Skip to main content
Log in

Mechanisms of Action of Antidepressants

  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

The need to develop new antidepressants has been motivated by the frequency and potential severity of the adverse effects of the tricyclic and monoamine oxidase inhibitor antidepressants. This search for new classes of antidepressants has led to the development of selective inhibitors of noradrenaline (norepinephrine) or serotonin (5-hydroxytryptamine; 5-HT) reuptake, reversible inhibitors of monoamine oxidase, and noradrenergic and specific serotonergic antidepressants. While such novel antidepressants have different pharmacological profiles, there is no evidence that their therapeutic efficacy is superior to that of the tricyclic antidepressants. This raises the question of whether there is a common mechanism of antidepressant effect that may be activated via different neurochemical processes. Some of the possible mechanisms whereby chronic administration of antidepressants may elicit adaptive changes in serotonergic, noradrenergic and other neurotransmitter systems are discussed against the background of the biochemical basis of depression. Finally, the need to improve the efficacy of antidepressants, possibly by utilising mechanisms other than those involving direct modulation of monoamine neurotransmitters (e.g. by changes in prostaglandins, cytokines and neuropeptides such as corticotropin-releasing factor), is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leonard BE. Biochemical strategies for the development of antidepressants. CNS Drugs 1994; 1: 285–304

    Article  CAS  Google Scholar 

  2. Norman TR, Leonard BE. Fast-acting antidepressants — can the need be met? CNS Drugs 1994; 2: 120–31

    Article  Google Scholar 

  3. Åsberg M, Ringberger V-A, Sjoqvist F, et al. Monoamine metabolites in cerebrospinal fluid and serotonin uptake inhibition during treatment with chlorimipramine. Clin Pharmacol Ther 1977; 21(2): 2012–7

    Google Scholar 

  4. Emrich HM, Hollt V, Kissling W, et al. Beta endorphin like immunoreactivity in cerebrospinal fluid and plasma of patients with schizophrenia and other neuropsychiatric disorders. Pharmacopsychiatry 1979; 12: 269–76

    Article  CAS  Google Scholar 

  5. Leonard BE. Stress and the immune system: immunological aspects of depressive illness. In: Leonard BE, Miller K, editors. Stress, the immune system and psychiatry. Chichester: John Wiley and Sons, 1994: 114–36

    Google Scholar 

  6. Tuomisto J, Tukiainen E, Ahlfors UG. Decreased uptake of 5-hydroxytryptamine in blood platelets from patients with endogenous depression. Psychopharmacology 1979; 65: 141–7

    Article  PubMed  CAS  Google Scholar 

  7. Healy D, Carney PA, Leonard BE. Monoamine related markers of depression. J Psychiatr Res 1983; 7: 251–8

    Google Scholar 

  8. Healy D, Carney PA, O’Halloran A, et al. Peripheral adrenoceptors and serotonin receptors in depression. J Affect Disord 1985; 17: 285–92

    Article  Google Scholar 

  9. Butler J, Leonard BE. The platelet serotonergic system in depression and following sertraline treatment. Int Clin Pychopharmacol 1988; 3: 343–7

    Article  CAS  Google Scholar 

  10. Leonard BE. Neurotransmitter receptors, endocrine responses and the biological substrates of depression: a review. Human Psychopharmacol 1986; 1: 3–18

    Article  CAS  Google Scholar 

  11. van Praag HM, Korf J, Puite J. 5-Hydroxyindole acetic acid levels in the cerebrospinal fluid of depressive patients treated with probenecid. Nature 1970; 225: 827

    Article  Google Scholar 

  12. van Praag HM, de Hahn S. Central serotonin deficiency is a factor which increase depression vulnerability? Acta Psychiatr Scand 1979; 61Suppl. 280: 86–96

    Google Scholar 

  13. van Praag HM. Depression, suicide and the metabolism of serotonin in the brain. J Affect Disord 1982; 4: 275–82

