Skip to main content

Advertisement

Log in

Exercise Metabolism and β-Blocker Therapy

An Update

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The rationale for the concurrent prescription of β-blockers and programmes of exercise is that both medication and physical activity can improve the quality of life of patients with cardiovascular disease. Difficulties arise when drugs reduce either the physical ability or the motivation to exercise. This article focuses on the physiological limitations to prolonged aerobic exercise in patients receiving β-blockers. Possible limiting factors to exercise while taking β-blockers include reduction in heart rate and cardiac output, local alterations to blood flow, changes to muscle and liver glycogenolysis, and alterations to adipose and intramuscular lipolysis.

The disadvantages and advantages of nonselective and β1-selective drugs are discussed, as well as those of drugs that have β2-agonist properties. Particular emphasis is placed upon the β-blocker-induced attenuation of the normal increase in fat oxidation during prolonged exercise. There are physiological advantages, especially for the physically active individual, in prescribing β1-selective rather than nonselective drugs in controlled release, rather than conventional release, form. Additionally, there may be further advantages in prescribing drugs which have partial agonist properties at β2 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Secretary of State for Health. The health of the nation: a strategy for health in England. Section A: coronary heart disease and stroke. London: HMSO, 1992: 46–7, 62–4

    Google Scholar 

  2. Gloag D. Exercise, fitness and health. BMJ 1992; 305: 377–8

    Article  PubMed  CAS  Google Scholar 

  3. Superko HR. The role of diet, exercise, and medication in blood lipid management of cardiac patients. Physician Sports Med 1990; 16: 65–80

    Google Scholar 

  4. Morris JN, Clayton DG, Everitt MG, et al. Exercise in leisure time: coronary attack and death rates. Br Heart J 1990; 63: 325–34

    Article  PubMed  CAS  Google Scholar 

  5. Shaper AG, Wannamathee G. Physical activity and ischaemic heart disease in middle aged British men. Br Heart J 1991; 66: 384–94

    Article  PubMed  CAS  Google Scholar 

  6. Wannamethee G, Shaper AG. Physical activity and stroke in British middle-aged men. BMJ 1992; 304: 597–601

    Article  PubMed  CAS  Google Scholar 

  7. Froehlicher V, Jenson D, Atwood JE, et al. Cardiac rehabilitation: evidence for improvement in myocardial perfusion and function. Arch Phys Med Rehabil 1980; 61: 5117–22

    Google Scholar 

  8. Singh BN, Venkatesh N. Prevention of myocardial re-infarction and of sudden death in survivors of myocardial infarction: role of prophylactic â adrenoceptor blockade. Am Heart J 1984; 107: 189–200

    Article  PubMed  CAS  Google Scholar 

  9. Bove AA. Cardiovascular disorders and exercise. In: Bove AA, Lowenthal DT, editors. Exercise medicine: physiological principles and clinical application. New York: Academic Press, 1983: 229–57

    Google Scholar 

  10. Hakim AA, Petrovitch H, Burchfiel CM, et al. Effects of walking on mortality among non-smoking retired men. N Engl J Med 1998; 338: 94–9

    Article  PubMed  CAS  Google Scholar 

  11. Zacharias FJ. Atenolol compared with other â blocking agents. Proc R Soc Med 1977: 70 (Suppl. 5): 24–7

    PubMed  CAS  Google Scholar 

  12. Cruickshank JM. â Blockers, bradycardia and adverse effects. Acta Ther 1981; 7: 309–21

    Google Scholar 

  13. McLeod A, Kraus WE, Williams RS. Effects of â1 selective and non selective beta-adrenoceptor blockade during exercise conditioning in healthy adults. Am J Cardiol 1984; 53: 1656–61

    Article  PubMed  CAS  Google Scholar 

  14. Savin MW, Gordon EP, Kaplan SM, et al. Exercise training during long-term beta-blockade treatment in healthy subjects. Am J Cardiol 1985; 55: 101D-9D

    Article  CAS  Google Scholar 

  15. Wilmore JH. Exercise testing, training and beta-adrenergic blockade. Phys Sports Med 1988; 16: 45–51

    Google Scholar 

  16. Grimby G, Smith U. Beta blockade and muscle function. Lancet 1978; 16: 1318–9

    Article  Google Scholar 

  17. Kaiser P, Rossner S, Karlsson J. Effects of â-adrenergic blockade on endurance and short time performance in respect to individual muscle fibre composition. Int J Sports Med 1981; 2: 37–42

