacrine in brain tissue. Drug Metab Dispos 1996; 24: 628–33

    PubMed  CAS  Google Scholar 

  44. Weinstock M, Kay G, Razin M, et al. Selective inhibition of acetylcholinesterase and acetylcholine turnover in the cortex and hippocampus. In: Cohen S, Sokolovsky M, editors. Muscarinic cholinergic mechanisms. Tel Aviv: Freund Publishing House, 1987

    Google Scholar 

  45. Kaufer DI, Catt KE, Lopez OL, et al. Dementia with Lewy bodies: response of delirium-like features to donepezil. Neurology 1998; 51(5): 1512

    Article  PubMed  CAS  Google Scholar 

  46. Burstyn SA, Harker LA. Control of platelet production. Clin Haematol 1983; 12: 3–27

    Google Scholar 

  47. Imbimbo BP, Martelli P, Troetel WM, et al. Efficacy and safety of eptastigmine for the treatment of patients with Alzheimer’s disease. Neurology 1999; 52: 700–8

    Article  PubMed  CAS  Google Scholar 

  48. Zemlan FP, Keys M, Richter RW, et al. Double-blind placebo-controlled study of velnacrine in Alzheimer’s disease. Life Sci 1996; 58: 1823–32

    Article  PubMed  CAS  Google Scholar 

  49. Brufani M, Marta M, Pomponi M. Anticholinesterase activity of a new carbamate, heptylphysotigmine, in view of its use in patients with Alzheimer-type dementia. Eur J Biochem 1986; 157: 115–20

    Article  PubMed  CAS  Google Scholar 

  50. Anand R, Gharabawi G. Clinical development of Exelon™ (ENA-713): the ADENA programme. J Drug Dev Clin Pract 1996; 8: 9–14

    Google Scholar 

  51. Nakamura S, Takemura M, Suenaga T, et al. Occurrence of acetylcholinesterase activity closely associated with amyloid β/A4 protein is not correlated with acetylcholinesterase-positive fiber density in amygdala of Alzheimer’s disease. Acta Neuropathol 1992; 84: 425–32

    PubMed  CAS  Google Scholar 

  52. Inestrosa NC, Alvarez A, Perez CA, et al. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 1996; 16: 881–91

    Article  PubMed  CAS  Google Scholar 

  53. Mesulam M-M, Geula C, Moran MA. Anatomy of cholinesterase inhibition in Alzheimer’s disease: effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Ann Neurol 1987; 22: 683–91

    Article  PubMed  CAS  Google Scholar 

  54. Chong YH, Su Y-H. Amyloidogenic processing of Alzheimer’s amyloid precursor protein in vitro and its modulation by metal ions and tacrine. Life Sci 1996; 59: 545–57

    Article  PubMed  CAS  Google Scholar 

  55. Svensson AL, Nordberg A. Tacrine and donepezil attenuate the neurotoxic effect of A beta (25–35) in rat PC12 cells. Neuroreport 1998; 9: 1519–22

    Article  PubMed  CAS  Google Scholar 

  56. Giacobini E. Cholinesterase inhibitors do more than inhibit cholinesterase. In: Becker R, Giacobini E, editors. Alzheimer’s disease. From molecular biology to therapy. Boston (MA): Birkhauser, 1996: 187–204

    Google Scholar 

  57. Kowall NW, McKee AC, Yankner BA, et al. In vivo neurotoxicity of β-amyloid β(l–40) and the β(25–35) fragment. Neurobiol Aging 1992; 13: 537–42

    Article  PubMed  CAS  Google Scholar 

  58. Maurice T, Lockhart BP, Privat A. Amnesia induced in mice by centrally-administered β-amyloid peptides involves cholinergic dysfunction. Brain Res 1996; 706: 181–93

    Article  PubMed  CAS  Google Scholar 

  59. Salmon E, Gregoire MC, Delfiore G, et al. Combined study of cerebral glucose metabolism and [11C] methionine accumulation in probable Alzheimer’s disease using positron emission tomography. J Cereb Blood Flow Metab 1996; 16: 309–408

    Google Scholar 

  60. Simpson IA, Koteswara RC, Davies-Hill T, et al. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann Neurol 1994; 35: 546–51

    Article  PubMed  CAS  Google Scholar 

  61. Horwood N, Davies DC. Immunolabelling of hippocampal microvessel glucose transporter protein is reduced in Alzheimer’s disease. Virchows Archiv 1994; 425: 69–72