    Article  PubMed  Google Scholar 

  14. Åsberg MM, Bertilsson L, Tuck D, et al. Indolelamine metabolites in the cerebrospinal fluid of depressed patients before and during treatment with nortriptyline. Clin Pharmacol Ther 1973; 14: 277–86

    PubMed  Google Scholar 

  15. Åsberg M, Traskman L, Toren P. 5-HIAA in the cerebrospinal fluid. A biochemical suicide predictor. Arch Gen Psychiatry 1976; 33: 1193–7

    Article  PubMed  Google Scholar 

  16. Montgomery SA. The non-selective effects of selective antidepressants. Adv Biochem Psychopharmacol 1982; 31: 49–56

    Google Scholar 

  17. Veith RC, Bielski RE, Bloom V, et al. Urinary MHPG excretion and treatment with desipramine or amitriptyline prediction of response, effect of treatment and methodological hazards. J Clin Psyhopharmacol 1983; 3: 18–27

    CAS  Google Scholar 

  18. Potter WZ, Scheinin M, Golden RN, et al. Selective antidepressants on cerebrospinal fluid: lack of specificity on norepinephrine and serotonin metabolites. Arch Gen Psychiatry 1985; 42: 1177–7

    Article  Google Scholar 

  19. Leonard BE. Effect of antidepressants on neurotransmission: a common mechanism of action? In: Osborne NN, editor. Current aspects of the neurosciences. United Kingdom: MacMillan Press, 1992: 205–37

    Google Scholar 

  20. Leonard BE. Effect of antidepressants on specific neurotransmitters: are such effects relevant to their therapeutic action? In: den Boer JA, Sitzen JMA, editors. Handbook of depression and anxiety - a biological approach. New York: Marcel Dekker Inc., 1994: 379–404

    Google Scholar 

  21. Potter WZ, Grossman F, Rudorfer MV. Noradrenergic function in depressive disorders. In: Mann JJ, Kupfer DJ, editors. Biology of depressive disorders. Part A. A systems perspective. New York: Plenum Press, 1993: 1–28

    Google Scholar 

  22. Malone K, Mann JJ. Serotonin and major depression. In: Mann JJ, Kupfer DJ, editors. Biology of depressive disorders. Part A. A systems perspective. New York: Plenum Press, 1993: 29–50

    Google Scholar 

  23. Meyerson LR, Wennogle LP, Abel MS, et al. Human brain receptor alteration in suicide victims. Pharmacol Biochem Behav 1982; 17: 159–63

    Article  PubMed  CAS  Google Scholar 

  24. Stanley M, Mann JJ. Increased serotonin binding sites in frontal cortex of suicide victims. Lancet 1983; 1: 214–6

    Article  PubMed  CAS  Google Scholar 

  25. Kaufmann CA, Gillin JC, Hill B, et al. Muscarinic binding in suicides. Psychiatry Res 1984; 12: 47–55

    Article  PubMed  CAS  Google Scholar 

  26. Risch SC, Kalin NH, Janowsky DS, et al. Co-release of ACTH and beta endorphin immunoreactivity in human subjects in response to central cholinergic stimulation. Science 1983; 222: 77

    Article  PubMed  CAS  Google Scholar 

  27. Janowsky DS, Risch SC. Cholinomimetic and anticholinergic drugs used to investigate an acetylcholine hypothesis of affective disorders in stress. Drug Dev Res 1984; 4: 125–42

    Article  CAS  Google Scholar 

  28. Janowsky DS, Risch SC, Gillin JC. Adrenergic-cholinergic balance and the treatment of affective disorders. Prog Neuropsychopharmacol Biol Psychiatry 1983; 7: 297–307

    Article  PubMed  CAS  Google Scholar 

  29. Earley B, Glennon M, Lally M, et al. Autoradiographic distribution of cholinergic muscarinic receptors and serotonin2 receptors in olfactory bulbectomized rats after chronic treatment with mianserin and desipramine. Human Psychopharmacol 1994; 9: 397–407

