Skip to main content
Log in

Dietary Components with Demonstrated Effectiveness in Decreasing the Severity of Exercise-Induced Asthma

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Exercise-induced asthma (EIA) occurs in up to 90% of individuals with asthma and approximately 10% of the general population without asthma. EIA describes a condition in which vigorous physical activity triggers acute airway narrowing with heightened airway reactivity resulting in reductions in forced expiratory volume in 1 second of greater than 10% compared with pre-exercise values. Treatment of EIA almost exclusively involves the use of pharmacological medications. However, there is accumulating evidence that a dietary excess of salt and omega-6 fatty acids, and a dietary deficiency of antioxidant vitamins and omega-3 fatty acids, can modify the severity of EIA. The modification of these dietary factors has the potential to reduce the incidence and prevalence of this disease. The dietary component most studied to date is dietary salt. Recent studies have supported a role for dietary salt as a modifier of the severity of EIA, suggesting that salt-restrictive diets can reduce the severity of EIA. Since EIA is part of the asthmatic diathesis, it is possible that EIA may serve as a useful model for investigation of potential dietary interventions for reducing airway hyperresponsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Fig. 2

Similar content being viewed by others

Notes

  1. The use of tradenames is for product identification purposes only and does not imply endorsement.

References

  1. Centers for Disease Control and Prevention. Forecasted state-specific estimates for self-reported asthma prevalence — United States. MMWR Morb Mortal Wkly Rep 1998; 4: 12

    Google Scholar 

  2. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. Lancet 1998; 351(9111): 1225–32

    Article  Google Scholar 

  3. Australian Bureau of Statistics. National health survey: asthma and other respiratory conditions [report no. 4373.0]. Canberra: Australian Bureau of Statistics, 1998

    Google Scholar 

  4. Lacroix VJ. Exercise-induced asthma. Phys Sportsmed 1999; 27(12): 75–92

    Article  PubMed  CAS  Google Scholar 

  5. Rupp NT. Diagnosis and management of exercise-induced asthma. Phys Sportsmed 1996; 24: 77–86

    Article  PubMed  CAS  Google Scholar 

  6. Voy RO. The US Olympic Committee experience with exercise-induced bronchospasm, 1984. Med Sci Sports Exerc 1986; 18(3): 328–30

    Article  PubMed  CAS  Google Scholar 

  7. Wilber RL, Rundell KW, Szmedra L, et al. Incidence of exercise-induced bronchospasm in Olympic winter sport athletes. Med Sci Sports Exerc 2000; 32(4): 732–7

    Article  PubMed  CAS  Google Scholar 

  8. Haby MM, Peat JK, Mellis CM, et al. An exercise challenge for epidemiological studies of childhood asthma: validity and repeatability. Eur Respir J 1995; 8(5): 729–36

    PubMed  CAS  Google Scholar 

  9. Stoesser A, Cook M. Possible relation between electrolyte balance and bronchial asthma. Am J Dis Child 1938; 56: 943–4

    Google Scholar 

  10. Burney P. A diet rich in sodium may potentiate asthma: epidemiologic evidence for a new hypothesis. Chest 1987; 91 (6 Suppl.): 143S–8S

    Article  PubMed  CAS  Google Scholar 

  11. Burney PG. The causes of asthma: does salt potentiate bronchial activity? J R Soc Med 1987; 80(6): 364–7

    PubMed  CAS  Google Scholar 

  12. Burney PG, Britton JR, Chinn S, et al. Descriptive epidemiology of bronchial reactivity in an adult population: results from a community study. Thorax 1987; 42(1): 38–44

    Article  PubMed  CAS  Google Scholar 

  13. Burney PGJ, Britton JR, Chinn S, et al. Response to inhaled histamine and 24 hour sodium excretion. BMJ 1986; 292: 1483–6

    Article  PubMed  CAS  Google Scholar 

  14. Burney PG, Neild JE, Twort CH, et al. Effect of changing dietary sodium on the airway response to histamine. Thorax 1989; 44(1): 36–41

    Article  PubMed  CAS  Google Scholar 

  15. Carey OJ, Locke C, Cookson JB. Effect of alterations of dietary sodium on the severity of asthma in men. Thorax 1993; 48(7): 714–8