    Article  PubMed  CAS  Google Scholar 

  62. Kalaria RN, Harik SI. Abnormalities of the glucose transporter at the blood-brain barrier and in brain in Alzheimer’s disease. Prog Clin Bio Res 1989; 317: 415–21

    CAS  Google Scholar 

  63. Kiyosawa M, Baron J-C, Hamel E, et al. Time course of effects of unilateral lesions of the nucleus basalis of Meynert on glucose utilisation by the cerebral cortex. Brain 1989; 112: 435–55

    Article  PubMed  Google Scholar 

  64. Sato A, Sato Y Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain. Neurosci Res 1992; 14: 242–74

    Article  PubMed  CAS  Google Scholar 

  65. Abe K, Tanzi RE, Kogure K. Selective induction of Kunitz-type protease inhibitor domain-containing amyloid precursor protein mRNA after persistent focal ischemia in rat cerebral cortex. Neurosci Lett 1991; 125: 172–4

    Article  PubMed  CAS  Google Scholar 

  66. Katzman R. Alzheimer’s disease. N Engl J Med 1986; 314: 964–73

    Article  PubMed  CAS  Google Scholar 

  67. Scremin OU, Allen K, Torres C, et al. Physostigmine enhances blood flow-metabolism ratio in neocortex. Neuropsychopharmacol 1988; 1: 297–303

    CAS  Google Scholar 

  68. Scremin OU, Scremin AME, Heuser D, et al. Prolonged effects of cholinesterase inhibition with eptastigmine on the cerebral blood flow-metabolism ratio of normal rats. J Cereb Blood Flow Metab 1993; 13: 702–11

    Article  PubMed  CAS  Google Scholar 

  69. Peruzzi P, Borredon J, Seylaz J, et al. Tacrine overcompensates for the decreased blood flow induced by basal forebrain lesion in the rat. Neuroreport 1996; 8: 103–8

    Article  PubMed  CAS  Google Scholar 

  70. Tsukada H, Kakiuchi T, Ando I, et al. Functional activation of cerebral blood flow abolished by scopolamine is reversed by cognitive enhancers associated with cholinesterase inhibition: a positron emission tomography study in unanesthetized monkeys. J Pharmacol Exptl Ther 1997; 281: 1408–14

    CAS  Google Scholar 

  71. Ebmeier KB, Hunter R, Curran SM, et al. Effects of a single dose of the aceylcholinesterase inhibitor velnacrine on recognition memory and regional blood flow in Alzheimer’s disease. Psychopharmacol 1992; 108: 103–9

    Article  CAS  Google Scholar 

  72. Minthon L, Gustafson L, Dalfelt G, et al. Oral tetrahydroaminoacridine treatment of Alzheimer’s disease evaluated clinically and by regional cerebral blood flow. Dementia 1993; 4: 32–42

    PubMed  CAS  Google Scholar 

  73. Harkins SW, Taylor JR, Mattay V, et al. Tacrine treatment in Alzheimer’s disease enhances cerebral blood flow and mental status and decreases caregiver suffering. Ann N Y Acad Sci 1997; 826: 472–4

    Article  PubMed  CAS  Google Scholar 

  74. Tanaka K, Mizukawa K, Ogawa N, et al. Post-ischemic administration of the acetyl-cholinesterase inhibitor ENA-713 prevents delayed neuronal death in the gerbil hippocampus. Neurochem Res 1995; 20: 663–7

    Article  PubMed  CAS  Google Scholar 

  75. Tanaka K, Ogawa N, Mizukawa K, et al. Aceylcholinesterase inhibitor ENA-713 protects against ischemia-induced decrease in pre- and postsynaptic cholinergic indices in the gerbil brain following transient ischemia. Neurochem Res 1994; 19: 117–22

    Article  PubMed  CAS  Google Scholar 

  76. Sadoshima S, Ibayashi S, Fujii K, et al. Inhibition of acetylcho-linesterase modulates the autoregulation of cerebral blood flow and attenuates ischemic brain metabolism in hypertensive rats. J Cereb Blood Flow Metab 1995; 15: 845–51

    Article  PubMed  CAS  Google Scholar 

  77. Gentleman SM, Graham DI, Robert G.W. Molecular pathology of head trauma: Altered βAPP metabolism and the aetiology of Alzheimer’s disease. Prog Brain Res 1993; 96: 237–46