    Article  CAS  Google Scholar 

  30. Leonard BE. Serotonin receptors - where are they going? Int Clin Psycopharmacol 1994; 9Suppl. 1: 7–18

    Article  Google Scholar 

  31. Ogren SO, Fuxe K. Effects of antidepressant drugs on cerebral serotonin receptors. In: Green AR, editor. Neuropharmacology of serotonin. Oxford: Oxford University Press, 1985: 131–80

    Google Scholar 

  32. Johnson AM. The comparative pharmacological properties of selective serotonin re-uptake inhibitors in animals. In: Feighner JP, Boyer WF, editors. Selective serotonin re-uptake inhibitors. Chichester, UK; John Wiley & Sons, 1991: 37–70

    Google Scholar 

  33. De Montigny C, Chaput Y, Blier P. Modification of serotonergic neuron properties by long-term treatment with serotonin reuptake blockers. J Clin Psychiatry 1990; 51Suppl. B: 4–8

    PubMed  Google Scholar 

  34. Hamon M, Emerit MB, Mestiakawa S, et al. Pharmacological, biochemical and functional properties of 5-HTIA binding sites labelled by 8-0H-DPAT in the rat brain. In: Dourish T, Ahlenius S, Hudson PH, editors. Brain 5HTIA receptors. Chichester: Ellis Horwood, 1987: 34–51

    Google Scholar 

  35. Goodwin GM, De Sousa RJ, Green AR. Presynaptic serotonin receptor mediated response in mice attenuated by antidepressant drugs and electroconvulsive shock. Nature 1985; 317: 531–3

    Article  PubMed  CAS  Google Scholar 

  36. Aghajanian GK, De Montigny C. Tricyclic antidepressants: long-term treatment increases responsivity of rat forebrain neurons to serotonin. Science 1978; 202: 1303–6

    Article  PubMed  Google Scholar 

  37. Blier P, De Montigny C, Chaput Y. A role for the serotonin system in the mechanism of action of antidepressant treatment: preclinical evidence. J Clin Psychiatry 1990; 51Suppl. 4: 14–20

    PubMed  Google Scholar 

  38. Chaput Y, De Montigny C, Blier P. Effects of a selective 5HT reuptake blocker, citalopram, on the sensitivity of 5HT autoreceptors: electrophysiological studies in the rat. Naunyn-Schmiedebergs Arch Phamacol 1986; 33: 342–9

    Article  Google Scholar 

  39. De Montigny C, Chaput YU, Blier P. Classical and novel targets of antidepressant drugs. In: Mendlewicz J, Brunello N, Langer SZ, Racagni G, editors. New pharmacological approaches to the therapy of depressive disorders. Basel: Karger, 1993: 8–17

    Google Scholar 

  40. Peroutka SJ, Synder SH. Long-term antidepressant treatment decreases spiroperidol-labelled serotonin receptor binding. Science 1980; 210: 88–90

    Article  PubMed  CAS  Google Scholar 

  41. Stolz JF, Marsden CA, Middlemiss DM. Effect of chronic antidepressant treatment and subsequent withdrawal on 3H-5-HT and 3H-spiperone binding in rat frontal corex and serotonin receptor mediated behaviour. Psychopharmacology 1983; 80: 150–5

    Article  PubMed  CAS  Google Scholar 

  42. Nelson DR, Thomas DR, Johnson AM. Pharmacological effects of paroxetine after repeated administration to animals. Acta Psychiatr Scand Suppl. 1989; 350: 21–3

    Article  PubMed  CAS  Google Scholar 

  43. Sanders-Bush E, Breeding M, Knoth K, et al. Sertraline induced desensitization of the serotonin 5HT2 receptor transmembrane signalling system. Psychopharmacology 1992; 99: 64–9