    Article  PubMed  CAS  Google Scholar 

  16. Javaid A, Cushley MJ, Bone MF. Effect of dietary salt on bronchial reactivity to histamine in asthma. BMJ 1988; 297(6646): 454

    Article  PubMed  CAS  Google Scholar 

  17. Tribe RM, Barton JR, Poston L, et al. Dietary sodium intake, airway responsiveness, and cellular sodium transport. Am J Respir Crit Care Med 1994; 149(6): 1426–33

    PubMed  CAS  Google Scholar 

  18. Lieberman D, Heimer D. Effect of dietary sodium on the severity of bronchial asthma. Thorax 1992; 47(5): 360–2

    Article  PubMed  CAS  Google Scholar 

  19. Mickleborough TD, Cordain L, Gotshall RW, et al. A low sodium diet improves indices of pulmonary function in exercise-induced asthma. J Exerc Physiol 2000; 3(2): 46–54

    Google Scholar 

  20. Mickleborough TD, Gotshall RW, Cordain L, et al. Dietary salt alters pulmonary function during exercise in exercise-induced asthmatics. J Sports Sci 2001; 19(11): 865–73

    Article  PubMed  CAS  Google Scholar 

  21. Gotshall RW, Mickleborough TD, Cordain L. Dietary salt restriction improves pulmonary function in exercise-induced asthma. Med Sci Sports Exerc 2000; 32(11): 1815–9

    Article  PubMed  CAS  Google Scholar 

  22. Kurtz TW, Al-Bander HA, Morris Jr RC. ‘Salt-sensitive’ essential hypertension in men: is the sodium ion alone important? N Engl J Med 1987; 317(17): 1043–8

    Article  PubMed  CAS  Google Scholar 

  23. Shore AC, Markandu ND, MacGregor GA. A randomized crossover study to compare the blood pressure response to sodium loading with and without chloride in patients with essential hypertension [published erratum appears in J Hypertens 1988 Nov; 6 (11): i]. J Hypertens 1988; 6(8): 613–7

    Article  PubMed  CAS  Google Scholar 

  24. Kurtz TW, Morris RC. Dietary chloride and bicarbonate as determinants of desoxycortocosterone hypertension. J Hypertens 1984; 2: 371–3

    Google Scholar 

  25. Medici TC, Schmid AZ, Hacki M, et al. Are asthmatics salt-sensitive? A preliminary controlled study. Chest 1993; 104(4): 1138–43

    Article  PubMed  CAS  Google Scholar 

  26. Mickleborough TD, Gotshall RW, Kluka EM, et al. Dietary chloride as a possible determinant of the severity of exercise-induced asthma. Eur J Appl Physiol 2001; 85(5): 450–6

    Article  PubMed  CAS  Google Scholar 

  27. Gotshall RW, Fedorczak LJ, Rasmussen JJ. One week versus two weeks of a low salt diet and severity of exercise-induced bronchoconstriction [abstract]. Med Sci Sports Exerc 2003; 35(5): S10

    Google Scholar 

  28. Mickleborough TD, Gotshall RW, Rhodes J, et al. Elevating dietary salt exacerbates hyperpnea-induced airway obstruction in guinea pigs. J Appl Physiol 2001; 91(3): 1061–6

    PubMed  CAS  Google Scholar 

  29. Festing MHW. Genetics. In: Wagner JE, Manning PJ, editors. The biology of the guinea pig. New York: Academic Press Inc., 1976: 99–135

    Google Scholar 

  30. Council NR. Water and electrolytes: recommended dietary allowances. 10th ed. Washington, DC: National Academy Press, 1989: 247–61

    Google Scholar 

  31. Krauss RM, Eckel RH, Howard B, et al. AHA Dietary Guidelines, revision 2000: a statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Circulation 2000; 102(18): 2284–99

    Article  PubMed  CAS  Google Scholar 

  32. Lee TH, Hoover RL, Williams JD, et al. Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med 1985; 312(19): 1217–24

    Article  PubMed  CAS  Google Scholar 

  33. Endres S, Ghorbani R, Kelley VE, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 1989; 320(5): 265–71

    Article  PubMed  CAS  Google Scholar 

  34. Kromann N, Green A. Epidemiological studies in the Upernavik district, Greenland: incidence of some chronic diseases 1950–1974. Acta Med Scand 1980; 208(5): 401–6