    Article  PubMed  CAS  Google Scholar 

  18. Karlsson J, Kjessel T, Kaiser P. Alpine skiing and acute betablockade. Int J Sports Med 1983; 4 (3): 190–3

    Article  PubMed  CAS  Google Scholar 

  19. Gullestad L, Hallen J, Medbo JI, et al. The effect of acute vs chronic treatment with beta adrenoceptor blockade on exercise performance in healthy men and women. Br J Clin Pharmacol 1996; 41: 57–67

    Article  PubMed  CAS  Google Scholar 

  20. Jilka SM, Joyner MJ, Nittolo JM, et al. Maximal exercise responses to acute and chronic beta-adrenergic blockade in healthy male subjects. Med Sci Sports Exerc 1988; 20: 570–3

    PubMed  CAS  Google Scholar 

  21. Fagard R, Staesson J, Thijs L, et al. Influence of antihypertensive drugs on exercise capacity. Drugs 1993; 46: 32–6

    Article  PubMed  Google Scholar 

  22. Hughson RL, Russell CA, Marshall MR. Effect of metoprolol on cycle and treadmill maximal exercise performance. J Cardiac Rehabil 1984; 4: 27–30

    Google Scholar 

  23. Tesch PA, Kaiser P. Effects of beta adrenergic blockade on O2 uptake during submaximal and maximal exercise. J Appl Physiol 1983; 54: 901–5

    PubMed  CAS  Google Scholar 

  24. Gordon NF, Van Rensburg JP, Van Den Heever DP, et al. Effect of dual beta-blockade and calcium antagonism on endurance performance. Med Sci Sports Exerc 1987; 19: 1–6

    PubMed  CAS  Google Scholar 

  25. Kaiser P, Tesch PA, Thorsson J, et al. Skeletal muscle glycolysis during submaximal exercise following acute beta-adrenergic blockade in man. Acta Physiol Scand 1985; 123: 285–91

    Article  PubMed  CAS  Google Scholar 

  26. Sports Council, Health Education Authority. Allied Dunbar National Fitness Survey: a report on activity patterns and fitness levels (main findings). London: Sports Council and Health Education Authority, 1992

  27. Welsh Heart Programme Directorate. Exercise for health: health related fitness in Wales. Cardiff: Health Promotion Authority for Wales, 1987. Heartbeat Wales technical report number 17

  28. Blair SN, Kohl III HW, Paffenbarger Jr RS, et al. Physical fitness and all cause mortality: a prospective study of healthy men and women. JAMA 1989; 262: 2395–401

    Article  PubMed  CAS  Google Scholar 

  29. Morris JN, Everitt MG, Pollard R, et al. Vigorous exercise in leisure time: protection against coronary heart disease. Lancet 1980; II: 1207–10

    Article  Google Scholar 

  30. Paffenbarger RS, Hale WE. Work activity and coronary heart mortality. N Engl J Med 1975; 292: 545–50

    Article  PubMed  CAS  Google Scholar 

  31. Lundborg P, Astrom H, Bengtsson C, et al. Effect of betaadrenoceptor blockade on exercise performance and metabolism. Clin Sci 1981; 61: 299–305

    PubMed  CAS  Google Scholar 

  32. Fellenius E. Muscle fatigue and â-blockers: a review. Int J Sports Med 1983; 4: 1–8

    Article  PubMed  CAS  Google Scholar 

  33. Van Baak MA. â-adrenoceptor blockade and exercise: an update. Sports Med 1988; 4: 209–25

    Google Scholar 

  34. Ahlquist RP. A study of the adrenotropic receptors. Am J Physiol 1948; 153: 586–600

    PubMed  CAS  Google Scholar 

  35. Lands AM, Arnold A, McAuliff FP, et al. Differentiation of receptor systems activated by sympathetic amines. Nature 1967; 214: 597–8

    Article  PubMed  CAS  Google Scholar 

  36. D’Allaire F, Atgie C, Mauriege P, et al. Characterization of â1 and â3 adrenoceptors in intact brown adipocytes of the rat. Br J Pharmacol 1995; 14: 275–82