    Article  Google Scholar 

  44. Deakin JFDW, Guimaraes FS, Wang M, et al. Experimental tests of the 5HT receptor imbalance theory of affective disorders. In: Sandler M, Coppen A, Harnetts S, editors. 5-Hydroxytryptamine in psychiatry. Oxford: Oxford Medical Publications, 1991: 143–54

    Chapter  Google Scholar 

  45. Leysen JE, Awouters F, Kennis L, et al. Receptor binding profile of R 414687, a novel antagonist of 5HT2 receptors. Life Sci 1981; 20: 1015–8

    Article  Google Scholar 

  46. Leonard BE. A comparison of the pharmacological properties of the novel tricyclic antidepressant lofepramine with its major metabolite desipramine: a review. Int Clin Psychopharmacol 1987; 2: 281–97

    Article  PubMed  CAS  Google Scholar 

  47. O’Connor WT, Leonard BE. Effect of chronic administration of the 6-aza analogue of mianserin (Org. 3770) and its enantiomers on behaviour and changes in noradrenaline metabolism of olfactory-bulbectomized rats in the ‘open field’ apparatus. Neuropharmacology 1986; 25(3): 267–70

    Article  PubMed  Google Scholar 

  48. De Boer T, Nefkens F, van Helvoirt A. The alpha2 antagonist Org. 3770 enhances serotonin transmission in vivo. Eur J Pharmacol 1994; 253: R5–6

    Article  PubMed  Google Scholar 

  49. Smith WT, Glaudin V, Pangides J, et al. Mirtazapine vs amitriptyline vs placebo in the treatment of major depressive disorders. Psychopharmacol Bull 1990; 26: 191–6

    PubMed  CAS  Google Scholar 

  50. De Boer T, Ruigt GSF. The selective α2-adrenoceptor antagonist mirtazapine (Org 3770) enhances noradrenergic and 5-HT1A-mediated serotonergic neurotransmission. CNS Drugs 1995; 4Suppl. 1: 29–38

    Article  Google Scholar 

  51. Pinder RM, Wieringa JH. Third generation antidepressants. Med Res Dev 1993; 13: 259–325

    CAS  Google Scholar 

  52. Zivkov M, De Jongh G. Org. 3770 vs amitriptyline: a 6 week randomized double-blind multicentre trial in hospitalized patients. Human Psychopharmacol 1995. In press

    Google Scholar 

  53. Trallas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibits antidepressant actions. Eur J Pharmacol 1990; 185: 1–10

    Article  Google Scholar 

  54. Leonard BE. The comparative pharmacology of new antidepressants. J Clin Psychiatry 1993; 54Suppl.: 3–15

    PubMed  Google Scholar 

  55. Skolnick P, Miller R, Young A, et al. Chronic treatment with 1-aminocyclopropanecarboxylic acid desensitizes behavioural responses to compounds acting at the N-methyl-D-aspartate receptor complex. Psychopharmacology 1992; 107: 489–96

    Article  PubMed  CAS  Google Scholar 

  56. Maj J, Rogoz Z, Skuza G, et al. The effects of MK-801 and antidepressant drugs in the forced swimming test in rats. Eur J Neuropsychopharmacol 1992; 2: 37–41

    Article  CAS  Google Scholar 

  57. Papp M, Moryl E. Similar effects of chronic treatment with imipramine and the NMDA antagonists. CGP3784 and MK801 in a chronic mild stress model of depression in rats. Eur J Neuropsychopharmacol 1993; 3: 348–9

    Article  Google Scholar 

  58. Paul IA, Trullas R, Skolnick P, et al. Down regulation of cortical beta adrenoceptors by chronic treatment with functional NMDA antagonists. Psychopharmacology 1992; 106: 285–7

    Article  PubMed  CAS  Google Scholar 

  59. Paul IA, Trullas R, Skolnick P, et al. Adaptation of the NMDA receptor complex in rat frontal cortex following chronic treatment with electroconvulsive shock or imipramine. Eur J Pharmacol 1993; 247: 305–12