    Article  PubMed  CAS  Google Scholar 

  78. Chen Y, Shohami E, Bass R, et al. Cerebro-protective effects of ENA713, a novel acetylcholinesterase inhibitor, in closed head injury in the rat. Brain Res 1998; 784: 18–24

    Article  PubMed  CAS  Google Scholar 

  79. Chen Y, Shohami E, Constanini S, et al. Rivastigmine, a brain-selective acetyl-cholinesterase inhibitor, ameliorates cognitive and motor deficits induced by closed-head injury in the mouse. J Neurotrauma 1998; 15: 231–7

    Article  PubMed  CAS  Google Scholar 

  80. Zauner A, Bullock R. The role of excitatory amino acids in severe brain trauma: opportunities for therapy: a review. J Neurotrauma 1995; 12: 547–54

    Article  PubMed  CAS  Google Scholar 

  81. Taverni JP, Seliger G, Lichtman SW. Donepezil medicated memory improvement in traumatic brain injury during post acute rehabilitation. Brain Inj 1998; 12: 77–80

    Article  PubMed  CAS  Google Scholar 

  82. Bassant MH, Jazat-Poindessous F, Lamour Y Metabolic response to tacrine (THA) and physostigmine in the aged rat brain. J Cereb Blood Flow Metab 1995; 15: 1093–102

    Article  PubMed  CAS  Google Scholar 

  83. Bassant MH, Jazat-Poindessous F, Lamour Y Effect of metrifonate, a cholinesterase inhibitor, on local cerebral glucose utilization in young and aged rats. J Cereb Blood Flow Metab 1996; 16: 1014–25

    Article  PubMed  CAS  Google Scholar 

  84. Riekkenen Jr P, Aaltonen M, Sirvio J, et al. Tetrahydroam-inoacridine alleviates medial septal lesion-induced and agerelated spatial reference but not working memory deficits. Physiol Behav 1991; 49: 1147–52

    Article  Google Scholar 

  85. Riekkenen Jr P, Schmidt B, Stefanski R, et al. Metrifonate improves spatial navigation and avoidance behavior in scopolamine-treated, medial septum-lesioned and aged rats. Eur J Pharmacol 1996; 309: 121–30

    Article  Google Scholar 

  86. Duelli R, Schrock G, Kuschinsky W, et al. Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilisation in rats. Int J Dev Neurosci 1994; 12: 737–43

    Article  PubMed  CAS  Google Scholar 

  87. Weinstock M. Increase in cerebral blood flow and glucose utilization in beneficial effect of a cholinesterase inhibitor ENA713, in Alzheimer’s disease. In: Fisher A, Hanin I, Yoshida M, editors. Progress in Alzheimer’s and Parkinson’s diseases New York and London: Plenum Press, 1998: 587–95. (Adv Behav Biol: 49)

    Chapter  Google Scholar 

  88. Mohs RC, Ferris SH. Measuring response to treatment in Alzheimer’s disease: what constitutes meaningful change? Int J Geriatric Psychopharmacol 1998; 1 Suppl. 1: S7–S14

    Google Scholar 

  89. Spencer CM, Noble S. Rivastigmine. A review of its use in Alzheimer’s disease. Drugs Aging 1998; 13: 391–411

    CAS  Google Scholar 

  90. Rosier M, Anand R, Cicin-Sain A, et al. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial. BMJ 1999; 318(7184): 633–8

    Google Scholar 

  91. Rogers SL, Friedhoff LT. Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease: an interim analysis of the results of a US multicentre open-label extension study. Eur Neuropsychopharmacol 1998; 8: 67–75

    Article  PubMed  CAS  Google Scholar 

  92. Burns A, Rossor M, Hecker J, et al. The effects of donepezil in Alzheimer’s disease — results from a multinational trial. Dement Geriatr Cogn Disord 1999; 10: 237–44

    Article  PubMed  CAS  Google Scholar 

  93. Levy ML, Cummings JL, Kahn-Rose R. Neuropsychiatric symptoms and cholinergic therapy for Alzheimer’s disease. Gerontology 1999; 45 Suppl. 1: 15–22