    Article  Google Scholar 

  37. Carpene C, Galitzky J, Collon P, et al. Desensitisation of â1 and â2, but not â3 adrenoceptor mediated lipolytic responses of adipocytes after long term norepinephrine infusion. J Pharmacol Exp Ther 1993; 265: 237–47

    PubMed  CAS  Google Scholar 

  38. Wheeldon NM, McDevitt DG, Lipworth BJ. Do â3 adrenoceptors mediate metabolic responses to isoprenaline? Q J Med 1993; 86: 595–600

    PubMed  CAS  Google Scholar 

  39. Zhao J, Unelius L, Bengtsson T, et al. Coexisting beta-adrenoceptor subtypes; significance for thermogenic process in brown fat cells. Am J Physiol 1994; 267: C969–79

    Google Scholar 

  40. Blaak EE, Van Baak MA, Kempen KP, et al. Role of alpha and beta adrenoceptors in sympathetically mediated thermogenesis. Am J Physiol 1993; 264: E11–7

    Google Scholar 

  41. Lonnqvist F, Thome A, Nilsell K, et al. A pathogenic role of visceral fat â3-adrenoceptors in obesity. J Clin Invest 1995; 95: 1109–16

    Article  PubMed  CAS  Google Scholar 

  42. Rang HP, Dale MM. Pharmacology. London: Churchill Livingstone 1987: 147

    Google Scholar 

  43. Baxter JD, Funder JW. Hormone receptors. N Engl J Med 1979; 304: 1149–61

    Article  Google Scholar 

  44. Pollet RJ, Levey GS. Principles of membrane receptor physiology and their application to clinical medicine. Ann Intern Med 1980; 92: 663–80

    PubMed  CAS  Google Scholar 

  45. Stiles GL, Caron MG, Lefkowitz RJ. â-adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev 1984; 64: 661–743

    PubMed  CAS  Google Scholar 

  46. Prichard BNC, Walden J. The beta adrenergic withdrawal phenomenon. Br J Clin Pharmacol 1982; 13 Suppl. 2: 337S-41S

    Article  Google Scholar 

  47. Brodde OE. Molecular pharmacology of beta receptors. J Cardiovasc Pharmacol 1986; 8 Suppl. 4: 516–20

    Google Scholar 

  48. Prichard BNC, Gillam PMS. The use of propranolol in the treatment of hypertension. BMJ 1964; 2: 725–7

    Article  PubMed  CAS  Google Scholar 

  49. Prichard BNC, Gillam PMS. Treatment of hypertension with propranolol. BMJ 1969; 1; 7–9

    Article  PubMed  CAS  Google Scholar 

  50. Buehler F, Laagh JL, Baer L, et al. Propranolol inhibition of renin secretion: a specific approach to diagnosis and treatment of renin dependent hypertensive diseases. N Engl J Med 1972; 287: 1209–13

    Article  Google Scholar 

  51. Watson RDS, Eriksson BM, Hamilton CA. Effects of chronic beta-receptor antagonism on plasma catecholamines and blood pressure in hypertension. J Cardiovasc Pharmacol 1980; 2: 725–9

    Article  PubMed  CAS  Google Scholar 

  52. Schneider DA, Kamimori GH, Wu SY, et al. Plasma catecholamine and ventilatory responses to cycling after propranolol treatment. Med Sci Sports Exerc 1995; 27: 1616–20

    PubMed  CAS  Google Scholar 

  53. Wikstrand J, Warnold I, Olsson G, et al. Primary prevention with metoprolol in patients with hypertension: mortality results from MAPHY study. JAMA 1988; 259: 1976–82

    Article  PubMed  CAS  Google Scholar 

  54. Held P, Yusef S. Early intravenous beta-blockade in acute myocardial infarction. Cardiology 1989; 76: 132–43

    Article  PubMed  CAS  Google Scholar 

  55. Beta-Blocker Heart Attack Trial Research Group. A randomised trial of propranolol in patients with acute myocardial infarction. JAMA 1982; 247: 1707–14

    Article  Google Scholar 

  56. The Norwegian Multicenter Study Group. Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction. N Engl J Med 1981; 304: 801–7

    Article  Google Scholar 

  57. Olssen G, Wikstrand J, Warnold I, et al. Metoprolol-induced reduction in post-infarction mortality: pooled results from five double blind randomised trials. Eur Heart J 1992; 13: 28–32