    PubMed  CAS  Google Scholar 

  35. Payan DG, Wong MY, Chernov-Rogan T, et al. Alterations in human leukocyte function induced by ingestion of eicosapentaenoic acid. J Clin Immunol 1986; 6(5): 402–10

    Article  PubMed  CAS  Google Scholar 

  36. Arm JP, Horton CE, Spur BW, et al. The effects of dietary supplementation with fish oil lipids on the airways response to inhaled allergen in bronchial asthma. Am Rev Respir Dis 1989; 139(6): 1395–400

    PubMed  CAS  Google Scholar 

  37. Arm JP, Horton CE, Mencia-Huerta JM, et al. Effect of dietary supplementation with fish oil lipids on mild asthma. Thorax 1988; 43(2): 84–92

    Article  PubMed  CAS  Google Scholar 

  38. Hodge L, Salome CM, Hughes JM, et al. Effect of dietary intake of omega-3 and omega-6 fatty acids on severity of asthma in children. Eur Respir J 1998; 11(2): 361–5

    Article  PubMed  CAS  Google Scholar 

  39. Thien FC, Mencia-Huerta JM, Lee TH. Dietary fish oil effects on seasonal hay fever and asthma in pollen-sensitive subjects. Am Rev Respir Dis 1993; 147(5): 1138–43

    PubMed  CAS  Google Scholar 

  40. Kirsch CM, Payan DG, Wong MY, et al. Effect of eicosapentaenoic acid in asthma. Clin Allergy 1988; 18(2): 177–87

    Article  PubMed  CAS  Google Scholar 

  41. Nagakura T, Matsuda S, Shichijyo K, et al. Dietary supplementation with fish oil rich in omega-3 polyunsaturated fatty acids in children with bronchial asthma. Eur Respir J 2000; 16(5): 861–5

    Article  PubMed  CAS  Google Scholar 

  42. Broughton KS, Johnson CS, Bobin KP, et al. Reduced asthma symptoms with n-3 fatty acid ingestion are related to 5-series leukotriene production. Am J Clin Nutr 1997; 65: 1011–117

    PubMed  CAS  Google Scholar 

  43. Okamoto M, Mitsunobu F, Ashida K, et al. Effects of dietary supplementation with n-3 fatty acids compared with n-6 fatty acids on bronchial asthma. Intern Med 2000; 39(2): 107–11

    Article  PubMed  CAS  Google Scholar 

  44. Dry J, Vincent D. Effect of a fish oil diet on asthma: results of a 1-year double-blind study. Int Arch Allergy Appl Immunol 1991; 95(2–3): 156–7

    Article  PubMed  CAS  Google Scholar 

  45. Masuev KA. The effect of polyunsaturated fatty acids of the omega-3 class on the late phase of the allergic reaction in bronchial asthma patients. Ter Arkh 1997; 69(3): 31–3

    PubMed  CAS  Google Scholar 

  46. Masuev KA. The effect of polyunsaturated fatty acids on the biochemical indices of bronchial asthma patients. Ter Arkh 1997; 69(3): 33–5

    PubMed  CAS  Google Scholar 

  47. Villani F, Comazzi R, De Maria P, et al. Effect of dietary supplementation with polyunsaturated fatty acids on bronchial hyperreactivity in subjects with seasonal asthma. Respiration 1998; 65(4): 265–9

    Article  PubMed  CAS  Google Scholar 

  48. Picado C, Castillo JA, Schinca N, et al. Effects of a fish oil enriched diet on aspirin intolerant asthmatic patients: a pilot study. Thorax 1988; 43(2): 93–7

    Article  PubMed  CAS  Google Scholar 

  49. Mickleborough TD, Murray RL, Lindley MR. Elevating dietary omega-fatty acid consumption reduces the severity of exercise-induced bronchoconstriction [abstract]. Med Sci Sports Exerc 2003; 35(5): S10

    Google Scholar 

  50. Hatch GE. Asthma, inhaled oxidants, and dietary antioxidants. Am J Clin Nutr 1995; 61 (3 Suppl.): 625S–30S

    PubMed  CAS  Google Scholar 

  51. Kaur B, Rowe BH, Ram FS. Vitamin C supplementation for asthma. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Update Software, 2001: CD000993