    Article  Google Scholar 

  94. Thomsen T, Kewitz H. Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci 1990; 46: 1553–8

    Article  PubMed  CAS  Google Scholar 

  95. Riemann D, Gann H, Dressing H, et al. Influence of the cholinesterase inhibitor galanthamine hydrobromide on normal sleep. Psychiatr Res 1994; 51: 253–67

    Article  CAS  Google Scholar 

  96. Sano M, Bell K, Marder K, et al. Safety and efficacy of oral physostigmine in the treatment of Alzheimer’s disease. Clin Neuropharmacol 1993; 16: 61–9

    Article  PubMed  CAS  Google Scholar 

  97. Cutler NR, Jhee SS, Cyrus P, et al. Safety and tolerability of metrifonate in patents with Alzheimer’s disease: results of maximum tolerated dose study. Life Sci 1998; 62: 1433–41

    Article  PubMed  CAS  Google Scholar 

  98. Atack JR, Perry EK, Bonham JR, et al. Molecular forms of butyrylcholinesterase in the human neocortex during development and degeneration of the cortical cholinergic system. J Neurochem 1987; 48(6): 1687–92

    Article  PubMed  CAS  Google Scholar 

  99. Cutler NR, Sramek JJ. Tolerability profiles of AChEIs: acritical component of care for Alzheimer’s disease patients. Int J Geriatric Psychopharmacol 1998; 1 Suppl. 1: S20–S25

    CAS  Google Scholar 

  100. Stern Y, Sano M, Mayeux R. Effects of oral physostigmine in Alzheimer’s disease. Ann Neurol 1987; 22: 306–10

    Article  PubMed  CAS  Google Scholar 

  101. Thal LJ, Fuld PA, Masur DM, et al. Oral physostigmine and lecithin improve memory in Alzheimer’s disease. Ann Neurol 1983; 13: 491–6

    Article  PubMed  CAS  Google Scholar 

  102. Hallak M, Giacobini E. Physostigmine, tacrine and metrifonate: the effect of multiple doses on acetylcholine metabolism in rat brain. Neuropharmacology 1989; 28: 199–206

    Article  PubMed  CAS  Google Scholar 

  103. Svensson A-L, Zhang X, Nordberg A. Biphasic effect of tacrine on acetylcholine release in rat brain via M1 and M2 receptors. Brain Res 1996; 726: 207–12

    Article  PubMed  CAS  Google Scholar 

  104. Braida D, Paladini E, Griffini P, et al. An inverted U-shaped curve for heptyl-physostigmine on radial maze performance in rats: comparison with other cholinesterase inhibitors. Eur J Pharmacol 1996; 302: 13–20

    Article  PubMed  CAS  Google Scholar 

  105. Yoshida S, Suzuki N. Antiammnestic and cholinomimetic side effects of the cholinesterase inhibitors, physostigmine, tacrine and NIK-247 in rats. Eur J Pharmacol 1993; 150: 117–24

    Article  Google Scholar 

  106. Wanibuchi F, Nishida T, Yamashita H, et al. Characterization of a novel muscarinic receptor agonist, YM796: comparison with cholinesterase inhibitors in vivo pharmacological studies. Eur J Pharmacol 1994; 265: 151–8

    Article  PubMed  CAS  Google Scholar 

  107. Cheng DH, Tang XC. Comparative studies of huperzine A, E2020, and tacrine on behavior and cholinesterase activities. Pharmacol Biochem Behav 1998; 60: 377–86

    Article  PubMed  CAS  Google Scholar 

  108. Flood JF, Smith GE, Cherkin A. Memory retention: potentiation of cholinergic drug combinations in mice. Neurobiol Aging 1983; 4: 37–43

    Article  PubMed  CAS  Google Scholar 

  109. Cutler NR, Sramek JJ, Murphy MF, et al. Alzheimer’s patients should be included in phase I clinical trials to evaluate compounds for Alzheimer’s disease. J Geriatr Psychiatry Neurol 1992; 5: 192–4

    PubMed  CAS  Google Scholar 

  110. Anand R, Gharabawi G, Enz A. Efficacy and safety results of the early phase studies with Exelon™ (ENA-713) in Alzheimer’s disease: an overview. J Drug Dev Clin Pract 1996; 8: 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Weinstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstock, M. Selectivity of Cholinesterase Inhibition. Mol Diag Ther 12, 307–323 (1999). https://doi.org/10.2165/00023210-199912040-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199912040-00005

Keywords

Navigation