    Google Scholar 

  58. May GS, Eberlein KA, Furberg CD, et al. Secondary prevention after myocardial infarction: a review of long term trials. Prog Cardiovasc Dis 1982; 4: 331–52

    Article  Google Scholar 

  59. Wilmore JH, Ewy GA, Freund BJ, et al. Cardiorespiratory alterations consequent to endurance exercise training during chronic beta-adrenergic blockade with atenolol and propranolol. Am J Cardiol 1985; 55: 142D-8D

    Article  CAS  Google Scholar 

  60. Chang PC, Blauw GJ, van Brummelen P. Pindolol: a betablocker with vasodilating properties due to stimulation of vascular â2 adrenoceptors. J Hypertens 1983; 1 Suppl. 2: 338–9

    CAS  Google Scholar 

  61. Van Zwieten PA. Differential pharmacological properties of â- adrenoceptor blocking drugs. J Cardiovasc Pharmacol 1983; 5: S1–7

    Article  PubMed  Google Scholar 

  62. Prichard BN. Carvedilol in ischaemic heart disease. Cardiology 1993; 82: 34–9

    Article  PubMed  Google Scholar 

  63. Duncan JJ, Vaandrager H, Farr JE, et al. Effect of intrinsic sympathomimetic activity on the ability of hypertensive patients to derive a training effect during chronic beta blockade. Am J Hypertens 1990; 3: 302–6

    PubMed  CAS  Google Scholar 

  64. Kullmer T, Kinderman W, Singer M. Effects on physical performance of intrinsic sympathomimetic activity (ISA) during selective beta 1 blockade. Eur J Appl Physiol 1987; 56: 292–8

    Article  CAS  Google Scholar 

  65. Deacon SP, Karunanayake A, Bamett D. Acebutelol, atenolol and propranolol and metabolic responses to acute hypoglycaemia in diabetics. BMJ 1977; 2: 1255–8

    Article  PubMed  CAS  Google Scholar 

  66. Silas JH, Freestone S, Leard MS, et al. Comparison of two slow release preparations of metoprolol with conventional metoprolol and atenolol. Br J Clin Pharmacol 1985; 20: 387–91

    Article  PubMed  CAS  Google Scholar 

  67. Dimenas ES, Dahlof CG, Heibel B, et al. Subjective symptoms and pharmacokinetics/dynamics of metoprolol CR in elderly subjects – a comparison with atenolol. Eur J Clin Pharmacol 1990; 38: 571–8

    Article  PubMed  CAS  Google Scholar 

  68. Akhlaghi S, Maxwell SR, Kendal MJ, et al. A comparison of the â-1 selectivity of conventional metoprolol and metoprolol CR during exercise in healthy volunteers. J Clin Pharm Ther 1993; 18: 259–66

    Article  PubMed  CAS  Google Scholar 

  69. Gullestad L, Birkeland K, Nordby G, et al. Effects of selective beta 2 adrenoceptor blockade on serum potassium and exercise performance in normal men. Br J Clin Pharmacol 1991; 32: 201–7

    Article  PubMed  CAS  Google Scholar 

  70. Gullestad L, Hallen J, Sejersted OM. K+ balance of the quadriceps muscle during dynamic exercise with and without â- adrenoceptor blockade. J Appl Physiol 1995; 78: 513–23

    PubMed  CAS  Google Scholar 

  71. Turner P. â-blockade and the human central nervous system. Drugs 1983; 25 Suppl. 2: 262–73

    Google Scholar 

  72. Tuininga YS, Crijns HJ, Brouwer J, et al. Evaluation of importance of central effects of atenolol and metoprolol measured by heart rate variability during mental performance tasks. Circulation 1995; 92: 3415–23

    Article  PubMed  CAS  Google Scholar 

  73. Leenen FH, Coenen CH, Zonderland M, et al. Effects of cardioselective and non selective â-blockade on dynamic exercise performance in mildly hypertensive men. Clin Pharmacol Ther 1980; 28: 12–21

    Article  PubMed  CAS  Google Scholar 

  74. Lowenthal DT, Kendrick ZV. Drug-exercise interaction. Annu Rev Pharmacol Toxicol 1985; 25: 275–305

    Article  PubMed  CAS  Google Scholar 

  75. Joyner MJ, Freund BJ, Jilka SM, et al. Effects of beta adrenergic blockade on exercise capacity of trained and untrained men: haemodynamic comparison. J Appl Physiol 1986; 60: 1429–34