    Google Scholar 

  52. Schachter EN, Schlesinger A. The attenuation of exercise-induced bronchospasm by ascorbic acid. Ann Allergy 1982; 49(3): 146–51

    PubMed  CAS  Google Scholar 

  53. Cohen HA, Neuman I, Nahum H. Blocking effect of vitamin C in exercise-induced asthma. Arch Pediatr Adolesc Med 1997; 151(4): 367–70

    Article  PubMed  CAS  Google Scholar 

  54. Miric M, Haxihu MA. Effect of vitamin C on exercise-induced bronchoconstriction. Plucne Bolesti 1991; 43(1–2): 94–7

    PubMed  CAS  Google Scholar 

  55. Neuman I, Nahum H, Ben-Amotz A. Prevention of exercise-induced asthma by a natural isomer mixture of beta-carotene. Ann Allergy Asthma Immunol 1999; 82(6): 549–53

    Article  PubMed  CAS  Google Scholar 

  56. Neuman I, Nahum H, Ben-Amotz A. Reduction of exercise-induced asthma oxidative stress by lycopene, a natural antioxidant. Allergy 2000; 55(12): 1184–9

    Article  PubMed  CAS  Google Scholar 

  57. Murphy JD, Ferguson CS, Brown KR, et al. The effect of dietary antioxidants on lung function in exercise-induced asthmatics [abstract]. Med Sci Sports Exerc 2002; 34(5): S155

    Google Scholar 

  58. Hartert TV, Peebles RS. Dietary antioxidants and adult asthma. Curr Opin Allergy Clin Immunol 2001; 1(5): 421–9

    PubMed  CAS  Google Scholar 

  59. Centanni S, Santus P, Di Marco F, et al. The potential role of tocopherol in asthma and allergies: modification of the leukotriene pathway. Biodrugs 2001; 15(2): 81–6

    Article  PubMed  CAS  Google Scholar 

  60. Henricks PA, Nijkamp FP. Reactive oxygen species as mediators in asthma. Pulm Pharmacol Ther 2001; 14(6): 409–20

    Article  PubMed  CAS  Google Scholar 

  61. Bukowskyj M, Nakatsu K. The bronchodilator effect of caffeine in adult asthmatics. Am Rev Respir Dis 1987; 135(1): 173–5

    PubMed  CAS  Google Scholar 

  62. Curatolo PW, Robertson D. The health consequences of caffeine. Ann Intern Med 1983; 98 (5 Pt 1): 641–53

    PubMed  CAS  Google Scholar 

  63. Bara AI, Barley EA. Caffeine for asthma. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Update Software, 2001: CD001112

    Google Scholar 

  64. Kivity S, Ben Aharon Y, Man A, et al. The effect of caffeine on exercise-induced bronchoconstriction. Chest 1990; 97(5): 1083–5

    Article  PubMed  CAS  Google Scholar 

  65. Duffy P, Phillips YY. Caffeine consumption decreases the response to bronchoprovocation challenge with dry gas hyperventilation. Chest 1991; 99(6): 1374–7

    Article  PubMed  CAS  Google Scholar 

  66. Smit HA, Grievink L, Tabak C. Dietary influences on chronic obstructive lung disease and asthma: a review of the epidemiological evidence. Proc Nutr Soc 1999; 58(2): 309–19

    Article  PubMed  CAS  Google Scholar 

  67. Baker JC, Ayres JG. Diet and asthma. Respir Med 2000; 94(10): 925–34

    Article  PubMed  CAS  Google Scholar 

  68. Gotshall RW. Exercise-induced bronchoconstriction. Drugs 2002; 62(12): 1725–39

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Partial support for the dietary salt studies was provided by the US Olympic Committee and US Swimming, the PADI Foundation and the College Research Council, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, CO, USA. The authors have no conflict of interest with regard to the information provided in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Mickleborough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mickleborough, T.D., Gotshall, R.W. Dietary Components with Demonstrated Effectiveness in Decreasing the Severity of Exercise-Induced Asthma. Sports Med 33, 671–681 (2003). https://doi.org/10.2165/00007256-200333090-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200333090-00003

Keywords

Navigation