    Article  PubMed  CAS  Google Scholar 

  60. Paul IA, Nowak G, Layer RT, et al. Adaptation of the NMDA receptor complex following chronic antidepressant treatments. J Pharmacol Exp Ther 1994; 269: 95–102

    PubMed  CAS  Google Scholar 

  61. Largent BL, Wikstrom H, Gundlach AL, et al. Structural determinants of sigma receptor affinity. Mol Pharmacol 1987; 32: 732–84

    Google Scholar 

  62. Itzhak Y, Kassin CO. Clorgyline displays high affinity for sigma binding sites in C57 BL 6 mouse brain. Eur J Pharmacol 1990; 176: 107–8

    Article  PubMed  CAS  Google Scholar 

  63. Tam SW, Cook L. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)− [3H] SKF 10047 and [3H] haloperidol binding in guinea pig membranes. Proc Nat Acad Sci USA 1984; 81(17): 5618–21

    Article  PubMed  CAS  Google Scholar 

  64. Roman FJ, Pascaud XP, Duffy 0, et al. Neuropeptide Y and peptide YY interact with rat brain sigma and PCP binding sites. Eur J Pharmacol 1989; 174: 301–2

    Article  PubMed  CAS  Google Scholar 

  65. Higuchi H, Costa E, Yang H-Y. Neuropeptide Y inhibits the nicotine mediated release of catecholamines from bovine adrenal chromaffin cells. J Pharmacol Exp Ther 1988; 244: 468–74

    PubMed  CAS  Google Scholar 

  66. Paul IA, Nowak G, Young A, et al. In vitro modulation of sigma-1 receptors in mouse fore brain by antidepressant drugs. Eur J Pharmacol (Mol Pharmacol Sect) 1995. In press

    Google Scholar 

  67. Leonard BE. Second generation antidepressants: chemical diversity but unity of action? In: Montgomery S, Corn TH, editors. Psychopharmacology of depression. Oxford: Oxford University Press, 1994: 19–31

    Google Scholar 

  68. Wong KL, Bruck RC, Farabman IA. Amitriptyline mediated inhibition of neurite outgrowth from chicks embryonic cerebral explants involves a reduction in adenylate cyclase activity. J Neurochem 1991; 57: 1223–30

    Article  PubMed  CAS  Google Scholar 

  69. Racagni G, Tinelli D, Bianchi E, et al. cAMP-dependent binding proteins and endogenous phosphorylation after antidepressant treatment. In: Sandler M, Coppen A, Harnett S, editors. 5-Hydroxytryptamine in psychiatry. Oxford: Oxford Medical Publications, 1991: 116–23

    Chapter  Google Scholar 

  70. van Eekelen JAM, Kiss JZ, Westphal HM, et al. Immunocytochemical study on the intracellular localization of the type 2 glucocorticoid receptor in the rat brain. Brain Res 1987; 436: 120–8

    Article  PubMed  Google Scholar 

  71. Burnstein XL, Cidlowski JA. Regulation of gene expression by glucocorticoids. Ann Rev Physiol 1989; 51: 683–99

    Article  CAS  Google Scholar 

  72. Kitayama I, Janson AM, Cintra A. Effects of chronic imipramine treatment on glucocorticoid receptor immunoreactivity in various regions of the rat brain. J Neural Trans 1988; 73: 191–203

    Article  CAS  Google Scholar 

  73. Dinan TG. Glucocorticoids and the genesis of depressive illness: a psychobiological model. Br J Psychiatry 1994; 164: 365–71

    Article  PubMed  CAS  Google Scholar 

  74. Song C, Leonard BE. The effect of olfactory bulbectomy in the rat, alone or in combination with antidepressants and endogenous factors, on immune function. Human Psychopharmacol 1995; 10: 7–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonard, B.E. Mechanisms of Action of Antidepressants. CNS Drugs 4 (Suppl 1), 1–12 (1995). https://doi.org/10.2165/00023210-199500041-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199500041-00003

Keywords

Navigation