    PubMed  CAS  Google Scholar 

  76. Reybrouck T, Amery A, Fagard R, et al. Haemodynamic responses to graded exercise after chronic beta adrenergic blockade. J Appl Physiol 1977; 42: 133–8

    PubMed  CAS  Google Scholar 

  77. Frisk-Holmberg M, Jorfeldt L, Juhlin Dannfelt A. Influence of alprenolol on haemodynamic and metabolic responses to prolonged exercise in subjects with hypertension. Clin Pharmacol Ther 1977; 21: 675–84

    PubMed  CAS  Google Scholar 

  78. Wilmore JH, Freund BJ, Joyner MJ, et al. Acute response to maximal and submaximal exercise consequent to beta adrenergic blockade: implications for the prescription of exercise. Am J Cardiol 1985; 55: 135D-41D

    Article  CAS  Google Scholar 

  79. Astrom H. Haemodynamic effects of beta-adrenergic blockade. Br Heart J 1968; 30: 44–9

    Article  PubMed  CAS  Google Scholar 

  80. Epstein S, Robinson BF, Kahler RL, et al. Effects of beta-adrenergic blockade on the cardiac response to maximal and sub-maximal exercise in man. J Clin Invest 1965; 4: 1745–53

    Article  Google Scholar 

  81. Lund-Johansen P, Haemodynamic changes at rest and during exercise in long term beta-blocker therapy of essential hypertension. Acta Med Scand 1974; 195: 117–21

    Article  PubMed  CAS  Google Scholar 

  82. Juhlin-Dannfelt AC, Astrom H. Influence of beta-adrenoceptor blockade on leg blood flow and lactate release in man. Scand J Clin Lab Invest 1979; 39: 179–83

    Article  PubMed  CAS  Google Scholar 

  83. Kalis JK, Freund BJ, Joyner MJ, et al. Effect of beta-blockade on the drift in O2 consumption during prolonged exercise. J Appl Physiol 1988; 64: 753–8

    Article  PubMed  CAS  Google Scholar 

  84. Ekblom B, Goldbarg AN, Kilbom A, et al. Effects of atropine and propranolol on the oxygen transport system during exercise in man. Scand J Clin Lab Invest 1972; 30: 35–42

    Article  PubMed  CAS  Google Scholar 

  85. Laustiola K, Uusitalo A, Koivula T, et al. Divergent effects of atenolol, practolol and propranolol on the peripheral metabolic changes induced by dynamic exercise in healthy men. Eur J Clin Pharmacol 1983; 25: 293–7

    Article  PubMed  CAS  Google Scholar 

  86. Smith RS, Kendall MJ, Worthington DJ, et al. Can the biochemical responses to a â2 adrenoceptor stimulant be used to determine the selectivity of â adrenoceptor blockers? Br J Clin Pharmacol 1983; 16: 557–60

    Article  CAS  Google Scholar 

  87. Lofdhal CG, Dahlof C, Westergren G, et al. Controlled release metoprolol compared with atenolol in asthmatic patients: interaction with terbutaline. Eur J Clin Pharmacol 1988; 33: S25–32

    Article  Google Scholar 

  88. Koch G, Franz IW, Gubba A, et al. Beta adrenoceptor blockade and physical activity: cardiovascular and metabolic aspects. Acta Med Scand 1983; 672 Suppl.: 55–62

    Google Scholar 

  89. McLeod A, Brown JE, Kuhn C, et al. Differentiation of haemodynamic, humoral and metabolic responses to â1 and â2 adrenergic stimulation in man using atenolol and propranolol. Circulation 1983; 67: 1076–84

    Article  PubMed  CAS  Google Scholar 

  90. Uusitupa M, Slitonen O, Harkonen M, et al. Metabolic and hormonal response to physical exercise during â1 selective and non selective â-blockade. Horm Metab Res 1982; 14: 583–9

    Article  PubMed  CAS  Google Scholar 

  91. Haffner CA, Kendall MJ, Maxwell S, et al. The lipolytic effect of â1 and â2 adrenoceptor activation in healthy human volunteers. Br J Clin Pharmacol 1993; 35: 35–9

    Article  PubMed  CAS  Google Scholar 

  92. Felig P, Cherif A, Minagawa A, et al. Hypoglycemia during prolonged exercise in normal men. N Engl J Med 1982; 306: 895–900

    Article  PubMed  CAS  Google Scholar 

  93. Garber AJ, Cryer PE, Santiago JV, et al. The role of adrenergic mechanisms in the substrate and hormonal response to insulin induced hypoglycaemia in man. J Clin Invest 1976; 58: 7–15

    Article  PubMed  CAS  Google Scholar 

  94. Koch G, Franz IW, Lohman FW. Effects of short term and long term treatment with cardioselective and non selective beta receptor blockade on carbohydrate and lipid metabolism and on catecholamines at rest and during exercise. Clin Sci 1981; 61 Suppl. 7: 43s-45s

    Google Scholar 

  95. Van Baak MA, Mooij JM. Effect of glucose infusion on endurance performance after beta-adrenoceptor blocker administration. J Appl Physiol 1994; 77: 641–6

    PubMed  CAS  Google Scholar 

  96. Ahlborg G, Juhlin-Dannfelt A. Effect of beta-receptor blockade on splanchnic and muscle metabolism during prolonged exercise in men. J Appl Physiol 1994; 76: 1037–42

    PubMed  CAS  Google Scholar 

  97. Hargreaves M, Proietto J. Glucose kinetics during exercise in trained men. Acta Physiol Scand 1994; 150: 221–5

    Article  PubMed  CAS  Google Scholar 

  98. Gullestad L, Hallen J, Sejersted OM. Variable effects of betaadrenoceptor blockade on muscle blood flow during exercise. Acta Physiol Scand 1993; 149: 257–71

    Article  PubMed  CAS  Google Scholar 

  99. Chasiotis D, Brandt R, Harris RC, et al. Effects of beta-blockade on glycogen metabolism in human subjects during exercise. Am J Physiol 1983; 245: E166–70

    Google Scholar 

  100. Frisk-Holmberg M, Jorfeldt L, Juhlin-Dannfelt A, et al. Metabolic changes in muscle during long term aprenolol therapy. Clin Pharmacol Ther 1979; 26: 566–71

    PubMed  CAS  Google Scholar 

  101. Kaiser P, Hylander B, Eliasson K, et al. Effect of â1-selective and non-selective beta blockade on blood pressure relative to physical performance in men with systemic hypertension. Am J Cardiol 1985; 55: 79D-84D

    Article  Google Scholar 

  102. Kaiser P, Tesch PA, Frisk-Holmberg M, et al. Effect of â1 selective and non selective â-blockade on work capacity and muscle metabolism. Clin Physiol 1986; 6: 197–207

    Article  PubMed  CAS  Google Scholar 

  103. Head A, Maxwell S, Kendall MJ, et al. Exercise metabolism in healthy volunteers taking atenolol, high and low doses of metoprolol CR/Z0K, and placebo. Br J Clin Pharmacol 1994; 38 499–504

    Article  PubMed  CAS  Google Scholar 

  104. Head A, Kendall MJ, Maxwell S. Exercise metabolism during one hour of treadmill walking while taking high and low doses of propranolol, metoprolol, or placebo. Clin Cardiol 1995; 18: 335–40

    Article  PubMed  CAS  Google Scholar 

  105. Head A, Maxwell S, Kendall MJ. Exercise metabolism in healthy volunteers taking celiprolol, atenolol and placebo. Br J Sports Med 1997; 31: 120–5

    Article  PubMed  CAS  Google Scholar 

  106. Nazar K, Brzezinska Z, Lyszczarz J, et al. Sympathetic control of the utilisation of energy substrates during long term exercise in dogs. Arch Int Physiol Biochem 1971; 79: 873–9

    Article  CAS  Google Scholar 

  107. Cleroux J, Leenen FH. Effects of beta blockade on muscle metabolism during prolonged exercise: a short review. Am J Hypertens 1988; 1: 290S-4S

    Google Scholar 

  108. Smith U. Adrenergic control of lipid metabolism. Acta Med Scand 1983. 672 Suppl.: 41–7

    Google Scholar 

  109. Carlson LA, Ekelund LG, Froberg SO. Concentration of triglycerides, phospholipids and glycogen in muscle in man. Acta Physiol Scand 1971; 1: 248–54

    Google Scholar 

  110. Cosenzi A, Sacerdote A, Bocin E, et al. Metabolic effects of atenolol and doxazosin in healthy volunteers during prolonged physical exercise. J Cardiovasc Pharmacol 1995; 25: 142–6

    Article  PubMed  CAS  Google Scholar 

  111. Jesek JK, Martin NB, Broeder CE, et al. Changes in plasma free fatty acids and glycerols during prolonged exercise in trained and hypertensive persons taking propranolol and pindolol. Am J Cardiol 1990; 66: 1336–41

    Article  PubMed  CAS  Google Scholar 

  112. Stankiewicz-Choroszucha B, Gorski J. Effect of beta adrenergic blockade on intramuscular triglyceride mobilisation during exercise. Experientia 1978; 34: 357–8

    Article  PubMed  CAS  Google Scholar 

  113. Cleroux J, Van Nguyen P, Taylor AW, et al. Effects of â1 vs â1 + â2 blockade on exercise endurance and muscle metabolism in humans. J Appl Physiol 1989; 66: 548–54

    PubMed  CAS  Google Scholar 

  114. Anderson RL, Wilmore JH, Joyner MJ, et al. Effects of cardioselective and non selective beta-adrenergic blockade on the performance of highly trained runners. Am J Cardiol 1985; 55: 149D-54D

    Article  CAS  Google Scholar 

  115. Kaijser L, Kaiser P, Karlsson J, et al. Beta blockers and running. Am Heart J 1980; 100 (6) Pt 1: 943–4

    Article  PubMed  CAS  Google Scholar 

  116. Head A, Jakeman PM, Kendall MJ, et al. The impact of a short course of three lipid lowering drugs on fat oxidation. Postgrad Med J 1993; 69: 197–203

    Article  PubMed  CAS  Google Scholar 

  117. Kendall MJ, Haffner CA, Hughes B, et al. The adrenergic control of lipolysis: development of tolerance to beta-2 receptor stimulation with terbutaline. Clin Chim Acta 1991; 204: 51–6

    Article  PubMed  CAS  Google Scholar 

  118. Van Baak MA, Mooij JM, Wijnen JAG. Effect of plasma nonesterified fatty acid concentrations on endurance performance during beta-adrenoceptor blockade. Int J Sports Med 1993; 14: 2–8

    Article  PubMed  Google Scholar 

  119. Pittner H. Pharmacodynamic actions of celiprolol, a cardioselective beta-receptor blocker. Arzneimittelforschung 1983; 33 (I): 13–25

    CAS  Google Scholar 

  120. Louis WJ, Drummer OH, Fung LH. Pharmacology of celiprolol. Cardiovasc Drugs Ther 1990; 4: 1281–6

    Article  Google Scholar 

  121. Wheeldon NM, McDevitt DG, Lipworth BJ. Selectivity of antagonist and partial agonist activity of celiprolol in normal subjects. Br J Clin Pharmacol 1992; 34: 337–43

    Article  PubMed  CAS  Google Scholar 

  122. Saner H, Seiler A, Mahler F. Different haemodynamic effects of celiprolol and atenolol in patients with mild to moderate hypertension. Arzneimittelforschung 1995; 45: 790–5

    PubMed  CAS  Google Scholar 

  123. Stumpe K, Kolloch R, Mathieu M, et al. A comparison of celiprolol and atenolol in the treatment of hypertension: a placebo controlled double blind study. Br J Clin Pract 1985; 39 Suppl. 40: 73–5

    Google Scholar 

  124. Silke B, Rosenthal F, Taylor S. A randomised double blind study of celiprolol compared to atenolol in mild and moderate hypertension. J Cardiovasc Pharmacol 1986; 8 Suppl. 4: 122–6

    Article  Google Scholar 

  125. Brown HC, Carruthers SG, Johnstone GB, et al. Clinical pharmacologic observations on atenolol, a beta-adrenoceptor blocker. Clin Pharmacol Ther 1976; 20: 524–34

    PubMed  CAS  Google Scholar 

  126. Fitzgerald JD, Ruffin R, Smedstad KG, et al. Studies on the pharmacokinetics and pharmacodynamics of atenolol in man. Eur J Clin Pharmacol 1978; 13: 81–9

    Article  PubMed  CAS  Google Scholar 

  127. Coggan AR, Coyle EF. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol 1987; 63: 2388–95

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Head, A. Exercise Metabolism and β-Blocker Therapy. Sports Med 27, 81–96 (1999). https://doi.org/10.2165/00007256-199927020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199927020-00002

Keywords

Navigation